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Background: Nanotechnology has gained important interest, especially in the development of 

new therapies; the application of gold nanoparticles (AuNPs) in the treatment and detection of 

diseases is a growing trend in this field. As cancer represents a serious health problem around 

the world, AuNPs are studied as potential drugs or drug carriers for anticancer agents. Recent 

studies show that AuNPs stabilized with chitosan (CH) possess interesting biological activities, 

including potential antitumor effects that could be selective to cancer cells.

Materials and methods: In this study, we synthesized sodium citrate-AuNPs and CH-

capped AuNPs of 3–10 nm, and analyzed their cytotoxicity in cervical (HeLa) and breast 

(MCF-7) cancer cells, and in peripheral blood mononuclear cells (PBMCs). Then, we evalu-

ated the clonogenic potential, cell cycle, nuclear alterations, caspase dependence, and reactive 

oxygen species (ROS) production in HeLa and MCF-7 cells after chitosan gold nanoparticles 

(CH-AuNPs) exposure.

Results: Our data showed that CH-AuNPs are cytotoxic in a dose-dependent manner in the 

cancer cell lines tested, while they induce low cytotoxicity in PBMCs. Sodium citrate gold 

nanoparticles did not show cytotoxic effects. In both HeLa and MCF-7 cell lines, CH-AuNPs 

inhibit clonogenic potential without inducing cell cycle arrest or nuclear alterations. The cell 

death mechanism is specific for the type of cancer cell line tested, as it depends on caspase 

activation in HeLa cells, whereas it is caspase independent in MCF-7 cells. In all cases, ROS 

production is mandatory for cell death induction by CH-AuNPs, as ROS inhibition with N-acetyl 

cysteine inhibits cell death.

Conclusion: Our results show that CH-AuNPs are selective for HeLa and MCF-7 cancer 

cells, rather than normal PBMCs, and that ROS production seems to be a conserved feature 

of the cell death mechanism induced by CH-AuNPs. These results improve the knowledge 

of CH-AuNPs and open the way to the design of new pharmacological strategies using these 

agents against cancer.
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Introduction
Nanotechnology research has increased in many different areas in the last years, includ-

ing biomedicine, where nanoparticles have been assessed by their potential to be used 

against different diseases like cancer. Nanoparticles have been shown to be interesting 

options in cancer diagnostics and therapeutics,1–3 as an alternative to nonviral delivery 

systems.4 Among the different types of nanoparticles, gold nanoparticles (AuNPs) 

have been demonstrated to inhibit proliferation and induce cell death on different 

types of cancer cell lines;1–3,5–7 moreover, they have been shown to be safe in several 
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biological models, and interesting agents for drug delivery 

and photothermal therapy against cancer.8

Cervical cancer and breast cancer are among the lead-

ing causes of mortality in women around the world.9 These 

cancers have several mutations that make cells prolifer-

ate continuously and evade regulated cell death (RCD), 

a mechanism by which the cell activates its own machinery to 

self-destruct.10 The first-line therapies for breast and cervical 

cancers consist of surgery, immunotherapy, polyamine syn-

thesis inhibitors, individual micronutrient supplementation, 

hormonal therapy, chemotherapy, and radiotherapy; however, 

these treatments also cause many side effects. Moreover, it is 

known that mutations or deletions in proteins related to apop-

tosis induce resistance to conventional treatments.11 These 

are the reasons why nanotechnology shows great promise for 

the improvement of traditional cancer treatments.

It has been observed that the efficacy and effect of 

nanoparticles on cancer and healthy cells are determined 

by several conditions of synthesis such as size, shape, and, 

especially, the reducing agent used.12,13 We propose the use 

of AuNPs stabilized with chitosan (chitosan gold nanopar-

ticles [CH-AuNPs]), a polycationic natural polymer shown 

to be biocompatible, biodegradable, and cytotoxic to cancer 

cells.14,15 The synthesis of AuNPs coated with chitosan is an 

interesting approach, as it confers a positive charge to AuNPs, 

thus increasing their affinity with the negative charge of the 

cell membrane.16,17 This is the reason why the use of chitosan 

in the design of agents for drug delivery has increased over the 

last years, and its association with nanostructures is of great 

importance.15 Many investigations have determined that the 

cytotoxicity of nanoparticles depends on their physicochemi-

cal properties.18–20 These properties give a variety of effects 

that depend on the kind of cancer and healthy cells analyzed.20 

For this reason, it is essential to study the particular charac-

teristics of the nanoparticles and to evaluate them in different 

types of cells. Few reports have described the biological effects 

of CH-AuNPs in cancer cells,5,17 and there is no description 

of their effect in primary healthy cells. Additionally, their 

mechanism of action in cancer cells is poorly understood.

Thus, the purpose of this study was to analyze the cyto-

toxicity of AuNPs in cervical (HeLa) and breast (MCF-7) 

cancer cell lines, and in peripheral blood mononuclear cells 

(PBMCs) using chitosan (CH) and sodium citrate (SC, our 

control) as reducing agents. We further characterized the 

mechanism of cytotoxicity of CH-AuNPs in cancer cells, 

as we assessed the clonogenic potential, cell cycle, DNA 

alterations, caspase dependence, and reactive oxygen species 

(ROS) production after treatment with CH-AuNPs.

Materials and methods
Nanoparticle synthesis
CH-AuNPs and sodium citrate gold nanoparticles (SC-AuNPs) 

were synthesized using the Turkevich method, with adapta-

tions of the protocol described by Arvizo et al.18 In brief, an 

acid solution of chitosan (2% w/w in acetic acid 0.4 M) was 

obtained by dissolving chitosan (medium molecular weight, 

300,000 g/mol, with 75%–85% of deacetylation) in 2 mM 

hydrochloroauric acid solution (HAuCl
4
), and it was homog-

enized at room temperature for 15 minutes on a magnetic plate 

at 80–90 rpm. The resulting solution was heated (100°C±5°C in 

glycerol bath for 15 minutes on a magnetic plate at 80–90 rpm) 

until it changed color to wine red. SC-AuNPs were obtained 

by heating HAuCl
4
 (2 mM) at 140°C (±5°C) in a glycerol bath 

for 5 minutes on a magnetic plate at 80–90 rpm, and then 1% 

sodium citrate solution (Milliporesigma, St Louis, MO, USA) 

was added by slow drip until it changed color to wine red.

Nanoparticle characterization
Mean particle diameter and Z potential were measured 

by dynamic light scattering (DLS) using Nanosizer NS90 

(Siemens, Malvern, PA, USA). The sample was dispersed 

in distilled water (1:1,000). The surface plasmon resonance 

was detected by Ultra visible spectroscopy using a Nano-

drop spectrophotometer 2000c (Thermo Fisher Scientific, 

Bartlesville, OK, USA). The morphology of the particles was 

observed with field emission scanning electron microscopy 

(SEM, Nova NanoSEM200; FEI, Hillsboro, OR, USA).

Cell culture
Human cervix adenocarcinoma cells, HeLa, were obtained 

from the American Type Culture Collection (ATCC, 

Manassas, VA, USA). Human breast adenocarcinoma 

cell line, MCF-7, was a gift from Dr J Gutierrez-Uribe 

(Nutriomics group, ITESM) who obtained the cell line 

from ATCC; this was approved by the Institutional Ethics 

Committee at the Universidad Autónoma de Nuevo León, 

College of Biological Sciences.

Peripheral blood was collected from six volunteers not 

showing an apparent disease (men and women, with age rang-

ing 18–30 years) after obtaining written informed consent. 

This study was approved by the Institutional Ethics Commit-

tee at the Universidad Autónoma de Nuevo León, College of 

Biological Sciences. PBMCs were obtained through density 

centrifugation with Ficoll-Hypaque-1119 (Milliporesigma). 

HeLa and MCF-7 cells were cultured in DMEM-F12 while 

PBMCs were cultured in Roswell Park Memorial Institute 

(RPMI) 1640 (Gibco, Grand Island, NY, USA). Both the 
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culture media were supplemented with 10% fetal bovine 

serum (Gibco) and 1% penicillin–streptomycin (Gibco) and 

were maintained in a humidified incubator containing 5% 

CO
2
 at 37°C. Cells were routinely grown in plastic tissue-

culture dishes (Corning, NY, USA).

Cell viability assessment
Cell growth inhibition was determined by MTT dye absorbance 

by living cells; this assay consists in measurement and quanti-

fied spectrophotometric means of reduction of yellow tetrazo-

lium (3- (4, 5-dimethylthiazilyl-1) -2, 5- diphenyl tetrazolium 

bromide) (Milliporesigma) by metabolically active cells in 

intracellular purple formazan. In brief, 5×103 cells per well 

were seeded in 96-well microtiter plates (Corning) for MTT 

assays. After exposure to CH-AuNPs, SC-AuNPs, chitosan, 

and HACl
4
 at different concentrations (25, 50, 75, 100, and 

150 µM) for 24 hours, 20 µL of MTT solution (2 mg/mL in 

phosphate-buffered saline [PBS]) was added to each well. 

The concentrations of CH-AuNPs and SC-AuNPs (µM) were 

determined based on the µM concentration of the precursor salt 

(HACl
4
) used for the synthesis of AuNPs. The plates were incu-

bated for three additional hours at 37°C, after which the MTT 

solution in the medium was aspirated and 200 μL of dimethyl 

sulfoxide (DMSO) (Milliporesigma) was added to each well 

to solubilize the formazan crystals formed in the viable cells. 

The optical density was measured at 570 nm using a microplate 

reader (Synergy2, Biotek, Winooski, VT, USA).

Cell death analysis
Cell death was determined by staining cells with Annexin 

V-allophycocyanin (APC) (AnnV, 0.1 μg/mL; BD Biosci-

ences Pharmingen, San Jose, CA, USA) and propidium 

iodide (PI; 0.5 μg/mL; Milliporesigma). 4×104 cells were 

seeded in 24-well plates (Corning) and were incubated at 

different concentrations of CH-AuNPs (50, 75, and 100 µM) 

for 24 hours to find the median cytotoxic concentration of 

CH-AuNPs required to reduce cell viability by 50% (CC
50

). 

After 24 hours, the cells were detached and washed twice 

with PBS and then resuspended in 200 μL of binding buf-

fer (10 mM HEPES/NaOH pH 7.4, 140 mM NaCl, 2.5 mM 

CaCl
2
) containing AnnV (0.1 μg/mL) and PI (0.5 μg/mL). 

Cells were then assessed with flow cytometer (BDAccury6; 

Becton Dickinson, San Jose, CA, USA) and analyzed using 

FlowJo Software (Tree Star Inc., Ashland, OR, USA).

Cell death induction and inhibition
Etoposide (Enzo, Farmingdale, NY, USA), and QVD 

(BioVision, Milpitas, CA, USA) were dissolved in DMSO. 

N-acetyl-l-cysteine (NAC; Sigma, Shanghai, China) was 

dissolved in MilliQ water. For cell death inhibition, we used 

QVD, a caspase inhibitor. To determine ROS-dependent 

cell death, we used NAC as an ROS inhibitor. QVD and 

NAC were added 30 minutes before treatment with CH-

AuNPs. All stock solutions were wrapped in foil and stored 

at −20°C.

Clonogenic assay
Cell proliferation and clonogenicity were assessed using 

the clonogenic assay technique. In brief, 100 or 500 cells 

were plated in 6-well plates for control (only cell culture 

media) or CH-AuNPs treatment, respectively, and were 

incubated overnight. Once attached, cells were exposed 

to either treatment or control for 24 hours. Afterward, the 

medium was changed and cells were allowed to grow until 

colony formation (10 days). Then, the colonies were fixed 

with methanol (100%) and glacial acetic acid (3:1), stained 

with 0.5% Gentian Violet. Colonies with 50 cells were 

counted manually. Finally, cell survival was determined 

by equating the number of colonies in treated wells over 

those in control, both normalized with the percentage 

of cell colonies counted over the number of cells seeded.

Cell cycle analysis
Cell cycle distributions were determined by PI staining. In 

brief, 5×105 cells in 6-well dishes were incubated with concen-

tration required to reduce cell viability by 25% (CC
25

), CC
50

, 

and concentration required to reduce cell viability by 75% 

(CC
75

) of CH-AuNPs for 24 hours. Cells were then washed 

with PBS and fixed in 70% ethanol. Cells were washed 

again with PBS, then incubated with PI (10 μg/mL) with 

simultaneous RNase treatment at 37°C for 30 minutes. Cell 

DNA contents were measured using a flow cytometer (Becton 

Dickinson) and analyzed using FlowJo Software. For DNA 

degradation, we analyzed the SubG1 population obtained 

from cell cycle analysis using a flow cytometer (BDAccury6; 

Becton Dickinson) and FlowJo Software (Tree Star Inc.).

Nuclear assessment
For chromatin condensation after CH-AuNPs treatment we 

did Hoechst staining (Enzo). In brief, 10×105 cells were incu-

bated in 6-well plates, then treated with CH-AuNPs CC
50

, and 

then washed in PBS and fixed with paraformaldehyde 4%. 

We stained the cells for 5 minutes using 5 µg/mL Hoechst 

33342. Cells were then washed with PBS, observed using a 

fluorescence microscope (OLYMPUS IX70), and analyzed 

with Image-J software.
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Caspase analysis
Caspase activity was measured using Caspase 3 (active) 

FITC staining kit (ABCAM, Eugene, OR, USA). In brief, 

5×105 cells in 6-well dishes (Corning) were incubated with 

CH-AuNPs CC
50

. Cells were then recovered and stained 

following the manufacturer’s instructions. Caspase activ-

ity was measured using a flow cytometer (BDAccury6; 

Becton Dickinson) and analyzed using FlowJo Software 

(Tree Star Inc.).

ROS production assay
ROS generation was measured using 2.5 µM of dichlorodihy-

drofluorescein diacetate (DCFDA; Invitrogen, St Louis, MO, 

USA). In brief, 5×105 cells were incubated in 6-well dishes 

(Corning) with the indicated concentration of CH-AuNPs. 

Cells were then recovered, washed with PBS, stained, incu-

bated at 37°C for 30 minutes, and measured using a flow 

cytometer (Becton Dickinson, BDAccury6), and analyzed 

using FlowJo Software (Tree Star Inc.).

Statistical analysis
The results given in this study represent the mean of at 

least three independent experiments done in triplicate 

(mean±SD). The data were analyzed using GraphPad Prism 

(GraphPad Software, San Diego, CA, USA). Statistical 

analysis was done using paired Student’s t-test. The statisti-

cal significance was defined as p0.05.

Results
Nanoparticles
CH-AuNPs have a Z potential of +27 mV upon synthesis, 

while control SC-AuNPs showed a Z potential of −5 mV 

(Table 1). Both types of AuNPs have a size range of 

3–10 nm (Table 1; Figure 1A). The polydispersity of SC-

AuNPs and CH-AuNPs was 0.3 (Table 1), and they show 

a typical surface plasmon resonance of AuNPs22 at 520 nm 

(Table 1; Figure 1B). We confirmed the size and shape of 

the CH-AuNPs by SEM (Figure 1C). Table 1 shows the 

comparative physicochemical properties of CH-AuNPs 

and SC-AuNPs.

CH-AuNPs but not SC-AuNPs diminish 
cell viability in cancer cells
CH-AuNPs have been shown to suppress cell viability in lung 

adenocarcinoma cell lines (A549, NCI-H460, and A431) and 

acute monocytic leukemia cell line (THP-1).5,17,23 However, 

there are no reports regarding its cytotoxic effect on cervi-

cal cancer and breast cancer cells, and on primary PBMC. 

Thus, we determined the effect of SC-AuNPs, CH-AuNPs, 

and the vehicles used to synthesize CH-AuNPs (chitosan 

and HAuCl
4
) on HeLa and MCF-7 cancer cell lines, and 

PBMC. CH-AuNPs induced a concentration-dependent cell 

viability diminution in cancer cells, whereas SC-AuNPs 

did not induce an important cell viability loss (Figure 2A 

and B). The CC
50

 of CH-AuNPs for HeLa and MCF-7 cells 

after 24 hours of treatment was 75 μM, which increased 

with the concentration, reaching 85% and 100% of cell 

viability loss, respectively, at 150 μM (Figure 2A and B). 

We observed a clear selectivity for cancer cells, because 

cell viability diminution in PBMCs was observed when the 

concentration reached 75 µM, attaining 40% of cell viability 

loss when using the highest concentration tested (150 µM, 

Figure 2C). Additionally, although CH-AuNPs showed more 

cytotoxicity in HeLa and MCF-7 cell lines after 48 hours of 

treatment, PBMC showed the same sensitivity for CH-AuNPs 

(Figure S1). Furthermore, neither chitosan nor HAuCl
4
 alone 

induces high cytotoxicity in any of the cell type assessed 

(Figure 2D–F).

Chitosan-capped gold nanoparticles 
induce cell death in cancer cells
Because SC-AuNPs were not effective against cancer cells 

at the same doses as CH-AuNPs, we continued to evaluate 

whether cell death was induced by CH-AuNPs in HeLa, 

MCF-7, and PBMC. We evaluated cell death by assessing 

phosphatidylserine (PS) exposure (AnnV) and membrane 

Table 1 Overview of the gold nanoparticles used in this study

Sample Surface coating Zeta potential 
(mV) ±SD

Range size 
(nm)

Mean size
±SD (nm)

Polydispersity Solvent Surface plasmon 
resonance (nm)

SC-AuNPs Sodium citrate 0.1% −5±0.1 3–10 3±0.5 0.3 Water 520
CH-AuNPs Chitosan 0.2% +27±0.1 3–10 4±0.6 0.3 Water 520
SC-AuNPs Sodium citrate 0.1% −7±0.2 3–10 3±0.6 0.2 PBS 522
CH-AuNPs Chitosan 0.2% +22±0.2 3–10 4±0.5 0.2 PBS 522

Notes: Size, Z potential, and surface plasmon resonance of AuNPs were measured as stated in the “Materials and methods” section. AuNPs were diluted in water or PBS 
before the assessment of their physicochemical properties.
Abbreviations: CH-AuNPs, chitosan gold nanoparticles; PBS, phosphate buffered saline; SC-AuNPs, sodium citrate gold nanoparticles.
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permeability (PI) after 24 hours of treatment with different 

concentrations of CH-AuNPs (Figure 3). PS exposure on the 

outer leaflet of the plasma membrane is an “eat-me” signal of 

dying cells.24 In HeLa and MCF-7 cells, CH-AuNPs induced 

a small population of AnnV and PI-positive cells at a con-

centration of 50 µM; at 75 µM this percentage increased, 

and at 100 µM most of the cells were double positive to 

AnnV and PI staining (Figure 3A). On the other hand, at 

the three concentrations tested, they induced only a slight 

population of AnnV and PI-positive PBMC (Figure 3A). 

Contrary to the results obtained with the use of etoposide, 

where we observed resistance to cell death in MCF-7 cells 

and no selectivity for PBMCs (Figure S2), with CH-AuNPs 

we observed 15% of cell death in PBMC at the CC
50

 of 

MCF-7 and HeLa cells, and 20% at their CC
75

 (Figure 3B). 

As expected from the MTT results, CH-AuNPs induced cell 

death in a concentration-dependent manner, and cell death 

in cancer cells was detected at the same doses observed in 

MTT (Figure 3).

CH-AuNPs inhibit long-term proliferation 
of cancer cells
Once we assessed that PBMCs were only slightly affected 

by CH-AuNPs, we focused on deciphering the cytotoxic 

mechanism of CH-AuNPs in cancer cells. First, we assessed 

if MCF-7 and HeLa cells could recover after 24 hours 

of treatment with CH-AuNPs. The cells were treated for 

24 hours with the CC
25

 and CC
50

 of CH-AuNPs for each can-

cer cell line tested, then treatment was stopped and washed, 

and cells were cultured until colony formation. Clonogenic 

assay showed that CH-AuNPs have antiproliferative activity, 

as they reached complete inhibition of colony formation at the 

CC
25

 of CH-AuNPs; this result was confirmed with the CC
50

 

in HeLa (Figure 4A) and MCF-7 cells (Figure 4B). Thus, 

even if the CC
25

 and CC
50

 of CH-AuNPs were not able to 

kill all of the cells, these concentrations were able to inhibit 

long-term cell growth, after a 24 hour exposure.

CH-AuNPs do not modify the cell cycle 
of cancer cells
It has been shown that AuNPs can induce cell cycle arrest in 

different cancer cells25 and that chitosan induces cell cycle 

arrest in G1 and S phases in oral cancer cells;26 thus, we 

further assessed cell cycle after CH-AuNPs treatment. Even 

though AuNPs and chitosan separately induce cell cycle 

arrest in several cancer cell lines, treatment with CC
25

, CC
50

, 

or CC
75

 of CH-AuNPs for 24 hours does not induce changes 

in the cell cycle of HeLa (Figure 5A) or MCF-7 (Figure 5B) 

cell lines. This indicates that cell viability diminution is due 

to cell death induction.

Figure 1 Size, surface plasmon resonance, and shape of CH-AuNPs.
Note: Representative (A) size distribution obtained from DLS analysis, (B) UV–Vis absorption spectrum, and (C) SEM images of CH-AuNPs.
Abbreviations: CH-AuNPs, chitosan gold nanoparticles; DLS, dynamic light scattering; SEM, scanning electronic microscopy; CIMAV, Centro de Investigación en Materiales 
Avanzados S.C.; SE, secondary electron; LEI, lower detector; WD, working distance.
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Figure 2 Effect of AuNPs, AuHCl4, and chitosan on HeLa, MCF-7, and PBMC cell viability.
Notes: HeLa (A), MCF-7 (B), and PBMC (C) were treated with various concentrations of CH-AuNPs and SC-AuNPs (25, 50, 75, 100, and 150 μM). HeLa (D), MCF-7 (E), 
and PBMC (F) were treated with vehicles (chitosan and HAuCl4) at same concentrations as in (A–C) for 24 hours. Cell viability was measured by MTT assay. The percentages 
refer to relative cell viability represented as percentage of control (nontreated cell viability=100%).
Abbreviations: CH-AuNPs, chitosan gold nanoparticles; PBMC, peripheral blood mononuclear cell; SC-AuNPs, sodium citrate gold nanoparticles.

Figure 3 Phosphatidylserine exposure and membrane permeability of HeLa and MCF-7 cells after CH-AuNPs treatment.
Notes: (A) Cell death was measured by flow cytometry through AnnV and PI staining in HeLa and MCF-7 cells treated with different concentrations (50, 75, and 100 μM) 
of CH-AuNPs for 24 hours. (B) The percentages of cell death refer to AnnV-positive and/or PI-positive staining.
Abbreviations: AnnV, Annexin-V; CH-AuNPs, chitosan gold nanoparticles; PBMC, peripheral blood mononuclear cells; PI, propidium iodide.
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CH-AuNPs do not induce nuclear 
alterations in HeLa and MCF-7 cells
Endonucleases can cause DNA fragmentation and nuclear con-

densation during different types of cell death.27 Because some 

types of AuNPs have been shown to induce DNA fragmentation 

in diverse cell types, depending on the reducing agent that was 

used,17,25,28 we decided to asses if CH-AuNPs were able to cause 

DNA fragmentation. To assess DNA degradation, we quantified 

sub-G1 population of cells treated with CC
25

, CC
50

, or CC
75

 of CH-

AuNPs. DNA degradation was not detected in HeLa (Figure 6A) 

or MCF-7 (Figure 6B) cells at the tested concentrations.  

To further discard nuclear alterations, we stained HeLa and 

MCF-7 cells with Hoechst, and nuclear morphology was assessed 

using a fluorescence microscope. HeLa (Figure 6C) and MCF-7 

(Figure 6D) cells treated with CH-AuNPs do not show nuclear 

condensation after 24 hours of treatment with CC
50

 (Figure 6).

CH-AuNPs induce caspase-dependent 
cell death in HeLa cells and caspase-
independent cell death in MCF-7 cells
We continued to verify if caspases were the main molecular 

regulators of this type of cell death. We assessed caspase 

Figure 4 Clonogenic assay shows the long-term effects of CH-AuNPs treatment of HeLa and MCF-7 cells.
Notes: HeLa (A) and MCF-7 (B) cells were treated with CC25 and CC50 of CH-AuNPs for 24 hours, the number of colonies formed on the culture plate 10 days 
after treatment was expressed as surviving fractions. Data are reported as percentage of colonies compared with untreated control (left). Photograph of petri-dish of a 
representative experiment is shown (right).
Abbreviations: CH-AuNPs, chitosan gold nanoparticles; CC25, concentration required to reduce cell viability by 25%; CC50, concentration required to reduce cell viability by 50%.
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Figure 5 Cell cycle changes after CH-AuNPs treatment of HeLa and MCF-7 cells.
Notes: Representative cell cycle distribution of HeLa (A) and MCF-7 (B) cells treated with CC25, CC50, and CC75 of CH-AuNPs for 24 hours. The results were analyzed 
using FlowJo software and graphed.
Abbreviations: CH-AuNPs, chitosan gold nanoparticles; PI, propidium iodide; CC25, concentration required to reduce cell viability by 25%; CC50, concentration required 
to reduce cell viability by 50%; CC75, concentration required to reduce cell viability by 75%; NS, not significant.

activity and, as shown in Figure 7A, CH-AuNPs induce 

caspase-3 activation in HeLa cells, whereas MCF-7 cells 

do not show caspase-3 activity because they are deficient 

for this caspase29 (Figure 7B).

Caspase activity can be detected even if these enzymes 

are not necessary to induce cell death. To determine if this 

type of cell death was dependent on caspase activity, we 

used the pan-caspase inhibitor QVD30 and found that while 

HeLa cell death was partially inhibited by QVD (Figure 7C), 

MCF-7 cell death was independent of caspase activation 

(Figure 7D). In fact, the use of this pan-caspase inhibitor 

significantly increased the cell death induced by CH-AuNPs 
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Figure 6 Nuclear alterations induced by CH-AuNPs in HeLa and MCF-7 cells.
Notes: Degradation of DNA in HeLa (A) and MCF-7 (B) cells treated with CC25, CC50, and CC75 of CH-AuNPs. Nuclear morphology of HeLa (C) and MCF-7 (D) cells 
treated with CC50 of CH-AuNPs for 24 hours, stained with Hoechst 33342, and visualized using fluorescence microscopy (OLYMPUS IX70) (40×) (left). The percentages 
refer to nuclear size measured using Image-J software, and is represented as a % control (nontreated nuclear size=100%) (right).
Abbreviation: CH-AuNPs, chitosan gold nanoparticles; CC25, concentration required to reduce cell viability by 25%; CC50, concentration required to reduce cell viability 
by 50%; CC75, concentration required to reduce cell viability by 75%; NS, not significant.

in MCF-7 cells (Figure 7D right). These results show that 

RCD induced by CH-AuNPs relies differently on caspase 

activation and that this depends on the cell type.

CH-AuNPs induce ROS production and 
ROS-dependent cell death in HeLa and 
MCF-7 cells
AuNPs induced ROS production in several cell types. 

Because we observed that caspases were not a major feature 

of cell death induced by CH-AuNPs, we assessed whether 

CH-AuNPs were able to induce ROS production in MCF-7 

and HeLa cells. As seen in Figure 8, CH-AuNPs treatment 

induced ROS production in HeLa (Figure 8A) and MCF-7 

cells (Figure 8B) as detected by DCFDA staining.

We further analyzed if ROS production was playing a role 

in cell death. Generation of ROS has been associated with 

caspase-dependent and caspase-independent cell death.24,31 

Moreover, different types of nanoparticles induce ROS 

production,32–34 including CH-AuNPs in lung-derived cell 

lines.35 However, the role of ROS production by CH-AuNPs 
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Figure 7 Caspase-3 activity and effects of pan-caspase inhibition on CH-AuNPs-treated HeLa and MCF-7 cells.
Notes: Caspase-3 activation was measured by flow cytometry in HeLa (A) and MCF-7 (B) cells after treatment with CH-AuNPs for 24 hours (left). Data were then analyzed 
and graphed (right). Cell viability was determined by flow cytometry in HeLa (C) and MCF-7 (D) cells that were left alone or pretreated with QVD and then treated with 
CC50 of CH-AuNPs for 24 hours (left). The percentages of the graph bars (right) refer to AnnV-positive and/or PI-positive staining.
Abbreviations: AnnV, Annexin-V; CH-AuNPs, chitosan gold nanoparticles; PI, propidium iodide; QVD, quinoline-val-asp-difluorophenoxymethyl ketone.

has not been reported. To investigate the role of ROS in 

CH-AuNPs-RCD, we used the ROS inhibitor NAC, an 

antioxidant that increases intracellular glutathione levels and 

possesses thiol-disulfide exchange activity,36 and assessed 

cell death. As shown in Figure 9, NAC was able to inhibit 

cell death, as observed by the complete reduction of AnnV 

staining in both HeLa (Figure 9A) and MCF-7 (Figure 9B) 

cell lines. These results indicate that ROS production is a 

major and conserved feature of CH-AuNPs; however, CH-

AuNPs did not induce ROS production in PBMCs, even at 

100 µM (Figure S3).

Discussion
The cytotoxicity of AuNPs in cancer cells depends on their 

size, dose, shape, surface chemical radicals, and charge.6 

We synthesized AuNPs using chitosan and SC and obtained 

particles of 3–10 nm of diameter with a surface plasmon 

resonance at 520 nm, which is a characteristic of AuNPs.22 

Our results showed that CH-AuNPs induced cell viability 

loss in HeLa and MCF-7 cancer cells, while they slightly 

affected PMBC. SC-AuNPs were not cytotoxic in any of 

the cell types tested, even though both types of nanoparticles 

had the same size. Previous studies have shown that the 

physicochemical properties of nanoparticles are determinant 

to biological impact;18–20 such is the case of their size37 and 

shape.38 Small-sized AuNPs (synthesized using different 

reducing agents) induce low cytotoxicity in dendritic cells39 

and dermal fibroblasts,40 while they are cytotoxic to HeLa41 

and A54928,42 cancer cells. However, the effect of AuNPs 

also depends on surface charge. It has been demonstrated 

that positively charged AuNPs are more cytotoxic than nega-

tively charged AuNPs, even when both are of the same size 

and used in the same cell lines, at the same concentration.13 

This effect is related to the affinity of the positive charges 

of the nanoparticles with the negative charge of the cell 

membrane.16,17 Additionally, previous studies have reported 
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Figure 8 ROS production in HeLa and MCF-7 cells upon treatment with CH-AuNPs.
Notes: ROS levels were measured by flow cytometry through DCFDA staining in HeLa (A) and MCF-7 (B) cells left alone or treated with CC50 of CH-AuNPs for 24 hours 
(left). Data were then analyzed and graphed (right).
Abbreviations: CH-AuNPs, chitosan gold nanoparticles; DCFDA, dichlorodihydrofluorescein diacetate; ROS, reactive oxygen species.
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that the formation of protein corona, a structure of proteins 

formed between nanoparticles and biological medium, is 

not dependent on the positive or negative character of the 

nanoparticle, but that the charge of the nanostructure is 

responsible for the interactions with specific cellular recep-

tors and therefore the outcome in the target cell.5,43

Our results showed that nanoparticles effectively induce 

cell death in HeLa and MCF-7 cell lines. The induction of 

cell death is one of the main targets in the development of 

new therapies against cancer. Furthermore, it is known that 

deregulation of the molecules involved in apoptosis can lead 

to resistance to first-line chemotherapies.11 We also showed 

that CH-AuNPs have selectivity to cancer cells compared 

to PBMC, at the same concentrations and times. While 

CH-AuNPs show a dose- and time-dependent cytotoxicity 

in cancer cells, in PBMCs we observed a dose-dependent 

effect only, which was maintained after 24 and 48 hours of 

treatment. Cell-dependent cytotoxicity is a common feature 

in AuNPs, as it has previously been described in HT29,8 

MCF-7,28 HeLa,32 and A45925,42 cells. Another example is 

the one described by Patra et al who found that AuNPs of 

the same size (13 nm) and the same reducing agent (Citrate) 

are not toxic in Hep2G human liver carcinoma cells and in 

noncancerous hamster cells, BHK21, but are cytotoxic in 

A549 human lung carcinoma cells.16

Reduction in cell viability can be due to the induction 

of cell cycle arrest and/or cell death. Here we showed that 

CH-AuNPs induce cell death without affecting cell cycle in 

the two cancer cell lines tested. This result contrasts with 

another study where CH-AuNPs were used to treat differ-

ent lung cancer cell lines, and cell cycle alterations were 

observed.21 Our result resembles another study that used 

AuNPs with triphenylphosphine monosulfonate and found 

no alterations in the cell cycle of HeLa cells.32 These differ-

ences and similarities can be due to the different molecular 

mechanisms induced by AuNPs, depending on the cell type 

and the reducing agent used.

Additionally, we observed that a single exposure to CH-

AuNPs for 24 hours inhibits the clonogenic potential of the 

cells, even though there was no cell cycle arrest, and only 

25% of cells were dead after a 24-hour treatment. Clono-

genic analyses have also been used to predict the metastatic 

potential of cancer cells.44 Thus, our results not only indicate 

that CH-AuNPs compromise HeLa and MCF-7 cells to clo-

nogenic death, but also that CH-AuNPs could potentially be 

antimetastatic. However, more studies should be done, as it 

has also been reported that clonogenic analyses in some cases 

are not related to the metastatic potential of the cells.45,46

Two unexpected aspects of the cell death mechanism 

induced by CH-AuNPs were the absence of DNA alterations 

and the selectivity for caspase dependence. The absence 

of DNA damage in cancer cells exposed to CH-AuNPs 

contrasts with other studies where DNA fragmentation 

was observed after treatment with AuNPs.32,47,48 However, 

this was never assessed using chitosan as a reducing agent; 

thus, these differences can be due to the physicochemi-

cal differences of the AuNPs including chitosan. Even 

though many studies have found that AuNPs and chitosan 

themselves rely on caspases to induce cell death,13,28,49 

certain types of AuNPs can induce caspase-independent 

cell death,48 even in HeLa cells,32 which contrasts with our 

results that show caspase-dependent cell death in HeLa 

cells. This difference may be due to the different agents 

used to synthesize AuNPs: we used chitosan, whereas Pan 

et al used triphenylphosphine mono-sulfonat.41 Addition-

ally, in our study, we found that even when using the same 

AuNPs, these differences can be due to the characteris-

tics of each cell line, such as the absence of caspase-3 in  

MCF-7 cells.29

Despite caspase dependence not being a common feature 

of CH-AuNP-induced cell death, we found that ROS pro-

duction was. ROS production has been a recurrent feature 

in different types of nanoparticle-induced responses,38 such 

as cell death.32,49 Previous studies with other types of AuNPs 

have also demonstrated that ROS production is indispens-

able for cell death induction.32,41,49 Additionally, a previous 

report stated that CH-AuNPs induced ROS production in lung 

adenocarcinoma cells.5 The importance of ROS production 

for CH-AuNPs-RCD, however, has not been assessed. The 

fact that caspase dependence is not conserved in both cell 

lines and ROS production indicates that ROS could be an 

upstream event in cell death. It has previously been described 

that ROS production by nanoparticles can cause mitochon-

drial alterations leading to other types of RCD, such as the 

activation of caspases or regulated necrosis.42 This finding 

supports the role of ROS production as a shared feature of 

CH-AuNPs cytotoxicity, and may be one of the first steps 

of their RCD pathway, particularly since ROS production 

was not observed in PBMCs, even at the concentration of 

100 µM. Thus, further analysis should be performed to bet-

ter understand the mechanism by which CH-AuNPs exert 

their cytotoxicity.

Conclusion
Our findings confirm that CH-AuNPs have a more potent 

cytotoxic effect than SC-AuNPs. Additionally, this study 
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improves the understanding of the cytotoxicity of CH-

AuNPs, as it demonstrates for the first time that they are 

barely cytotoxic to healthy PBMC, while they induce a 

concentration-dependent cell death in cancer cells and inhibit 

their clonogenic potential without inducing DNA damage 

or cell cycle arrest. We also demonstrated that they induce 

different cell death modalities in HeLa and MCF-7 cells, but 

that CH-AuNPs-induced RCD relies on ROS production. 

This work opens the way to further characterize this type of 

cell death that might work in parallel with apoptosis-inducing 

chemotherapies in functionalized models.

Data availability
All datasets generated during the current study are available 

from the corresponding author on reasonable request.
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Figure S3 ROS production in PBMC upon treatment with CH-AuNPs.
Notes: ROS levels were measured by flow cytometry through DCFDA staining in PBMC left alone or treated with the indicated concentrations of CH-AuNPs for 24 hours. 
Representative histograms of ROS production assessed in PBMCs (n=3 donors assessed in triplicate).
Abbreviations: CH-AuNPs, chitosan gold nanoparticles; DCFDA, dichlorodihydrofluorescein diacetate; PBMC, peripheral blood mononuclear cell; ROS, reactive 
oxygen species.
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Figure S1 Effect of CH-AuNPs on HeLa, MCF-7, and PBMC cell viability after 48 hours of treatment.
Notes: HeLa, MCF-7, and PBMC were treated with various concentrations of CH-AuNPs (25, 50, 75, 100, and 150 μM) for 48 hours. Cell viability was measured by MTT 
assay. The percentages refer to relative cell viability represented as percentage of control (nontreated cell viability was normalized to 100%).
Abbreviations: CH-AuNPs, chitosan gold nanoparticles; PBMC, peripheral blood mononuclear cell.
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Figure S2 Cell death induced by etoposide in HeLa, MCF-7, and PBMC after 24 hours of treatment.
Notes: Cell death was measured by flow cytometry through AnnV and PI staining in HeLa, MCF-7, and PBMC treated with etoposide for 24 hours. Data were then analyzed 
and graphed.
Abbreviations: AnnV, Annexin-V; PBMC, peripheral blood mononuclear cell; PI, propidium iodide.
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