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Abstract: Collective antibiotic drug resistance is a global threat, especially with respect to 

Gram-negative bacteria. The low permeability of the bacterial outer cell wall has been identified 

as a challenging barrier that prevents a sufficient antibiotic effect to be attained at low doses 

of the antibiotic. The Gram-negative bacterial cell envelope comprises an outer membrane that 

delimits the periplasm from the exterior milieu. The crucial mechanisms of antibiotic entry via 

outer membrane includes general diffusion porins (Omps) responsible for hydrophilic antibiotics 

and lipid-mediated pathway for hydrophobic antibiotics. The protein and lipid arrangements of 

the outer membrane have had a strong impact on the understanding of bacteria and their resis-

tance to many types of antibiotics. Thus, one of the current challenges is effective interpretation 

at the molecular basis of the outer membrane permeability. This review attempts to develop a 

state of knowledge pertinent to Omps and their effective role in solute influx. Moreover, it aims 

toward further understanding and exploration of prospects to improve our knowledge of physi-

cochemical limitations that direct the translocation of antibiotics via bacterial outer membrane.

Keywords: antibiotics, Gram-negative bacteria, drug-resistance, outer membrane proteins, 

porins, membrane permeability, influx

Introduction
At the end of the 20th century, the attention of the scientific as well as the pharma-

ceutical community regarding the threat of antibiotic resistance was mainly focused 

on multiresistant Gram-positive bacteria.1,2 This significantly contributed towards the 

development of new compounds with the specific activity against this particular group 

of microorganisms.1 Regrettably, the introduction of antibiotics for Gram-negative 

bacteria has not developed at a similar pace.1 Gram-negative bacterial multidrug resis-

tance is a worrying health issue. Antibiotic resistance is frequently reported in clinical 

Gram-negative bacteria, and severely limits the available therapeutic options in hospital 

acquired infections.2,3 Consequently, due to the shortage of novel active antibacterials, 

there is an immense need to interpret the molecular mechanisms of antibiotic resis-

tance, especially toward key Gram-negative clinical pathogens, such as Klebsiella, 

Enterobacter, Pseudomonas, Campylobacter, Acinetobacter, and Salmonella species.4–8

The current innovative mode of improving the potential of antibiotics is to effi-

ciently introduce them into the bacteria and further prevent them from degradation 

by bacterial enzymes before they reach their targets.7,8 This is, however, an extreme 

method for countering the problem of antibiotic resistance.9,10 The main mechanisms 

employed by Gram-negative bacteria against available antibiotic therapy include the 

enzymatic barrier, which primarily destroys the antibiotics; the membrane barrier, 
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which limits the intracellular access of antibiotics; and anti-

biotic target modification, resulting in the overall failure of 

antibiotic therapy.7 Significantly, these mechanisms can work 

together in clinical isolates, thus creating an elevated level 

of antibiotic resistance.4,6,8 Of these mechanisms, antibiotic 

infusion across the bacterial membranes11 is one of the crucial 

mechanisms that needs to be studied thoroughly.5–9 Passing 

over toward the outer membrane barricade to scope the inhibi-

tory concentration inside the bacterial cell is a key step for 

antibiotic molecules to work effectively,11 thus, understanding 

the mechanism of transport across the outer membrane will 

give a crucial insight towards designing futuristic “smart” 

antibiotics.7,8,10 The outer membrane of Gram-negative bac-

teria performs the crucial role of providing an extra layer of 

protection to the organism without conceding the exchange 

of material required for sustaining life. In this dual capac-

ity, this barrier appears to be an extremely sophisticated 

macromolecular assemblage, the complexity of which has 

been explored only in recent years.5,8,12–15 By combining a 

highly hydrophobic lipid bilayer containing pore-forming 

proteins (Omps) (Tables 1 and 2) of specific size-exclusion 

properties, the outer membrane acts as a selective barricade.7,8 

The permeability properties of this barrier, therefore, have 

a major impact on the susceptibility of the microorganism 

to antibiotics. Small hydrophilic drugs, such as β-lactams, 

use the pore-forming porins to gain access to the cell inte-

rior, while macrolides and other hydrophobic drugs diffuse 

across the lipid bilayer.4,12,13 The existence of drug-resistant 

strains in many bacterial species due to modifications in the 

lipid or protein composition of the outer membrane indeed 

highlights the importance of the outer membrane barrier in 

antibiotic sensitivity. For instance, any structural changes 

in the available outer membrane proteins can significantly 

account for antibiotic resistance.5 Further, the situation 

becomes serious when the permeability barrier synchronizes 

with the β-lactamases in the periplasmic space, potentially 

leading to third-generation cephalosporin resistance.4–7 In 

Gram-negative bacteria, the outer membrane is an asymmet-

ric bilayer of phospholipid and lipopolysaccharides (LPS), 

with the latter exclusively found in the outer leaflet.4,5 A 

typical LPS molecule consists of three parts, together with a 

relatively short core oligosaccharide, lipid A, a glucosamine-

based phospholipid, and a distal polysaccharide O-antigen.12 

Since part of the core oligosaccharide and the O-antigen 

are not required for the growth of Escherichia coli, strains 

can exhibit varying lengths of these structures.4,5,12,13 The 

phospholipid composition of the inner leaflet of the outer 

membrane contains approximately 15% phosphatidylglyc-

erol, 80% phosphatidylethanolamine, and 5% cardiolipin, 

like that of the cytoplasmic membrane.12 Many different types 

of proteins reside in the outer membrane (Table 1). Some 

of them are extremely abundant. Different outer membrane 

proteins have been characterized in Gram-negative bacteria 

(Table 2) and are distinguished according to their substrate 

specificities, functional structure (monomeric or trimeric), 

and their regulation and expression.4–6,12,13

In this present review, we discuss and tabulate different 

attributes to understand various outer membrane proteins 

mainly responsible for solute influx in Gram-negative bac-

teria.4,10 This active knowledge can be used towards under-

Table 1 Crucial Omps studied in different bacteria

Protein Pathogens

OmpX,14 OmpA,15–17 OmpT,18 Tsx,19 FadL,20 OmpF,7,8,21,22 OmpC,23–31 PhoE,32 LamB,33,34 BtuB,35 FepA,36 FhuA,37,38 TolC Escherichia coli 
Omp36,3,31,39–41 Omp358,31,39,40,42 Enterobacter aerogenes 
OmpE36,43 OmpE358 Enterobacter cloacae 
OmpK36,30,31,44 OmpK358,30,31,44 Klebsiella pneumoniae 
MOMP,45–49 Omp5049,50 Campylobacter jejuni
(OccAB1-OccAB5),51 rOprD,52 CarO,53,54 Omp2555 Acinetobacter baumannii 
NspA,56 OpcA,57 NalP58 Neisseria meningitidis
Hia59 Haemophilus influenzae
CymA60,61 Klebsiella oxytoca
α-hemolysin62,63 Staphylococcus aureus
MspA64 Mycobacterium smegmatis
ScrY65 Salmonella typhimurium
OmpPst1,66,67 OmpPst267 Providencia stuartii
(OccD1 (OprD), OccD2 (OpdC), OccD3 (OpdP), OccD4 (OpdT), OccD5 (OpdI), OccD6 (OprQ), OccD7 (OpdB),
OccD8 (OpdJ))8,68–76

(OccK1 (OpdK), OccK2 (OpdF), OccK3 (OpdO), OccK4 (OpdL), OccK5 (OpdH), OccK6 (OpdQ), OccK7 (OpdD), 
OccK8 (OprE))8,73,74,77–84

OprP,75,85–88 OprO87

Pseudomonas aeruginosa 

Note: Copyright ©2017. Dove Medical Press. Adapted from Ghai I, Ghai S. Exploring bacterial outer membrane barrier to combat bad bugs. Infect Drug Resist. 
2017;10:261–273.8
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Table 2 Conclusive investigations with different Omps studied in pathogens

Decisive investigation Omp Pathogens

Studied interaction of β-lactam molecule meropenem using ETP.89 OmpF Escherichia coli 
Studied interaction of ampicillin, penicilloic-acid, and benzylpenicillin with Omp using ETP.7,123 OmpF E. coli 
Studied and showed effect of access resistance in Omp using ETP.22 OmpF E. coli 
Studied transport of divalent metal ions and their effect on conductance and selectivity of Omp.90 OmpF E. coli 
Studied the effect of salts of divalent cations on the Omp conductance, particularly the role of the 
electrolyte and the counterion accumulation induced by the Omp charges, and other effects not found 
in salts of monovalent cations using ETP.91

OmpF E. coli 

Studied effect of divalent cations toward pH sensitivity of Omp via inducing the pKa shift of key acidic 
residues using ETP.92

OmpF E. coli 

Studied mechanism of selectivity inversion in the Omp using ETP.93 OmpF E. coli 
Studied ciprofloxacin permeation pathways across Omp using MS.94 OmpC E. coli 
Studied recombinant form of the Omp and demonstrated the monomeric nature of Omp using ETP.95 OmpG E. coli 
Determined the X-ray crystal structure of the Omp.96 OmpG E. coli 
Determined the crystal structure of the Omp in two dimensions.97 OmpG E. coli 
Studied mechanism of folding of Omp in detergent solution.98 OmpG E. coli 
Studied structural configuration of different Omps and measured penetration rates of different 
β-lactams using LSA.99

OmpA E. coli 

Studied binding regions of Omp using site-directed fluorescence study.17 OmpA E. coli 
Studied function of Omp in stress survival using microbiological assay.16 OmpA E. coli 
Studied crystal structure of Omp and further explained possible mechanisms of virulence.14 OmpX E. coli 
Studied the Omp behavior and described the effect of expanded channel protein using ETP.100 FhuA E. coli 
Studied transfer of DNA via Omp using LSA.101 FhuA E. coli 
Studied structural parameters of Omp using size exclusion chromatography, sedimentation equilibrium, 
and velocity experiments.102

FhuA E. coli 

Studied structures and the interaction of proteins and protein subdomains, and also demonstrated the 
role of the Omp in outer membrane permeability.103

FhuA, E. coli 

Demonstrated Fe3+ as ferrichrome complex transport through the outer membrane.104 FhuA E. coli 
Studied interaction of β-lactam molecules ertapenem, cefepime, and cefoxitin, using ETP and MIC 
assay.67

OmpPst1 
and 
OmpPst2

Providencia stuartii

Studied Omp structure, including function of surface-exposed loops and Omp interaction with 
membrane components (e.g., LPS) using conventional ETP and MS.66

OmpPst1 
and 
OmpPst2

P. stuartii 

Studied role of Omp in carbapenem transport across outer membrane using ETP and LSA.105 OmpPst1 P. stuartii
Described and explained biophysical properties of the Omp.45 MOMP Campylobacter jejuni
Studied and confirmed conformational analyses showing the presence of a native trimeric state 
generated by association of the three folded monomers, and further compared the stability with that of 
Escherichia coli porins.46

MOMP C. jejuni

Studied translocation of short poly-arginines across Omp using ETP.41 MOMP C. jejuni
Studied the three-dimensional structure of Omp and elucidated the underlying molecular mechanisms 
using X-ray diffraction.47

MOMP C. jejuni

Studied sequence polymorphism and showed secondary structures, and surface-exposed 
conformational epitopes of the Omp.106

MOMP C. jejuni

Studied channel-forming properties of Omp as trimer and monomer using ETP, and transition of trimer 
to monomer using light scattering; further examined the secondary structures of these two molecular 
states by infra-red spectroscopy.48

MOMP C. jejuni

Studied different environmental regulation factors controlling Omp expression in Escherichia coli using 
fluorescent spectroscopy.49

MOMP and 
Omp50

C. jejuni

Studied pore-forming ability of the Omp and performed biophysical characterization using conventional 
ETP.50

Omp50 C. jejuni

Studied key residues in the channel constriction and their effect on substrate specificity of the Omp 
using ETP and MS.107

OprP and 
OprO

Pseudomonas aeruginosa

Studied transport of fosfomycin via Omp using ETP.108 OprP and 
OprO

P. aeruginosa

Showed decreased Omp production to be one of the contributing factors for carbapenem 
heteroresistance.109

OprD P. aeruginosa

Studied role of Omp in increasing MICs of carbapenems in clinical isolate.110 OprD P. aeruginosa

(Continued)

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Infection and Drug Resistance  2018:11submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

526

Ghai and Ghai

Decisive investigation Omp Pathogens
Studied Omp levels in carbapenem-resistant isolates using real-time polymerase chain reaction.111 OprD P. aeruginosa
Studied and characterized discrepant carbapenem susceptibility profile including alterations in outer 
membrane permeability.112

OprD P. aeruginosa

Studied in vitro activity of ceftazidime-avibactam and ceftolozane-tazobactam against meropenem-
resistant isolates using MIC.113

OprD P. aeruginosa

Studied and identified unique in-frame deletions in Omp among clinical isolates.114 OprD P. aeruginosa
Studied variations of Omp dominating in imipenem-resistant isolates.115 OprD P. aeruginosa
Developed whole-cell-based assay, system to characterize the structure of Omp and its role in 
permeation for a set of novel carbapenem analogs.116

OprD P. aeruginosa

Studied effect of Omp polymorphisms, particularly the amino acid substitution at codon 170 toward 
carbapenem resistance.117

OprD P. aeruginosa

Studied the impact of single amino acid substitutions in Omp on carbapenem resistant strains.118 OprD P. aeruginosa
Studied and showed incapacitating mutation and decreased expression of Omp to be one of the factors 
contributing toward imipenem and meropenem resistance.119

OprD P. aeruginosa

Studied and showed the role of Omp in 70 different carbapenem-resistant clinical isolates.120 OprD P. aeruginosa
Studied channel-forming properties and other physicochemical properties of Omp using ETP and mass 
spectrometry.55

CarO and 
Omp25

Acinetobacter baumannii 

Studied L-ornithine uptake via Omp, also showed L-ornithine’s effect over pathogen sensitivity to 
imipenem.121

CarO A. baumannii 

Note: Copyright ©2017. Dove Medical Press. Adapted from Ghai I, Ghai S. Exploring bacterial outer membrane barrier to combat bad bugs. Infect Drug Resist. 2017;10: 
261–273.8 

Abbreviations: LSA, liposome swelling assay; LPS, lipopolysaccharides; MS, molecular simulations; ETP, electrophysiology.

Table 2 (Continued)

standing the effect of outer membrane influx in antibiotic 

resistance in Gram-negative bacteria which can be further 

used for future antibiotic drug development.

Conclusion
In this review, we continued to explore different outer mem-

brane proteins by extending and recapitulating the progressive 

systematic evidence elucidating the role of Omps in solute 

membrane permeability in Gram-negative bacteria.7,8 Bacterial 

membrane transport is a multifaceted process that is strongly 

controlled by a complicated network of activities that sense 

and respond to external stress.8 Significantly, bacteria make 

use of these cultured controlled cascades that perceive and 

distinguish different toxic compounds and respond by trig-

gering various resistance mechanisms, including modifica-

tion of specific Omps.4–6,13,122 Membrane penetrability, which 

further, along with added resistance mechanisms, including 

drug inactivation or target modification, has become one of 

the major problems in effective antibiotic therapy. Effective 

information regarding the role of effective Omps in substrate 

uptake and further explaining their structural relationship 

toward the uptake, highlights the capability of the scientific 

community in the direction of understanding the bacterial 

resistance machinery generated mainly via modification of 

membrane permeability.4–8,13,122 Understanding translocation 

via Omps can be regarded as a first step toward defining a 

pathway of an antibiotic specific to its target. Consequently, 

interpretation of antibiotic translocation through Omps is 

crucial for understanding the connection between influx and 

activities in bacteria. The function of the general diffusion 

Omp has been well studied based on Omp characteristics, 

alteration, and mutations. We also tried to combine data from 

different studies concerning the Omps. Our understanding of 

the structure of the pore-forming complex has been extremely 

improved over the last decade with emergence of the compu-

tational approach, crystallographic data from X-rays, electron 

microscopy, mass spectrometry, and electrophysiology. How-

ever, significant key knowledge regarding the transformation 

of outer membrane pores’ transportation mechanism is still 

required to further elaborate their conditional role in antibi-

otic/antimicrobial transport. The molecular basis of antibiotic 

transport via specific porins is presently open to interpretation, 

and additional rigorous studies are required to give insight into 

the structural–activity relationship between Omp geometry and 

antibiotic transport. Collectively, the current and previous8 data 

can be employed in an effort to explain substrates, especially 

antibiotic uptake pathways, and may provide insights into 

molecular mechanisms that could enable rational drug design 

to enhance permeation and provide novel strategies to solve 

the “impermeability” issue of antibiotic resistance. 
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