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Abstract: Chronic obstructive pulmonary disease (COPD) is the fourth leading cause of death 

in the US and a major worldwide healthcare problem. The pathophysiologic mechanisms that 

drive development and progression of this disease are complex and only poorly understood. 

While tobacco smoking is the primary risk factor, other disease processes also appear to play 

a role. Components of the innate immune system (eg, macrophages and neutrophils) have 

long been believed to be important in the development of COPD. More recent evidence also 

suggests involvement of the adaptive immune system in pathogenesis of this disease. Here we 

will review the literature supporting the participation of T-cells in the development of COPD, 

and comment on the potential antigenic stimuli that may account for these responses. We will 

further explore the prospective contributions of T-cell derived mediators that could contribute 

to the infl ammation, alveolar wall destruction, and small airway fi brosis of advanced COPD. 

A better understanding of these complex immune processes will lead to new insights that could 

result in improved preventative and/or treatment strategies.
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Chronic obstructive pulmonary disease (COPD) is characterized by expiratory airfl ow 

limitation that is not fully reversible, is usually progressive, and is associated with an 

abnormal intrapulmonary infl ammatory response to noxious particles or gases (Rabe 

et al 2007). COPD is a leading cause of death worldwide, and one of the few diseases 

in which mortality rates continue to increase (Manino 2002; Rabe et al 2007). Manage-

ment of patients affl icted with COPD is often frustrating, and it is uncertain that any 

of the currently available treatments actually modify the natural history of the disease. 

While direct injury to airway and alveolar epithelium from chronic exposure to smoke 

is undoubtedly the primary risk factor for the development of COPD, the potential 

contributions of other disease mechanisms appear to be important. Individuals with 

COPD typically have at least a 10 pack-year history of tobacco smoking. However, 

only a minority of heavy smokers develop severe airfl ow abnormalities, suggesting 

that the disease is not solely attributable to smoke exposure. Furthermore, COPD often 

progresses, and intrapulmonary infl ammation typically persists, despite removal of the 

inciting agent(s) with the cessation of smoking (Retamales et al 2001).

The presence of intrapulmonary infl ammation in COPD has been appreciated for 

many years, and accumulations and functions of activated macrophages and polymor-

phonuclear leukocytes (components of the innate immune system) have long been 

believed to be important in disease development (Brain 1980; Schleime 2005; Tetley 

2005; Quint and Wedzicha 2007). More recent reports have suggested that the adaptive 
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immune response also contributes to the pathophysiology 

of COPD. The cellular effectors of adaptive immunity 

are lymphocytes (both B- and T-cells), and the distinctive 

hallmarks of this system include antigen specifi city, clonal 

expansions of antigen-activated lymphocytes, and the genera-

tion of immunologic memory (Monaco et al 2004). A greater 

understanding of adaptive immune processes in COPD could 

perhaps lead to more effective disease interdictions, including 

elimination or eradication of the antigen(s), induction of 

tolerance to the antigen(s), manipulations of immunoregula-

tory mechanisms, or perhaps targeted depletion of specifi c 

disease-associated lymphocyte subpopulations.

Here we will review some of the evidence supporting the 

hypothesis that T-cell responses are important in the patho-

genesis of COPD, comment on the potential contributions 

of individual T-lymphocyte subsets, and outline selected 

mediators elaborated by these cells.

Associations of  T-lymphocytes
with COPD
The presumed role of T-cells in COPD was fi rst suggested 

by histopathologic studies that found associations between 

disease severity and the extent of intrapulmonary lympho-

cyte infi ltrates. Finkelstein et al noted that lymphocytes and 

macrophages are the predominant cellular elements of the 

infl ammatory infi ltrates within airway walls of patients with 

COPD (Finkelstein et al 1995). These observations were 

extended by fi nding that numbers of CD8+ lymphocytes in 

COPD lungs were directly related to the degree of airfl ow 

limitation (Figure 1) (Saetta et al 1998). Among many other 

analogous studies, the numbers of T-lymphocytes in surgical 

lung resections of patients with emphysema were shown to 

be signifi cantly increased, compared to fi ndings in smokers 

without evidence of airfl ow obstruction or nonsmokers (Majo 

et al 2001). A recent comprehensive study of the morpho-

metric changes seen in the small airways of COPD patients 

further noted the relatively unique presence of sub-epithelial 

lymphoid aggregates, described as bronchus associated 

lymphoid tissue (BALT), and the number of these BALT 

lesions was associated with the severity of airfl ow obstruction 

(Hogg et al 2004).

T-lymphocytes can cause tissue injuries either by 

direct cytolytic activities or through the secretion of 

pro-infl ammatory mediators that recruit and activate other 

immune cell types (eg, phagocytic cells and B-cells) (Monaco 

et al 2004). Pulmonary lymphocytes isolated from emphy-

sematous lung tissue are frequently activated (Sullivan et al 

2005) and capable of secreting mediators that have been 

implicated in the pathogenesis of COPD (Grumelli et al 

2004). T-cells transit between infl ammatory foci in organs 

and regional lymph nodes, and at least some proportion 

of these disease-specifi c lymphocytes also traffi c within 

lymphatic and blood circulations (Lehmann et al 2001). 

Our studies of peripheral blood T-lymphocytes in patients 

with COPD have shown peripheral T-cells (particularly 

CD8+) are more frequently activated and have increased 

productions of various mediators, and many of these T-cell 

abnormalities are highly correlated with disease severity 

(Gadgil et al 2006).

Animal models of emphysema further corroborate the 

importance of T-lymphocyte responses in the development 

of COPD. The potential for activated T-cells to cause lung 

injury in mice was evidenced after adoptive transfer of CD8+ 

T-cells with specifi cities for neoantigens that were expressed 

on alveolar epithelial cells (Enelow et al 1998). CD8+ 

T-lymphocytes were also recently shown to be critical for the 

induction of infl ammation and tissue destruction in a murine 

model of smoke-induced emphysema (Maeno et al 2007). In 

addition, adoptive transfers of syngeneic CD4+ lymphocytes 

that had been sensitized to endothelial cell antigens resulted 

in development of emphysema in naïve rats, thus highlighting 

the potential for CD4+ T-cell associated autoimmune disease 

processes in COPD (Taraseviciene-Stewart et al 2005).

CD4/CD8 T-cell subsets in COPD
The majority of studies using patient-derived specimens seem 

to indicate that CD8+ lymphocytes appear to play a particu-

larly important role in the development and/or progression of 
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Figure 1 Inverse relationship between the presence of CD8+ lymphocytes in the airway 
wall and forced expiratory volume in the fi rst second (FEV1) in smokers. Reprinted with 
permission from Saetta, et al 1998. Am J Respir Crit Care Med, 157:822–6. Copyright © 
1998 American Thoracic Society.
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COPD (Finkelstein et al 1995; O’Shaughnessy et al 1997; Di 

Stefano et al 1998; Majo et al 2001; Hogg et al 2004; Saetta 

et al 1998). Most (but not all) investigators have reported 

that COPD CD8+ lymphocytes secrete a T
h
1 predominant 

cytokine pattern that includes increased production of 

IFN-γ, interferon-inducible protein-10 (IP-10), and monokine 

induced by interferon-gamma (MIG). In turn, these media-

tors can cause tissue destruction through the upregulation of 

matrix metalloproteinase (MMP) production by macrophages 

and other immune effectors (Grumelli et al 2004; Manneo 

2007). CD8+ T-lymphocytes can also mediate cell-death 

directly through the secretion of cytotoxic mediators (eg, 

granzyme and perforins), as well as expression or secretion 

of Fas (Henkart 1994; Kojima et al 1994).

While the function of CD8+ lymphocytes are often high-

lighted in COPD studies, the potential contributions of CD4+ 

T-cells in the disease process also appear to be substantial. 

Although typically less extensive than CD8+ T-cell infi l-

trates, intraparenchymal CD4+ lymphocytes are also present 

in abnormally increased numbers within emphysematous 

lungs (Majo et al 2001), particularly in proximity to BALT 

(Hogg et al 2004).

CD4+ T-cells are largely responsible for orchestrating 

downstream immune processes by the release of activating 

cytokines, and are important if not critical in focusing and 

amplifying infl ammatory responses by other immune effector 

cells. As an example, actions of CD4+ T-cells are essential 

for the full development of adaptive immune cytotoxicity by 

priming (lowering thresholds of activation) and promoting 

the long-term survival of CD8+ T-cells. The facultative 

help provided by CD4+ lymphocytes is also important for 

the activation and differentiation of antibody-elaborating 

B-cells. This “help” is especially critical for induction of 

B-cells to undergo isotype switch from production of IgM to 

more potent and avidly-binding IgG antibodies, particularly 

against protein antigens.

We examined the possibility that CD4 T-cells could 

facilitate B-cell production of IgG autoantibodies in COPD 

patients. Somewhat to our surprise, we found that ∼70% of 

these patients had circulating IgG autoantibodies against 

epithelial cells, as ascertained by indirect immunofl uores-

cence assays, compared to 10% among non-smoking con-

trols and 13% of cigarette smokers without evidence of 

lung abnormalities (Feghali-Bostwick et al 2008). An even 

more highly sensitive and specifi c immunoprecipitation 

assay showed that 34 out of 35 COPD patients (97%) had 

autoreactive antibodies against a variety of cellular self-

antigens (Figure 2). Not only are circulating autoantibodies 

highly prevalent in COPD patients, but the immunoglobulins 

appeared likely to be pathogenic, as evidenced by fi ndings of 

immune complex deposition and complement activation in 

surgically resected end-stage COPD lungs, and the evident 
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Figure 2 Immunoprecipitation of autoantibodies in plasma samples of COPD patients. Bands represent autoantigens precipitated by autoantibodies present in COPD plasma 
specimens (composite fi gure). Similarly treated plasma samples from non-smokers are shown here as controls. The most highly prevalent autoantigens are highlighted and 
were shown by other means to be distinct from antigens involved in other known autoimmune syndromes. Individual lanes correspond to a patient sample. Reprinted with 
permission from Feghali-Bostwick, et al 2008. Am J Respir Crit Care Med, 177:156–63. Copyright © 2008 American Thoracic Society.
Abbreviation: Std, molecular weight marker.
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ability of these autoantibodies to induce antibody dependent 

cell-mediated cytotoxicity (ADCC).

In addition to the generally potent pro-infl ammatory 

effects of CD4+ lymphocytes, a subset of these cells may 

also (and perhaps more favorably) infl uence the progres-

sion of immunologic diseases, including COPD, by acting 

to dampen the intensity of infl ammatory cascades. A small 

proportion of CD4+ T-lymphocytes with distinctive pheno-

typic characteristics have been shown to exert suppressive 

effects on infl ammatory processes common to many immu-

nologic and autoimmune diseases (Rouse 2007). However, 

the role of these regulatory T cells (T
reg

) in COPD has only 

recently become a topic of investigation. One contemporane-

ous study suggested that chronic cigarette exposure resulted 

in increased T
reg

 populations in the bronchoalveolar lavage 

(BAL) of COPD patients, but these cells were paradoxically 

believed to be functionally impaired (Smyth et al 2007). 

Conversely, another recent investigation found decreased 

numbers of functionally intact T
regs

 in emphysematous lung 

tissue compared to healthy lungs (Lee et al 2007). Further 

investigations into the potential impact of T
reg

 cells in the 

development of smoking related lung infl ammation and 

injury are necessary, and could have considerable eventual 

importance for development of novel therapeutics.

Peptide antigens – triggers
of adaptive immune activation
In the face of mounting evidence that T-lymphocytes likely 

participate in the pathogenesis of COPD, the circumstances 

that bring about initial activations of these cells remains 

a matter of speculation. A number of studies indicate that 

the lymphocyte proliferations seen in COPD patients are 

driven by specifi c peptide antigens. Identifi cation of these 

antigen(s) would have far-reaching importance for furthering 

our understanding of COPD, and almost certainly enhance 

efforts at disease prevention or development of more effec-

tive treatments.

As previously mentioned, the specificity of antigen 

recognition and lymphocyte activation is a defi ning feature 

of the adaptive immune system (Murphy et al 2007). During 

maturation, developing B- and T-cells undergo random 

rearrangements of gene segments encoding their respective 

antigen receptors. These distinctive genomic sequences, in 

turn, result in highly individual antigen receptors expressed 

on the cell surface of the lymphocytes, ie, immunoglobulins 

(Ig) on B-cells, and T-cell antigen receptors (TCR). Since 

the avidity of these antigen receptors is determined by their 

structure, each individual lymphocyte can only engage a very 

limited number of distinct peptides. Thus, adaptive immune 

responses against any given antigen are characterized by 

initial activation of only the tiny proportion of lymphocytes 

whose surface Ig or TCR happen to have specifi city for this 

antigen. However, the subsequent ability of these individual 

cells to undergo multiple divisions (clonal proliferations) 

results in large numbers of functional lymphocytes sharing 

identical antigen receptors (daughter progeny) that have 

specifi city against the offending antigen (microbial or other 

exogenous peptides), and are capable of mounting an effec-

tive immune defense (usually). Because the antigen receptor 

sequences are defi nable by various cellular DNA and mRNA 

assays, it becomes possible to evaluate populations of lym-

phocytes to determine the proportion of these cells that have 

shared ancestors, as determined by commonality of antigen 

receptor sequences. Finding that a T- or B-cell infi ltrate is 

comprised of daughter progeny derived from a small number 

of clonally expanded lymphocyte founders (ie, mono- or 

oligoclonality) demonstrates that a peptide antigen has driven 

these cellular proliferations (Feghali-Bostwick et al 2007). 

In distinction, lymphocytes that are induced to undergo 

promiscuous proliferations by mechanisms independent of 

antigen receptor specifi city (eg, mitogens, growth factors), 

or nonspecifi cally recruited to an infl ammatory foci and 

sequestered there, will comprise cells lacking shared 

ancesters (ie, polyclonal populations).

The antigen receptor repertoires of lymphocytes in 

COPD patients have been analyzed in a limited number of 

studies. Sullivan et al examined T-lymphocytes isolated 

from emphysematous lung tissue and demonstrated these 

populations were comprised of oligoclonal T-cells (Sullivan 

et al 2005). This fi nding was echoed by Korn et al who fur-

ther showed that clonal expansions were most particularly 

pronounced among CD8+ T-lymphocytes, in both the lung 

and in the blood of chronic smokers (Korn et al 2005). 

Additionally, circulating T-lymphocytes and those isolated 

from COPD lungs frequently exhibit down-regulation of 

CD28, a co-stimulatory molecule, which, in turn, is another, 

if less immediately evident consequence of chronic antigen 

exposure and repeated cell divisions (Sullivan et al 2005). 

CD28 down-regulation has been documented in a number 

of chronic infl ammatory syndromes including autoimmune 

diseases (Schirmer et al 1998) and lung allograft rejection 

(Studer et al 2008).

The origin of the peptide antigen(s) responsible for initiating 

this infl ammatory cascade remains speculative at this time. 

While there are numerous possibilities, a few of the seemingly 

more likely potential antigens will be discussed here:
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Microbial peptide antigens
The hypothesis that chronic or recurrent microbial infec-

tions in patients could be the source of the COPD antigenic 

stimulus is particularly attractive (Figure 3). Bacterial 

colonization of the airways in COPD patients with even 

mild airfl ow obstruction is frequent (Soler et al 1999; Sethi 

et al 2006), and hence these particular microbes seem to be 

likely suspects as the source of disease-causing exogenous 

antigens. These bacterial colonizations are associated with 

recurrent COPD exacerbations, more rapid declines in lung 

function, and are correlated with a number of infl ammatory 

markers in sputum and in BAL (Hill et al 2000; Patel et al 

2002; Wilkinson et al 2003; Banerjee et al 2004).

Patients with COPD are also more susceptible to viral 

infections, and childhood viral infections have even been 

speculated to predispose individuals for development of 

COPD (Samet et al 1983). A small number of studies have 

found evidence that various viral infections may be associ-

ated with COPD, notably including a report that severe 

emphysema was associated with up to 40-fold greater 

prevalence of adenoviral E1A protein expression in alveolar 

epithelial cells (Retamales et al 2001).

Pneumocystis jiroveci is another organism that has been 

implicated in the pathogenesis of COPD. This organism has 

been reported to colonize 36% of lung tissues from patients 

with end-stage COPD versus 5% of specimens from healthy 

controls or those with less severe disease (Morris et al 

2004). Smokers infected with Human Immuno-defi ciency 

Virus (HIV) also appear to have accelerated development 

of emphysema, particularly in those that also have high 

CD8+ lymphocyte counts in BAL fl uid (Diaz et al 2000). 

Pneumocystis colonization in lungs of rhesus macaques 

infected with Simian Immunodefi ciency Virus (SIV) gener-

ated CD8-lymphocyte and neutrophil predominant cellular 

inflammation in association with progressive airflow 

limitation and local increases in IL-8, IFN-γ, and TNF-α, 

reminiscent of the findings in emphysematous patients 

(Norris et al 2006). These clinical and experimental results 

interestingly raise the possibility that Pneumoncystis and/or 

HIV (or perhaps other relatively indolent organisms) may be 
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Figure 3 Schema depicting the proposed role of microbial organisms in propagating pathogenic mechanisms in COPD.
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capable of contributing to the pathogenesis of lung disease, 

and obviously warrant further study.

Tobacco smoke related peptides
Exogenous antigens could plausibly be among the complex 

constituents of the tobacco smoke per se. Early reports noted 

tobacco glycoprotein (TGP), a polyphenol-rich glycoprotein 

isolated from cured tobacco leaves, could stimulate T-cell 

proliferation and activation in cell culture (Francus et al 

1988). Nonetheless, to our knowledge there is no conclusive 

evidence directly linking TGP or other components of smoke 

to cellular immune activation in COPD. Furthermore, the 

persistence of intrapulmonary inflammation long after 

smoking cessation argues against the dependence of COPD 

on antigenic stimulation provided by a smoke constituent, 

unless an immune response initially triggered by such an 

antigen subsequently generalized to include self-antigens 

(see below).

Tobacco smoke, as well as some other air pollutants, 

also contains highly reactive substances that are capable of 

chemical modifi cation of pulmonary proteins (eg, glycosolation, 

oxidation). Although not yet demonstrated, it is also plausible 

that some lung proteins altered by these processes could 

subsequently act as haptens, or even be so changed they are no 

longer recognized as “self       ” by immune cells and, thus provoke 

autoimmune responses.

Elastin peptides
A recent report has proposed that elastin peptides could be 

antigens that drive adaptive immune responses in COPD 

(Lee et al 2007). Elastin is an important extracellular matrix 

protein that helps maintain the structural integrity of the 

lung and other tissues. Under pathologic circumstances, 

elastin is degraded and digested by matrix MMP, which, 

as noted previously, have been shown to have increased 

activity in advanced emphysema. Elastin fragments stimulate 

monocyte chemotaxis and disease progression in a cigarette 

smoke model of murine emphysema (Houghton et al 2006). 

Circulating T-lymphocytes from COPD patients have 

recently been found to proliferate and secrete increased 

amounts of IFN-γ and IL-10 in co-incubations with elastin 

digestion fragments, and circulating antielastin antibodies 

were also present in these subjects (Lee et al 2007). The 

role of adaptive immune responses to elastin in development 

of COPD remains an intriguing area for further investiga-

tion. However, fi ndings elsewhere of analogous anti-elastin 

reactions in varied immune syndromes and some normal indi-

viduals, as well as demonstrations of multiple intracellular 

autoantigens in COPD patients (Feghali-Bostwick et al 2008) 

may indicate that the anti-elastin responses are not necessarily 

all-encompassing elements of disease pathogenesis.

Other autoantigens
Autoreactivity can also arise in the course of immune responses 

that were initially and more appropriately directed against 

exogenous antigens (eg, inhaled proteins or microbes). In some 

cases it appears that the molecular characteristics of the inciting 

antigen resemble or “mimic” those of self-determinants, which 

then become targets of immune responses that were initially 

triggered and fueled by the exogenous antigen (Oldstone et al 

2005). In addition, highly focused and appropriate responses 

against foreign antigens can spread to include targeting of 

otherwise quiescent self-antigens by functional errors of 

specifi city or “epitope spreading” (Figure 4) (Vanderlugt and 

Miller 2002). As previously described, the lower airways 

of COPD patients are frequently colonized and/or infected 

with various microbes (Soler et al 1999; Sethi et al 2006) 

that are known to be capable of immune activation (Adlovitz 

et al 2006). Thus, adaptive immune responses that arose 

to eradicate these organisms could ultimately lead to self-

reactivity by processes of microbial mimicry and/or epitope 

spreading, particularly in patients with chronic exposure to 

these organisms (Oldstone et al 2005; Vanderlugt and Miller 

2002; Croxford et al 2002).

Another potential mechanism that could conceivably 

account for auto-reactive adaptive immune activation in 

COPD stems from alterations of phagocytic functions and 

antigen processing. Abnormal or ineffective clearance 

of apoptotic cells and cellular debris (ie, “efferocytosis”) 

(Vandivier et al 2006), resulting in defective phagocytosis 

of apoptotic bodies and/or other particulates, have been 

linked to the development of autoimmunity (Cline and Radic 

2004). Hodge et al have shown that alveolar macrophages 

harvested from the BAL fl uid of patients with COPD had an 

impaired ability to phagocytose apoptotic epithelial cells in 

vitro (Hodge et al 2003).

Certain, otherwise perplexing clinical features of COPD 

could be explicable by an autoreactive pathogenesis. The 

development of typical autoimmune syndromes in human 

patients (as well as experimental animal models) seems 

to involve complex interactions between environmental 

factors (eg, cigarette smoke and/or possibly microbes) and 

genetic backgrounds. If also true in COPD, previously 

reported familial predilections, as well as the considerable 

inter-individual variability for disease susceptibility 

with equivalent smoking exposures, could be explained. 
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Moreover, fully developed autoimmune responses tend to be 

self-perpetuating, a possible mechanism for persistence (and 

progression) of COPD despite smoking cessation.

T-cell mediators and COPD
Cytokines and chemokines are extracellular signaling 

proteins that mediate the effector functions of a variety of 

infl ammatory cells. A number of putative effector molecules 

have been implicated in the pathogenesis of COPD, and it 

is likely that an imbalance between the various pro- and 

anti-infl ammatory mediators may play a part in the develop-

ment of disease. This chronic pro-infl ammatory cytokine/

chemokine milieu could also contribute to the apparent sus-

ceptibility of patients suffering from COPD to bronchogenic 
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Copyright © 2002 Nature Publishing Group.
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carcinoma and cardiovascular disease (Coussens et al 2002; 

Lu et al 2006; Sin et al 2008).

A T
h
1 predominant cytokine secretion pattern (eg, 

IFN-γ) has been described in most studies using COPD 

clinical specimens (Majori et al 1999; Hodge G et al 2007), 

although T
h
2 biased responses (eg, IL-4, IL-10) have con-

versely also been reported (Barcelo et al 2006; Barczyk 

et al 2006). The seeming disparities among these studies 

may be due to patient heterogeneity in terms of disease 

severity (or medications) and confounding introduced by 

typically small sample sizes (ie, alpha and beta errors). As 

in most complex disease processes, moreover, simple or 

rigid attempts to classify COPD as a particular T
h
 pattern 

is probably an oversimplifi cation. The mediator environ-

ment responsible for the pathogenesis of this disease 

probably involves signifi cant overlap between T
h
1 and 

T
h
2 cytokines.

While the potential contributions of specifi c mediators 

in COPD have been exhaustively described elsewhere 

(Chung, 2001; Reid and Sallenave, 2003), here we will 

comment on the roles of selected lymphocyte-associated 

mediators that have been particularly implicated in disease 

pathogenesis:

Interferon-gamma (IFN-γ)
Interferon-gamma is a pro-infl ammatory cytokine produced 

primarily by T
h
1/T

c
1 lymphocytes and natural killer cells 

and, among other effects, this mediator is a potent stimulator 

of alveolar macrophages and epithelial cells. As previously 

noted, IFN-γ has been shown to be upregulated in lympho-

cytes isolated from emphysematous lung tissue samples 

(Grumelli et al 2004), bronchoalveolar lavage fl uid (Hodge 

et al 2007), peripheral blood (Majori et al 1999; Hodge 

G et al 2007), and IFN-γ secreting CD8+ T-cells are seen in 

increased frequency within sputum of patients with COPD 

(Tzanakis et al 2004). These and multiple other reports 

suggest that IFN-γ plays a major role in the development of 

COPD. In addition, clinical observations are also supported 

by fi ndings that IFN-γ over-expression in the lungs of mice 

promotes development of emphysema (Wang et al 2000). 

Among a complex constellation of effects, tissue injuries of 

COPD may be particularly promoted by IFN-γ through the 

release of MMP from activated macrophages, or via injury 

by CXC3R+ CD8-lymphoyctes induced by IP-10 and MIG.

Tumor necrosis factor-alpha (TNF-α)
TNF-α is a pro-apoptotic cytokine which has been shown 

to be elevated in the serum of patients with stable COPD 

(Keating et al 1996), and further increased during acute 

exacerbations (Aaron et al 2001). A TNF-α gene polymor-

phism resulting in increased TNF-α levels has also been 

described in a population that is uniquely susceptible to the 

development of COPD (Huang et al 1997; Sakao et al 2002), 

although other studies have not been able to corroborate this 

fi nding (Higham et al 2000; Ferrarotti et al 2003). Interest-

ingly, serum concentrations of TNF-α, as well as TNF-α 

secretion by monocytes, is particularly robust in the subset 

of COPD patients with weight loss or cachexia (Di Francia 

et al 1994; De Godoy et al 1996; Pitsiou et al 2002). It has 

therefore been hypothesized that TNF-α contributes to the 

systemic manifestations of emphysema, particularly muscle 

wasting and limitations in exercise tolerance.

In the context of COPD histopathology, the effects of 

TNF-α could explain the cellular apoptosis observed in the 

alveolar wall among emphysematous lung tissue sections. 

TNF-α also induces the production of interleukin-8 (IL-8) and 

MMP through the induction of nuclear factor-κB. Overexpres-

sion of TNF-α in the lungs of mice results in the development 

of classic pathologic features of emphysema (Fujita et al 2001). 

Studies performed in TNF-receptor knockout mice using a 

cigarette smoke-induced model of emphysema generated a 

lesser degree of lung disease compared to wild-type animals 

(Churg et al 2004). However, TNF blockade with Infl iximab, 

an anti-TNF antibody, did not result in apparent benefi t, with 

respect to lung function, in patients with moderate to severe 

COPD, although additional evaluation may be necessary to 

evaluate whether selected subpopulations (eg, those with 

cachexia) could specifi cally benefi t (Rennard et al 2007).

Interleukin-1β (IL-1β)
IL-1β has functional similarity to TNF-α, and is a potent 

stimulator of alveolar macrophages. This mediator incites 

the production of a number of pro-infl ammatory mediators 

implicated in COPD pathogenesis including IL-2,-6,-8, 

RANTES, GM-CSF, IFN-γ, and TNF-α (Chung et al 2001). 

IL-1β also appears to be important in the regulation of elas-

tolytic proteases, including MMP-9, which could play a role 

in the development of emphysema. IL-1β/TNF-α double 

receptor knockout mice demonstrated progressive and more 

severe emphysema in response to intratracheal instillation 

of neutrophil elastase than cytokine single knockouts, or 

wild-type mice (Lucey et al 2002).

Interleukin-6 (IL-6)
Increased IL-6 levels have been found in induced sputum, 

exhaled breath condensates, and bronchoalveolar lavage fl uid 
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from patients with COPD (Bhowmik et al 2000; Song et al 

2001; Bucchioni et al 2003). IL-6 is another mediator with 

numerous, varied and generally proinfl ammatory effects. The 

precise role that IL-6 may play in the development of COPD 

is still unclear, but measures of this mediator may have utility 

as a biomarker of disease and infl ammation.

Interleukin-8 (IL-8)
The C-X-C chemokine IL-8 is a potent neutrophil and 

lymphocyte chemoattractant that is elaborated by diverse 

parenchymal and immune effector cells, including monocytes 

and lymphocytes (Hitomi et al 2004). As neutrophils comprise 

the predominant infl ammatory cell in COPD airspaces and, as 

noted earlier, lymphocytic infi ltrates within lung tissue per se are 

highly correlated with disease severity, it follows that IL-8 could 

play a part in the development of emphysema. IL-8 levels are 

increased in sputum of patients with COPD (Keatings et al 1996; 

Yamamoto et al 1997), and are further augmented during disease 

exacerbations, presumably in association with neutrophilic 

infl ammation triggered by bacteria (Crooks et al 2000; Aaron 

et al 2001; Gompertz et al 2001). Airway microbes induce IL-8 

secretion by epithelial cells, and levels of this cytokine have 

been shown to correlate with airway bacterial load (Hill et al 

2000; Patel et al 2002). Interestingly, blocking antibodies to 

IL-8 only led to a modest reduction in the neutrophilic infl am-

mation (Beeh et al 2003). This suggests that other chemotactic 

agents are also involved, and blocking IL-8 alone would not be 

expected to bring about a signifi cant clinical effect. On the other 

hand, blocking IL-8 receptors, (eg, CXCR2) that mediate the 

chemotactic responses of both IL-8 and other CXC chemokines 

may represent a more useful therapeutic target.

Interleukin-13 (IL-13)
IL-13 has been implicated in mucous hypersecretion and 

is thought to provoke the differentiation of goblet cells 

via EGFR (Shim et al 2001). Plasma levels of IL-13 have 

recently been shown to be inversely related to FEV
1
 (% of 

predicted), and proportional to the severity of gas exchange 

abnormality as defi ned by diffusion capacity (% DLCO) in 

COPD patients (Lee et al 2007). The fi nding that overexpres-

sion of IL-13 in murine lungs results in emphysema (Zheng 

et al 2000), validates the notion that IL-13 could play a role in 

the pathogenesis of this disease, particularly among patients 

with a bronchitic-predominant phenotype.

Conclusions
COPD is a complex syndrome with poorly understood 

pathophysiologic determinants. The adaptive immune system 

appears to actively participate in disease development and 

progression by elaboration of cytokines and other mediators, 

and likely too by production of injurious autoantibodies. 

CD8+ lymphocytes may be the predominant cellular element 

for direct mediation of tissue injuries, but the importance 

of CD4+ lymphocytes in orchestrating the infl ammatory 

response and facilitating autoimmune humoral responses also 

appears to be considerable. Identifi cation of the antigen(s) 

responsible for the adaptive immune activation of COPD is 

an important goal of future research. Although many potential 

antigens have been hypothesized, microbes may be among 

the most likely source.

Better understanding of T-cell and other adaptive immune 

processes in COPD pathogenesis will eventually lead to the 

development of more selectively targeted and rational disease 

interventions. Given the awesome morbidity and mortality of 

COPD, and the generally limited effectiveness of currently 

available treatments, innovative approaches with greater 

therapeutic effectiveness are sorely needed, and would have 

profound clinical importance.
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