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Abstract: Maedi-Visna virus (MVV) and caprine arthritis-encephalitis virus are commonly 

known as small ruminant lentiviruses (SRLVs) due to their genetic, structural, and pathogenic 

similarities. They produce lifelong lasting infections in their hosts, which are characterized 

by slow progression till overt disease happens. There are four major clinical forms derived 

from a chronic inflammatory response due to the constant low grade production of viruses 

from monocyte-derived macrophages: respiratory (caused by interstitial pneumonia), mam-

mary (which may produce a decrease in milk production due to subclinical mastitis), joint 

(characterized by lameness), and neurological (characterized by chronic nonpurulent menin-

goencephalomyelitis). There are three levels which try to eliminate the virus: cellular, body, 

and the flock level. However, SRLVs have ways to counteract these defenses. This review 

examines some of them.
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Introduction
The viruses that produce Maedi-Visna virus (MVV) and caprine arthritis-encephalitis 

virus (CAEV) are known as small ruminant lentiviruses (SRLVs) due to their structural, 

genetic, and pathogenic similarities. In addition, molecular studies have shown that 

both viruses represent a broad spectrum of variants that can affect both animal species1 

and certain viral variants that normally affect sheep can infect goats, and vice versa2 

or even predominate in the other species.3,4 Nevertheless, infection by MVV is more 

common in sheep and infection by CAEV is more common in goats, so homologous 

transmission is probably favored. The ability of the SRLVs to produce cross-infections, 

jumping the interspecies barrier, is unusual, as most lentiviruses have a very limited 

capacity to grow in cells not from their host species.1

Maedi-Visna (MV) is a sheep disease characterized by respiratory (Maedi, 

determined by interstitial pneumonia) and nervous (Visna, progressive inflammatory 

disease of the central nervous system) clinical signs and occasionally of the joints 

and/or mastitis. Caprine arthritis and encephalitis (CAE) is the name of the disease 

in goats, as the joints and nervous system are most often affected. Both diseases are 

slow progressing and usually subclinical.

MVV and CAEV infections are widespread worldwide. MVV has recently been 

identified in Japan, a country that was considered exempt.5 So far, MVV-free (but not 

CAEV-free) countries are New Zealand and Australia. The prevalence is much higher 

in developed countries, which seems to be related to the system of feeding lambs or 
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kids with a pool of colostrum or milk from the tank, a practice 

that favors transmission,6 and to the management system.7,8

The route of transmission is related to body fluids, mainly 

respiratory exudates and milk or colostrum, which may 

contain infected monocytes and macrophages.9 The main 

transmission routes are airborne, favored by overcrowding 

(stabling),7 and milk borne.10,11 It is not clear if the transmis-

sion among animals occurs through the presence of free 

virions and/or through infected cells. Other modes of trans-

mission such as the transplacental and through semen are 

less important from an epidemiological point of view.1 The 

potential risk linked to the milking machine and the needle 

has not been tested. Regardless of the route of transmission, 

the viruses cross the mucous barriers and infect resident 

macrophages and dendritic cells.1

Both MVV and CAEV belong to the family Retroviridae, 

genus Lentivirus. The SRLVs are currently classified accord-

ing to their phylogenetic relationships in the following five 

groups: A, B, C, D, and E.12 Genotype A includes strains of 

MVV; genotype B includes strains of CAEV; genotype C 

corresponds to SRLV isolated from Norwegian sheep and 

goats; genotype D has been identified when analyzing pol 

sequences of SRLV of Spanish and Swiss sheep; and geno-

type E has been isolated in Italy.13

MVV and CAEV particles measure between 90 and 

120 nm in diameter and consist of the envelope and the core. 

The envelope is formed by a membrane bilayer of host cell-

derived phospholipids, in which viral-encoded glycoproteins 

are inserted. The core or capsid is a protein case, which 

contains the viral RNA and the enzymes necessary for viral 

replication. As other retroviruses, virions contain two linear 

molecules of RNA. The single-stranded RNA molecules are 

transformed into double-stranded DNA (dsDNA) using the 

enzyme reverse transcriptase (RT); thanks to this mechanism, 

the retroviral genome (known as provirus when it is dsDNA) 

can be inserted into the genome of the host cell (Figure 1).

The genomes of MVV and CAEV are between 8,400 

and 10,000 nucleotides (nts) long and consist of three main 

genes common to all replication-competent retroviruses, such 

as gag, pol, and env, and several regulatory genes. Proviral 

DNA is flanked by repeated sequences known as long terminal 

repeats (LTRs) containing promoter elements that initiate 

the transcription of DNA14 and play an important role in cel-

lular tropism15–17 and in pathogenesis.18,19 Gene gag encodes 

the internal structural proteins, which protect the DNA. The 

largest is the capsid protein (p25CA), which stimulates the 

production of antibodies in the host, for which it is used in 

Enzyme Linked ImmunoSorbent Assay (ELISA) methods. 

The other two are the matrix (p16MA) and the nucleocapsid 

(p14NC) proteins. Gene pol encodes the enzymes that are 

involved in replication and DNA integration, namely protease 

(PR), RT, dUTPase, and integrase (IN). Finally, env encodes 

the following two types of proteins inserted in the envelope: 

the surface (gp135SU) and the transmembrane (gp46TM) 

glycoproteins. SU contains domains that are recognized by 

the cell receptors to allow entry into the cell. It stimulates the 

production of antibodies and is also genetically variable, so 

modifications in SU determine the antigenic variability of the 

Figure 1 Schematic representation of an SRLV particle.
Notes: The viral genome, along with the enzymes necessary for transcription, integration, and maturation, is encapsidated inside the core formed by capsid proteins. This is 
surrounded by the matrix and by the lipid bilayer in which the envelope glycoproteins are inserted.
Abbreviation: SRLV, small ruminant lentivirus.
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different isolates. TM, which has fusion capacity of lipid mem-

branes (allowing the fusion between the viral envelope and the 

membrane of the host cell), is a much more conserved protein. 

For this reason, it is a good candidate to be used in ELISA 

techniques functioning in different geographic locations.20,21

Accessory regulatory genes are located coinciding with 

the regions pol and env in different reading frames and con-

tain information for the synthesis of proteins that regulate 

viral replication. These genes are as follows:

•	 vif, the product of which is necessary to make the virus 

infectious,14,22–25 identified as an important factor to fight 

against the defense mechanisms of the cell;

•	 vpr-like, which has a function similar to that of Vpr in 

other lentiviruses, although initially it was considered 

equivalent to Tat protein in other lentiviruses, but no clear 

transactivation function has been associated to it;26 and

•	 rev, which is involved in the regulation of viral expression 

(Figure 2).

In this review, we focus on three levels of the infection by 

SRLVs: the cellular level, the body level, and the herd level.

SRLV infection of the cell – if 
allowed
It is possible that MVV and CAEV use different cell receptors 

to penetrate the host cell.1,16 Recent studies have identified 

a mannose receptor, which seems to be the cellular recep-

tor in sheep.27 Once the virus enters the cell, the replication 

mechanism is similar to that of other retroviruses, integrating 

the dsDNA in the host genome as outlined earlier, which 

produces a lifelong infection. Viral proteins and genomic 

RNA are synthesized from the integrated DNA, using the 

enzymatic systems of the host cell. Finally, the viral envelope 

is formed from the lipid cellular membrane, which incorpo-

rates the glycoproteins gp135SU and gp46TM.

It may seem that the virus always succeeds in infecting 

the cell, but this is not always true. The cell fights SRLV 

infection with a variety of mechanisms. Once the virus 

enters the target cell, molecules of the innate and adaptive 

immunity start host restriction. Innate immunity molecules, 

eg, tripartite motif-containing 5 (TRIM5), bind viral capsids, 

inhibiting integration and postintegration steps of the virus 

cycle, while others, eg, Apolipoprotein B mRNA-editing cata-

lytic polypeptide-like 3 (APOBEC3 or A3), mutate the viral 

genome. Thus, lack of productive infection is not due only 

to the lack of functional receptors, since postentry restriction 

factors may also be responsible. However, retroviruses are 

able to counteract these mechanisms.

TRIM5
The TRIM5 family members bear a common structure con-

sisting of a RING finger zinc-binding domain, a B-box zinc-

binding domain, followed by a coiled-coil structure (with E3 

ubiquitin ligase activity).28 The TRIM5α isoform, which is 

active against retroviruses, contains a C-terminal PRYSPRY 

domain that binds the retroviral capsid CA. TRIM5α recog-

nizes motifs within the capsid proteins, removes them, prob-

ably by proteasome-dependent degradation, and interferes 

with the uncoating process, therefore preventing successful 

reverse transcription and the continuation of the viral cycle. 

Figure 2 Schematic representation of the gene distribution in the proviral genomes of MVV and CAEV.
Notes: In the provirus, the viral DNA is flanked by the LTR, which governs transcription of the genome. In the image, the essential genes are shown in the middle and the 
accessory genes are shown on the right.
Abbreviations: CAEV, caprine arthritis and encephalitis virus; LTRs, long terminal repeats; MVV, Maedi-Visna virus.
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Recently, it has been shown that TRIM5α can restrict MVV 

in a similar way to other retroviruses.28

APOBEC3/Vif
In recent years, much attention has been paid to the APO-

BEC3/Vif system, prompted by observations in human 

immunodeficiency virus (HIV). The A3 proteins appear to 

exert their inhibitory activity mostly through a deaminase-

dependent mechanism, which deaminates cytosine to uracil. 

In this way, A3 proteins insert G-to-A hypermutations in 

newly synthesized viral minus-strand DNA (viral cDNA) 

after the clearance of RNA from the DNA/RNA hybrid 

(Figure 3).29 A3 incorporated into virions (passenger A3) is 

the main cause of deamination evidenced by viral reverse 

transcripts displaying a high frequency of G-to-A mutations.30 

These mutations cause abnormal expression of nonfunctional 

viral proteins, resulting in disruptions of the viral life cycle. 

Recently, it has been shown that sheep (Ovis aries) have the 

following three A3 different genes: APOBEC3Z1 (A3Z1), 

APOBEC3Z2 (A3Z2), and APOBEC3Z3 (A3Z3),25,31 the 

antiviral effect of which is counteracted by Vif of MVV.

As mentioned earlier, Vif is an accessory protein of len-

tiviruses. MVV Vif is essential for the infection of primary 

macrophages and for in vivo infections.22,32 It degrades 

APOBEC3 proteins through a ubiquitin/proteasome-

dependent pathway,24 by recruiting certain cellular proteins 

to construct a Vif-mediated E3 ubiquitin ligase complex. 

These cellular proteins in sheep include the scaffold protein 

Cullin5 (CUL5) and the substrate adaptors Elongin B/C25 

and CYPA (also known as peptidylprolyl isomerase A), as 

cofactors for degrading the sheep APOBEC3.24,33 All these 

induce A3 polyubiquitination and degradation, thereby sup-

pressing A3-mediated antiviral activity34 because it cannot 

be incorporated into the virion.30 Zinc does not seem to be 

important for the activity of MVV Vif.25 The effect seems to 

be related to the type of cell, since it has been found that A3Z1 

downregulation (but not the others) correlates with increased 

viral replication in monocyte-derived and M2-polarized 

macrophages, but not in monocytes and M1 macrophages.30

Interferons (IFNs)
Another system by which the cell rejects viral infection is 

IFN. IFNs are cytokines produced in response to viral infec-

tion, which produce the so-called antiviral state of the cell. 

The following three types of IFNs have been identified in 

small ruminants: type-I (IFN-I), which includes IFN-α, IFN-

β, and several others (IFN-ω and IFN-τ), produced by most 

virus-infected cells; type-II (IFN-II), which includes only 

IFN-γ and is produced only by certain cells of the immune 

system; and type-III (IFN-III), including IFN-λ, which were 

former interleukins. To trigger the antiviral response, IFNs 

bind specific receptors on the cell membrane, IFNAR1 and 2, 

that activate signal pathways rendering proteins that cross the 

nuclear membrane and bind to the DNA, in sites or sequences 

called IFN-sensitive response elements (ISREs) in the case 

of IFN-I, or gamma-IFN activation site (GAS) in the case of 

IFN-II. This causes the transcription of genes, which fight 

viruses through different mechanisms, and the consequence 

is a rejection of the viral infection by the cell (Figure 4).35

Several studies have shown that the U3 region of the 

LTRs that flank the proviral DNA genome mentioned earlier 

contains a high number of sites, which bind cellular factors, 

activating transcription (transcription-binding sites [TBS]). 

Among them, SRLVs contain ISRE and GAS.36–39 Thus, 

when the cell is activated by IFN and the signal reaches the 

nucleus, cellular molecules bind these TBS, modulating 

transcription. A functional ISRE has also been identified in 

5′ HIV LTR, a lentivirus closely related to SRLVs. In HIV, 

ISRE activation probably plays an important role in the 

early phases of viral infection as a strategy to counteract 

IFN-mediated host defenses.40 Our group also found a dose-

dependent response to IFN-I (IFN A/D) in cells transfected 

with a plasmid including the LTR of MVV and a reporter 

gene, the green fluorescent protein (GFP), in the sense that 

less fluorescence was evidenced with the exposure to lower 

amounts of IFN, suggesting that IFN stimulates viral expres-

sion directed by the LTR.41

The virus spreads – and the body 
reacts
If the virus is able to overcome these restriction mechanisms, 

there is a short phase of viremia. At this stage, there are 

Figure 3 Mechanism by which APOBEC3 induces G-to-A mutations and 
counteraction by SRLV Vif.
Notes: APOBEC3 produces deamination of C, leading to U, which is reverse 
transcribed into A. However, SRLV Vif is able to degrade APOBEC3, circumventing 
this defense mechanism.
Abbreviation: SRLV, small ruminant lentivirus.
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transient immunopathologic alterations. SRLVs have in vivo 

tropism for monocytes, macrophages, and dendritic cells.1 

They can also infect microglia,1 endothelial cells, fibroblasts, 

and epithelial cells of other tissues,15–17 and these cells may 

act as reservoirs for the virus, as in the case of the epithelial 

cells of the mammary gland, and contribute to the transmis-

sion between the mother and the calf during lactation.1

The first targets for infection are macrophages and den-

dritic cells of the pulmonary or intestinal mucosae. Dendritic 

cells migrate to the lymph nodes where the virus is transferred 

to macrophages, which disseminate infection when they leave 

the lymph node.1 The monocyte/macrophage lineage repre-

sents a bridge between innate and adaptive immunities against 

SRLV. They act as antigen-presenting cells (APCs), process-

ing the viral proteins. Replication in circulating monocytes 

and macrophages does not occur until the maturation of these 

cells in target organs.42 Therefore, monocytes and immature 

macrophages act as “Trojan horses”, allowing the virus to 

escape the cellular and humoral immune responses.43

It is believed that infected macrophages penetrate to the 

bone marrow where they can affect myeloid or stromal cells, 

which would determine a continuous production of infected 

monocytes and would result in chronic infection throughout 

the life of the animal,1 though the bone marrow may not play 

a prominent role as virus reservoir.44 Infected macrophages 

express env- and gag-encoded viral proteins on their surface, 

mostly associated with the major histocompatibility (MHC) 

complex. The viral proteins-MHC complex is recognized 

by T lymphocytes, stimulating the production of interferon 

(I and II). This attracts other inflammatory cells to the 

focus and maintains the viral replication cycle and chronic 

inflammation and may inhibit the maturation of monocytes 

to macrophages, therefore modulating viral replication.45 

Chronic progressive inflammation is similar in all the target 

organs and is responsible for the clinical forms developed 

by the animals.

As regard to the humoral immune response, the first 

antibodies may appear 3 weeks after experimental infection 

Figure 4 Mechanism of action of interferon in virus-infected cells.
Notes: When the cell senses viral presence, signaling pathways are triggered, which reach the nucleus. Certain molecules can stimulate ISRE, which activates the transcription 
of factors rendering the cell into an antiviral state. Data from Ballesteros.41

Abbreviations: ISRE, interferon-sensitive response element; IRF, interferon-response factor; ISGF, interferon-stimulated growth factor; TLR, toll-like receptor.
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and are against p25CA. Two weeks later, sheep and goats 

synthesize antibodies against gp46TM, p14NC, and p16MA.6 

In most cases, antibodies against gp135SU are generated 

somewhat later. Antibodies generated against the Env pro-

teins are interesting because they block the binding of these 

proteins to the cell receptor and have neutralizing ability, 

but neutralizing antibodies are produced slowly and have 

low affinity and their titers are low.1 In addition, there are 

uncertainties that they are functionally important in vivo, 

since SRLVs are cell-associated viruses and can spread by 

cell-to-cell contact, and neutralization may not interfere 

with viral spread.1,46 Even though the humoral response is 

not enough to eliminate the viral infection (which is lifelong 

lasting), some studies have shown that it limits the spread of 

the viruses.47 Antibodies do not always help fighting against 

the infection. Though the complex virion–antibody may be 

internalized by macrophages or dendritic cells, thanks to their 

Fc receptors for antibodies and, thus, conceivably anti-SRLV 

antibodies could favor infection; this possibility has not been 

unequivocally demonstrated.48

The cell-mediated immune responses against SRLVs 

start 1–4 weeks postinfection, but they are relatively weak 

and uncommon, in spite of the important role that the CTL 

defense plays against viral infections. Infected monocytes 

and macrophages can activate specific cytotoxic T cells. 

Immunopathologic alterations in target organs are partly 

due to the increase in CD8+ T cells and the inversion of 

the CD4/CD8 ratio. Some co-stimulatory molecules, such 

as B7, appear to fail in MV and CAE since B7 transcripts 

and T-cell-specific memory responses in infected animals 

are significantly decreased49,50 in contrast to the increase 

observed during the asymptomatic phase of the infection. 

The consequence of this could be anergic T cells, unable to 

mount memory responses. This could involve the response 

to other antigens and be associated with immunodeficiency, 

affecting vaccination and defense against other pathogens. 

Thus, in spite of lymphocyte accumulation in some organs, 

possible anergy impedes defense against the virus.

A common observation is how erratic the antibody pres-

ence is. A general problem in diagnosis is that tests detecting 

antibodies against the SRLVs and the proviral genome may 

render opposite results.51–57 Though the discordances may be 

related to the diagnostic tests themselves, it is more probable 

that they are associated with the evolution of the antibod-

ies and proviral shedding in the animal. Results of a study 

showed that the presence of antibodies and proviral DNA in 

milk samples from sheep and goats may change with time. 

This supports the suggestion that the combination of different 

tests for the diagnosis of SRLV may enhance the detection 

of infected animals and improve the efficacy of control and 

eradication campaigns.52,53

Sheep and goats respond differently to the infection, as 

judged by the presence of antibodies and proviral DNA in 

milk. In sheep, it seems that the presence of antibodies in the 

udder may decrease the detection of proviral DNA, which 

may not be the case with goats. In a study, a high percentage 

of sheep were Polymerase Chain Reaction (PCR) positive 

in milk before antibodies could be detected and most of 

them became PCR negative shortly after the first detection 

of antibodies.53 This might suggest that antibodies have a 

neutralizing effect. In addition, an equal percentage of sheep 

were always PCR negative in milk but either became ELISA 

positive or were always ELISA positive, which might sug-

gest that the viral infection occurred in a different location 

than the udder and supported this hypothesis. In contrast, the 

PCR results in goats did not follow any pattern and oscil-

lated between 35.3 and 55.6% of milk PCR-positive animals 

depending on the month. Most goats positive by PCR failed 

to develop antibodies in the 6 months of the experiment.53

In addition to the role of macrophages in the progress of 

infection, there are other events that modulate the evolution of 

the disease. As all retroviral infections, SRLV infection remains 

clinically latent or progresses very slowly for a period of time, 

which depends on the viral strain and, most importantly, on 

individual susceptibility and transcription triggering events. 

Regarding this latter factor, our group has studied the effect 

of steroid hormones on the expression of SRLVs, especially 

prompted by the observation that production and excretion 

of SRLVs vary with the stage of the sheep or goat reproduc-

tive cycle.18 Steroids act in a similar way to IFN mentioned 

earlier. They cross cell membranes by simple diffusion due to 

their lipophilic nature and bind to cytoplasmic receptors. The 

hormone–receptor complexes act as intracellular transcrip-

tion factors that bind with high affinity to certain TBS called 

hormone response elements (HREs) present in the DNA 

(Figure 5).18 As in the case of IFN, functional HREs have been 

identified in the LTR of SRLV. The overall tendency that we 

observed in our study was an inhibitory effect on expression 

as hormone concentrations increase.18 This is compatible with 

the in vivo observation of inhibitory effects (on virus activa-

tion) by the highest levels of progesterone during pregnancy, 

effects that disappeared at parturition when progesterone levels 

decreased and SRLV was activated.58

Though the exact events that trigger viral replication are 

not fully understood, there is a constant expression of viral 

proteins. The immune response generated against them causes 
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a chronic inflammation that leads to pathological changes 

observed in target tissues of the animals infected by SRLV.1 

The main change that occurs in the affected tissues is the 

infiltration of mononuclear cells (lymphocytes, macrophages, 

and plasma cells) that are progressively organized into struc-

tures similar to lymphoid follicles and eventually destroy the 

normal tissue architecture and function of the affected organ.1

Maedi-Visna and CAE are characterized by respiratory, 

nervous, mammary, and joint clinical signs. The clinical 

affection appears to depend on the tropism of the SRLV 

strain, the species affected, and the genetic background of 

each breed or animal. Although the process is usually sub-

clinical, a small percentage of animals may present some or 

all of these signs. Usually, respiratory and mammary signs 

are predominant in MV, while the nervous and joint signs are 

more important in CAE.1

Respiratory disease
The respiratory disease is the most common clinical form in 

sheep. It affects adult animals older than 2 years, and once 

the symptoms are apparent, animal life expectancy does 

not exceed 1 year.59 The first phase of the disease is often 

overlooked, although it can be worsened by management 

deficiencies. Exercise intolerance is one of the first clinical 

signs to be noticed, followed by dyspnea at rest, accompanied 

by abdominal breathing, neck extension, expansion of the 

nostrils, and breathing with mouth open.46 As the disease 

progresses, the animal suffers from anorexia, weight loss, 

and finally cachexia. Nasal exudate appears only when there 

are secondary bacterial infections.

The main gross lesion is lung enlargement and increased 

weight. The disease affects the lungs and the regional lymph 

nodes. Chronically affected lungs are hypertrophic, up to three 

times the normal size, rounded, rubbery, grayish yellow, and 

with focal to diffuse miliary gray spots on the pulmonary pleu-

ral surface. These signs are accompanied by tumefaction (most 

evident in the mediastinal lymph nodes). If there are secondary 

bacterial infections, the cranioventral area may have reddish, 

moist-appearing regions and a marked lobular pattern. Gross 

pathology is similar to ovine pulmonary adenomatosis, and it 

is always recommendable to make a differential diagnosis.46

The clinical signs are caused by interstitial pneumonia 

that increases the thickness of the alveolar septa and progres-

sively reduces the air exchange capacity of affected lungs.60 

The interalveolar septa are infiltrated with lymphocytes, 

monocytes, macrophages, and plasma cells, which contrib-

utes to the thickening and hyperplasia of the smooth muscle 

fibers of the alveolar walls, favoring pulmonary dysfunction. 

Another characteristic lesion is diffuse lymphoid hyperplasia 

(mostly CD4+ and CD8+ T cells),61 responsible for the gray 

spots in the pleura mentioned earlier. As the disease pro-

gresses, the lesions become fibrotic.60,61

Mammary disease
The mammary disease is the second important form, due to 

economic losses and the frequency of occurrence. In some 

Figure 5 Stimulation of transcription by steroid hormones (represented by yellow triangles).
Notes: Steroid hormones are able to freely cross the plasma membrane and combine with the receptor (represented by gray forms). The best-studied mechanism involves 
that the hormone–receptor complexes cross the nuclear membrane and react with HREs, triggering transcription.
Abbreviations: HREs, hormone response elements; GRE, glucocorticoid responsive element; ERE, estrogen responsive element.
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breeds (as in Rasa Aragonesa from Spain), it may be more 

frequent than the respiratory form.62 It generally affects adult 

animals aged between 3 and 5 years, but it has also been 

observed in 1-year-old animals.63 Our group has observed that 

it is more frequent in mechanical milking and in intensively 

reared animals.7 Mastitis usually is subclinical, indurative, 

chronic, diffuse, bilateral, and nonpainful, with swollen mam-

mary lymph nodes. Milk production can be decreased and its 

macroscopic properties (color and consistency) do not vary.6,7 

Lesions are only apparent after lambing or kidding. Pathology 

reveals chronic interstitial mastitis characterized by infiltration 

of mononuclear cells around the mammary acini and milk ducts. 

This causes hyperplasia, vacuolization, and desquamation of the 

ductal epithelium. Finally, the lesion becomes fibrotic, causing 

mammary induration and stenosis of the milk duct.

Joint disease
Arthritis is the least common presentation in MV but frequent 

in CAE. It affects animals aged between 2 and 3 years. It 

usually affects the carpal and tarsal joints, so the process is 

marked by lameness. Also, the atlantal bursa and the nuchal 

ligament may be affected to a lesser extent.64,65 The process 

starts with edema and congestion of the synovial membrane 

and capsule of the joint, which causes both structures to 

thicken and enlarges joints.64,65 There is hardening of the 

periarticular tissue and synovial membrane proliferation, 

along with frequent erosions of the articular surfaces, which 

may even extend to bone destruction.65 Histology reveals 

papillary tissue projections of the synovial membrane into 

the articular space, with synoviocytes appearing hyperplasic, 

and erosion of the cartilage of the joint and the synovial fluid 

may appear cloudy. The synovial membrane proliferates and 

is sometimes detached. There is infiltration of mononuclear 

cells, mainly plasma cells, in the subsynovia, perivascular 

cuffs and connective tissue.65 Diffuse fibrosis of the capsule 

and other structures are common, and in severe cases, tis-

sue necrosis may be observed, sometimes with dystrophic 

calcification and cartilaginous and/or osseous metaplasia.65 

Finally, the arthrosis evolves to ankylosis due to calcifica-

tion or fibrosis. Interestingly, goats with a Th2-biased CD4+ 

T-cell response are known to develop arthritis, but those with 

a mixed IgG1 and IgG2 response remain without clinical 

signs, suggesting that anti-SRLV IgG2 antibodies protect 

against disease induction.66

Nervous disease
The nervous form is very rare in sheep, where it is mostly 

seen in stabled animals. It affects animals aged >2 years, 

although in some breeds such as Assaf it may occur in 

younger animals. Recently, an extensive outbreak of MVV 

infection in Northwest Spain has been diagnosed (even in 

animals aged 4–6 months).67 Nervous signs include hind-limb 

weakness and ataxia, hypermetria, and paralysis, usually 

leading to recumbence, although the animal remains alert and 

responds to external stimuli.68 The main lesion is encephalitis 

or encephalomyelitis.68,69 Chronic nonpurulent meningoen-

cephalomyelitis, usually accompanied by demyelination, 

is common. Sometimes there is also mononuclear infiltra-

tion of the choroid plexus, which sometimes results in the 

development of ectopic lymphoid follicles.70 The following 

three main patterns may be observed: vascular pattern, with 

mononuclear cells around blood vessels forming perivascu-

lar cuffs; infiltrative pattern, characterized by nonpurulent 

infiltration of the neuroparenchyma and perivascular cuffing; 

and malacic pattern, with demyelination.69

In goats, it is less frequent than the articular form and it 

is characterized by leukoencephalomyelitis in 2–6-month-old 

kids.64 The syndrome includes incoordination, ataxia of the 

hind limbs, which eventually may also affect the front limbs, 

and finally prostration and paralysis.64 These clinical signs are 

present for 6 months to a year, accompanied, as in the rest of 

forms, by progressive thinning and, in some cases, cachexia.64

The final phase of the pathogenesis begins when the 

clinical illness develops. At this point, and depending on the 

clinical form, the animal may die soon or remain chronically 

affected.1 Despite the high level of infection in some herds, 

the clinical manifestations may not be very apparent, as there 

are many factors that influence pathogenesis. These include 

the viral strain, age and breed of the animal, the route of 

exposure, possible secondary infections, and management 

conditions.

Infection at the flock level – can we 
help?
At the flock level, many factors have been identified that 

affect disease progression, which are grouped under risk 

factors. Of the many factors, some of them can be explained 

through other main ones, which include flock size (being 

70 dams the limit above which there is an increased risk 

for lentiviral infection)71 and type of management system 

(SRLV seroprevalence has been found higher in intensively 

reared sheep than in semi-intensively and extensively reared 

sheep).7,8,71,72 The infection rate of the animals translates 

directly to an impaired physical condition.71 In a study that 

we conducted, all productivity parameter measures appeared 

to be reduced in the seropositive groups for both goats and 
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sheep, even though the differences were not statistically 

significant.7

There is no vaccine or treatment effective against SRLV 

infections. Thus, reducing the burden of the clinical signs and 

economic losses relies on management measures, including 

marker-assisted selective breeding. Certain breeds have been 

associated consistently with higher (eg, Columbia sheep) or 

lower (eg, Rambouillet) odds of infection.73 Also, breed dif-

ferences in prevalence and proviral concentration indicate a 

strong genetic basis for susceptibility to infection by SRLV 

in sheep. Animals with high blood proviral concentration 

show increased tissue lesion severity, so proviral concentra-

tion represents a live animal test for control postinfection in 

terms of proviral replication and disease severity.44,74

Ovine transmembrane protein 154 
(TMEM154)
Recent studies have evidenced that certain haplotypes of the 

gene encoding TMEM154, an ovine transmembrane protein, 

are associated with the infection of sheep to MVV.75 Specifi-

cally, polypeptide variants that contain glutamic acid (E) at 

position 35 and asparagine (N) at position 70 (variant 3), or 

E35 and isoleucine (I) at position 70 (variant 2) in the ances-

tral, full-length version of the protein, are associated with 

increased susceptibility to the lentivirus, whereas polypeptide 

variants that contain lysine (K) at position 35 or deletion 

mutants are associated with reduced susceptibility. Sheep 

homozygous for haplotype 1 were less susceptible to SRLV  

infection, but sheep with at least one copy of either haplo-

type 2 or haplotype 3 were 69 times more susceptible.75,76 

In addition, possibly, sheep homozygous for TMEM154 

haplotype 1 may also have lower proviral concentrations 

and lesion severity among infected sheep and would be less 

likely to spread the infection to other sheep.77 The most sus-

ceptible haplotypes are distributed worldwide suggesting that 

genetic testing and removing sheep with the most susceptible 

TMEM154 alleles may help eradicate MVV and protect 

flocks from reinfection, improving the health and productiv-

ity of infected flocks.76 An assay aimed at identifying these 

susceptible alleles has been recently devised.76

The ancestral TMEM154 haplotype in sheep is common 

and predicted to encode a precursor protein of 191 amino 

acids that is cleaved to a mature protein with 161 residues.76 

However, little is known about the function of TMEM154. 

An equivalent to the ovine polyprotein has been associated in 

humans with asthma severity, suggesting a possible conserved 

role in airway immunity.77

Conclusion
There are different mechanisms that make the success of 

the infection by SRLV difficult. The host can display an 

array of strategies both at the cell and organism levels. In 

addition, some genetic traits can be exploited to raise more 

resistant breeds. A deeper knowledge on how they act may 

help improve the health of our flocks, making them more 

profitable and sustainable.
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