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Abstract: Solid lipid nanoparticle (SLN) delivery systems have a wide applicability in the 

delivery of phyto-bioactive compounds to treat various chronic diseases, including diabetes, 

cancer, obesity and neurodegenerative diseases. The multiple benefits of SLN delivery include 

improved stability, smaller particle size, leaching prevention and enhanced lymphatic uptake 

of the bioactive compounds through oral delivery. However, the burst release makes the SLN 

delivery systems inadequate for the oral delivery of various phyto-bioactive compounds that 

can treat such chronic diseases. Recently, the surface-modified SLN (SMSLN) was observed 

to overcome this limitation for oral delivery of phyto-bioactive compounds, and there is grow-

ing evidence of an enhanced uptake of curcumin delivered orally via SMSLNs in the brain. 

This review focuses on different SLN and SMSLN systems that are useful for oral delivery of 

phyto-bioactive compounds to treat various chronic diseases.

Keywords: solid lipid nanoparticles, surface-modified solid lipid nanoparticles, chronic diseases, 

phyto-bioactive compounds, chitosan

Introduction
Solid lipid nanoparticles (SLNs) are lipid-based delivery systems that exist in numerous 

sizes, ranging from 30 to 1,000 nm. These can be developed using easily degradable 

lipids. SLNs have multiple advantages than other nano-delivery systems including 

bypassing the spleen or liver filtration with the particle size of 120–200 nm, lower 

chronic or acute toxicity due to physiological lipid, enhanced bioavailability and 

productivity, higher reproducibility, lower organic solvents usage in the preparation, 

protection of liable phytocompounds or drugs and possibility to incorporate both 

hydrophilic and hydrophobic compounds. Further, SLNs can be made with highly 

degradable lipids and hence are biologically safe systems which allow large-scale 

production, easy sterilization and long storage period. These advantages made the SLNs 

suitable for the oral delivery of various phyto-bioactive compounds, such as curcumin, 

resveratrol, quercetin and other polyphenols, to treat several types of chronic diseases.1–6 

Even though conventional SLNs have several advantages, there is a challenge to oral 

delivery of bioactive compounds,4,7,8 that is, the burst release of the phyto-bioactive 

compounds in the stomach at a lower pH of about 1–3. To overcome this problem, 

the SLNs are subjected to surface modification to enhance the delivery of the phyto-

bioactive compounds and to prevent the higher release in the stomach.7
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Surface-modified SLNs (SMSLNs) were recently produced 

using heparin, albumin, polyethylene glycol and polysac-

charides to control the oral delivery of phyto-bioactive 

compounds. Chitosan is highly degradable, presents lower 

immunogenicity and is suitable for controlled oral delivery 

of the phyto-bioactive compounds under various pH 

conditions.4,9–11 The fate of SLNs and modified SLNs 

(MSLNs) administered through an oral delivery system 

is shown in Figures 1 and 2. The surface coating of SLNs 

with chitosan along with modifications in chitosan has many 

advantages in reducing the pH, such as a sustained release of 

the bioactive compounds, and a higher positive charge leads 

to a lower burst release of the SMSLNs. Coating the modified 

chitosan on SLNs results in the controlled release of these 

phyto-bioactive compounds in harsh gastric environments, 

which will be helpful to treat chronic diseases7,8,12,13 by 

improving the efficacy of the therapy. Some SMSLN delivery 

systems, such as trimethyl chitosan (TMC), showed enhanced 

delivery of the compounds to the brain in an Alzheimer’s 

mouse model. Further, modification of the chitosan and 

development of MSLNs are not cost effective. Other advan-

tages of MSLNs including enhanced targeted delivery of the 

active compounds, ability to cross the blood–brain barrier 

in neuroinflammatory diseases and long-term storage with 

bulk production make them an appropriate choice among 

the other nano-delivery systems. The recent surface modi-

fication of SLNs using chitosan and their applicability in 

chronic diseases are discussed in this review, focusing on 

SLNs and SMSLNs for oral delivery of the phyto-bioactive 

compounds and treatment in various in  vitro and in  vivo 

chronic disease models.

Role of SLNs in the oral delivery 
of phyto-bioactive compounds
SLN is a first-generation nano-delivery system that has been 

extensively used for sustained release in oral delivery of phy-

tocompounds to treat various chronic diseases.7,14–19 Recently, 

many new nano-delivery systems have been developed for 

oral delivery.15–18 However, SLN has its own advantages in 

the bulk production, including a lower production cost, long-

term stability and tolerability and biodegradability with lower 

toxic effects, along with enhanced oral delivery of phyto-

bioactive compounds. Recently, sesamol-loaded SLN was 

developed with a particle size of about 120 nm, and it exhib-

ited enhanced oral delivery for carbontetrachloride-induced 

hepatotoxicity in an animal model. The results confirmed that 

sesamol-loaded SLN has a higher protective effect than free 

sesamol, with lower irritation and no toxicity.20 Further, the 

Figure 1 Schematic representation of the fate of SLN through oral delivery.
Abbreviation: SLN, solid lipid nanoparticle.
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antioxidant potential of sesamol-loaded SLN was higher 

than that of free sesamol through oral delivery.21 Similarly, 

curcumin-loaded SLN was studied in the cerebral ischemia 

rat model, and the results indicated 16.4 times greater bio-

availability of curcumin in the brain than with free curcumin. 

The brain bioavailability greatly increased along with a 90% 

increase in the cognition of the cerebral ischemic rat group.22 

Resveratrol was also studied for its sustained bioavailability 

through oral delivery via resveratrol-loaded SLN with a 

particle size of about 241 nm in male Wistar rats. Compared 

to free resveratrol, lipid core-loaded resveratrol showed two 

times higher bioavailability in the brain, kidney and liver.23 

Recently, quercetin-loaded SLN was developed with a par-

ticle size of about 172 nm, and a single oral dose showed 

3.2  times higher bioavailability than free quercetin along 

with enhanced osteoprotective effect in a postmenopausal rat 

model.24 Similarly, many other flavonoid-loaded SLNs were 

studied to assess their efficacy in the delivery of bioactive 

compounds. Owing to the higher-release behavior of SLN, 

puerarin-loaded SLN was studied for the cardioprotective 

effect through intragastric delivery, and it showed 3.1 times 

higher bioavailability than free puerarin.25 The association 

of resveratrol with lipids was also studied in a stimulated 

gastrointestinal environment, and it was found to be stable 

with efficient delivery. Even though the lipid association 

of other phyto-bioactive compounds may be different, 

researchers are now highly focusing on modified SLNs for 

the sustained release of the phyto-bioactive compounds 

through oral delivery.

SLN formulation and production 
strategies for the improvement 
of oral delivery of bioactive 
compounds
For the enhanced oral delivery and stability of the phyto-

bioactive compounds through SLNs, their composition of the 

formulation and their production methods play a critical role. 

SLN formulation in turns depends on the type of surfactants, 

lipids, phyto-bioactive compounds, cosurfactant and cryopro-

tectant which determines the stability and target reachability 

of the loaded phyto-bioactive compounds.26 Various range 

of lipids like triacylglycerols, waxes, hard fats, palmitic acid 

and stearic acid are used to fabricate SLNs which have their 

own advantages as well as disadvantages. In case of curcumin 

loaded in several types of lipids, the entrapment efficiency 

increases with increase in the chain length of the hydrocarbon 

chain. Recently, Aditya et al studied the entrapment efficiency 

of curcumin in SLNs made with different lipids including 

Figure 2 Schematic representation of the fate of MSLN through oral delivery.
Abbreviations: MSLN, modified solid lipid nanoparticle; SLN, solid lipid nanoparticle.
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trimyristin, tristearin and glycerol monosterate and found 

that glycerol monosterate has greater entrapment efficacy 

than the other lipids.26,27 Further, the entrapment efficiency 

of phyto-bioactive compounds like curcumin, resveratrol, or 

genistein also depends on the molecular weight of the type 

of compounds involved. Increase in the molecular weight 

decreases the entrapment efficiency of the compounds which 

in turn leads to lower oral delivery of the phytocompounds. 

In  addition to the lipids selection, surfactants also play a 

critical role in the formulation of SLNs, by avoiding coales-

cence during solidification which in turn depends on the type 

of surfactant involved and its concentration.28–30 Further, the 

production methods also determine the SLN loading capacity 

and stability of the phyto-bioactive compounds.31,32 Various 

methods like emulsification solvent diffusion, emulsification 

solvent evaporation, high-pressure homogenization and micro-

fluidization are involved in the production of SLNs. Owing to 

the lower degradation of sensitive phyto-bioactive compounds 

like curcumin, lower toxicity, enhanced stability and bulk 

production of the SLNs, microfluidization and high-pressure 

homogenization techniques are generally recommended in the 

production of phyto-bioactive compounds-loaded SLNs.

Absorption mechanisms of phyto-
bioactive compounds loaded in SLNs 
and SMSLNs through oral delivery 
in various chronic disease models
Phyto-bioactive compounds loaded in the SLNs and SMSLNs 

need to be solubilized before absorption in the gastrointes-

tinal tract when chronic diseases are treated through oral 

delivery.33–38 The digestion of SLNs and SMSLNs by stomach 

enzymes results in SLN and SMSLN emulsion and formation 

of degradation products that form mixed micelles. These 

mixed micelles loaded with phyto-bioactive compounds 

can exhibit enhanced absorption due to their lower particle 

size.18,39,40 In addition, surface modification results in the 

adhesion of SLNs to the intestine, which can result in longer 

or prolonged delivery to treat chronic disease. For the above 

reasons, SLNs loaded with phyto-bioactive compounds can 

pass through intervillar space or lymphatic system or Peyer’s 

Patch without much loss in the active site of the bioactive 

compounds. In addition to the transportation of the bioac-

tive compounds, some amount of coated nanoparticles are 

also transported through ileum absorption.41–43 The absorp-

tion mechanisms and biodistribution in various organs are 

shown in Figure 3. Many recent studies have confirmed the 

enhanced absorption of bioactive compounds through SLNs 

or SMSLNs to treat diseases including diabetes, cancers, 

neurological diseases and inflammations, and the effects of 

SLNs on a few of these diseases are discussed.

Anti-type 2 diabetic effect
Type 2 diabetes mellitus treatments with phyto-bioactive 

compounds are used in traditional medicinal systems in 

India, China and Korea. Various food-grade phytocom-

pounds have shown an enhanced effect in preventing type 2 

diabetes mellitus.44–48 Curcumin-treated prediabetic patients 

have shown a beneficial effect in reducing the development 

of diabetes with 9 months of intervention, along with a 

higher improvement in the β-cell functions.49 Similarly, a 

resveratrol supplementation can enhance the antidiabetic 

effect in humans with a dose of 1 g for 45 days.50 Quer-

cetin is another flavonoid compound that showed a higher 

antidiabetic effect in streptozotocin-induced diabetic rats. 

Even though these phyto-bioactive compounds showed a 

higher antidiabetic effect, a longer duration of treatment was 

needed. In addition, their efficacy and bioavailability when 

administered through oral delivery systems were very low. 

To improve the bioavailability through oral delivery, several 

macro- or nano-sized colloidal systems have been studied. 

Among them, SLNs showed an enhanced effect in treating 

type 2 diabetes through oral delivery. Recently, berberine-

loaded SLNs with a particle size of 76.8 nm showed an 

improved bioavailability with a higher antidiabetic effect 

in a diabetic mouse model.51 This study also confirmed that 

berberine-loaded SLNs improved the islet function and can 

thereby effectively reduce diabetes progression. In addition, 

the same research group also found that the bioavailabil-

ity of the berberine in the liver was 20 times higher than 

in blood, which led to a reduction in diabetes-associated 

complications such as lipolysis enhancement and lipogen-

esis inhibition.52 These studies confirm that delivery of the 

bioactive compound to the systemic circulation in a highly 

active way can enhance not only specific activities but also 

improve the associated complications. The bioavailability 

of certain other compounds such as curcumin, resveratrol, 

or quercetin was effectively enhanced through SLN delivery 

systems, but their activity in a diabetic animal model remains 

limited. Recently, surface-modified SLNs loaded with cur-

cumin showed a 9.5  times higher bioavailability through 

oral delivery,7 and they can be potentially applied to treat 

type 2 diabetes.

Anticancer effect
Phytocompounds have been used to effectively treat various 

cancers for longer periods of time.53–56 However, this effect 

is not highly appreciable due to a higher loss of bioactivity 
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during oral therapy. Several synthetic medicines have also 

faced limitations for oral therapy, so lipid-based delivery of 

their active compounds has been extensively used to develop 

various cancer treatments.57,58 SLNs have been extensively 

used in many studies to orally deliver bioactive compounds 

with an enhanced anticancer effect.17,57,59–62 Genistein is a 

phytoestrogen that is extensively used for hormone-related 

cancers, and it has limited bioavailability. Recently, genistein-

loaded solid lipid microparticles (SLMs) with a particle size 

of 6 µm were compared with SLNs with a particle size of 

about 120 nm in terms of their bioavailability. Surprisingly, 

SLMs showed a greater anticancer effect than the SLNs 

due to a slow disintegration in the intestine as well as the 

particles reaching the colon. In addition, different sizes of 

the particles can be used to alter the surface area of genistein 

to improve its activity. Smaller SLNs can be extensively 

absorbed in mesenteric vessels, leading to a higher absorption 

of the bioactive compounds rather than reaching the colon.63 

In another study, curcumin-loaded SLNs were studied for 

their antitumor activity through intravenous administration, 

and curcumin showed a 1.25 times enhanced bioavailability.62 

Other research groups compared curcumin-loaded SLNs 

administered via intravenous or oral routes and showed 30 or 

16.4 times higher bioavailability of curcumin, respectively.22 

Thereby, surface modification of SLNs with chitosan or 

modified chitosan could enhance the bioavailability of cur-

cumin or other compounds in various organs through oral 

delivery. However, their applicability in various anticancer 

disease models is still limited. Many in vitro cell studies 

have shown an enhanced anticancer effect in various cancer 

models. Recently, berberine-loaded SLNs showed enhanced 

antitumor effect with a particle size of about 81 nm in MCF-7 

cell lines.64 Aloe-emodin is another phytocompound that can 

be loaded in SLNs, and when prepared with a particle size of 

about 88 nm, it showed an enhanced anticancer effect to treat 

breast and hepatoma cancer cell lines.65 Resveratrol-loaded 

Figure 3 Biodistribution of phytocompounds loaded in MSLN through oral delivery.
Abbreviation: MSLN, modified solid lipid nanoparticle.
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SLNs with a particle size of about 96 nm showed an enhanced 

anticancer effect in HepG2 cells.66 Similarly, oridonin-

loaded SLNs with a particle size of about 108 nm showed an 

enhanced antitumor effect in MCF-7 cells.67 Various research 

studies confirm that SLNs could be a potential carrier for 

various anticancer phyto-bioactive compounds, and further 

research on oral delivery of those anticancer phyto-bioactive 

compounds is necessary.

Antiobesity effect
The antiobesity effect of various phyto-bioactive com-

pounds is well known to function through the inhibition 

of various cell signaling mechanisms, but these are very 

complex. In general, obesity is characterized by an increase 

in the deposition of fat storage adipose cells. A diet rich in 

various phytochemicals has shown an extensive reduction 

in the deposition of fat through complex mechanisms.68,69 

However, the concentration of certain phytochemicals 

reaching systemic circulation is very low. For instance, 

green tea catechin is a potential antiobesity compound, but 

its bioavailability is very low and is limited to 0.15 µM of 

the epigallocatechin gallate (EGCG).70 In order to enhance 

the bioavailability of such phytocompounds, many lipid-

based nanodelivery systems with SLNs or MSLNs have 

been developed to improve the delivery of the bioactive 

compounds with great potential for an antiobesity effect. 

Recently, EGCG was successfully loaded in SLNs with a 

particle size of about 300–400 nm, and it showed a higher 

stability and greater potential for oral delivery.71 It could 

possibly be used in future as a delivery system to treat 

obesity-related complications. Zerumbone is another lipo-

philic compound that is most commonly found in ginger, 

and has shown an extensive antiobesity effect.72 To date, 

there have been limited attempts to develop SLNs to deliver 

zerumbone for its antiobesity effect. Resveratrol is also a 

potential compound that has shown a higher antiobesity 

effect in various animal studies.73 However, it requires a 

higher dose and prolonged supplementation. Recently, 

resveratrol-loaded SLNs and MSLNs were studied for their 

potential bioavailability. However, their roles in antiobesity 

have not yet been elucidated. Quercetin is another active 

compound that has shown significant potential for antiobe-

sity in various animal studies. Recently, quercetin-loaded 

SLNs and chitosan-coated MSLNs were developed with a 

particle size of about 110 nm, and these showed an enhanced 

bioavailability of quercetin with a higher stability.74 Further 

research is needed to focus on the oral delivery of SLNs and 

their antiobesity effect in animal models.

Anticardiovascular effect
Phyto-bioactive compounds such as resveratrol, curcumin, 

quercetin and diosgenins have shown an enhanced anticar-

diovascular effect through their cardioprotective activity. 

This cardioprotection is achieved through mechanisms such 

as antihyperlipidemia, antioxidation or platelet aggregation 

inhibition.75–77 However, most phyto-bioactive compounds 

taken with the diet or through an oral delivery system have 

exhibited a lower bioavailability in systemic circulation.78–80 

Recently, many phyto-bioactive compounds showed an 

improved bioavailability through SLN or MSLN delivery 

systems, which can further improve their cardioprotec-

tive activity. Puerarin is among the most cardioprotective 

compounds, and its successful loading in SLNs resulted in 

a higher bioavailability in various organs, especially three 

times higher in the heart and the brain.81 These studies 

confirm that a higher bioavailability and sustained release 

of these bioactive compounds can lead to a higher cardio-

protective effect.39,194 Furthermore, there is no change in 

the production of the metabolite when given orally. Very 

recently, flavonoid from Dracocephalum moldavica L. 

loaded in the SLNs with a particle size of about 104 nm 

showed an improved protective effect against myocardial 

ischemic–reperfusion injury. This could be a base study to 

prepare another phyto-bioactive compound-loaded SLN with 

cardioprotective activities.39 Hydroxycitric acid (HCA) is a 

cardioprotective agent that was found in Garcinia cowa, and 

it undergoes much degradation during processing, leading to 

the loss of its cardioprotective activity when administered 

orally. Recently, HCA was successfully loaded in SLNs, 

which showed 1.3 times higher bioavailability than its free 

form.82 Many phytocompounds loaded in SLNs or MSLNs 

are yet to be studied for their efficacy in oral delivery along 

with cardioprotective activity. Many other studies were con-

ducted with a low-molecular-weight heparin-loaded SLNs or 

MSLNs with a much higher oral bioavailability to improve 

the cardioprotective activities.

Anti-arthritic effect
Phyto-bioactive extracts and compounds, such as green tea 

extract, pomegranate extract, curcumin, resveratrol, celastrol 

and gamabogic acid, have been extensively used to treat 

rheumatoid arthritis (RA).83–85 These bioactive compounds 

showed an inhibitory mechanism against inflammatory 

mediators, thereby preventing cartilage destruction in various 

animal studies. Besides the protective effect of these bioactive 

compounds, their bioavailability through oral delivery sys-

tem is a great challenge for their potential RA treatment.86–88 
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To overcome this, recently phytocompounds were loaded in 

SLNs and MSLNs which showed excellent bioavailability. 

Piperine-loaded SLNs with a particle size of about 128 nm 

showed excellent delivery of such compounds with potential 

anti-RA activity.89 Similarly, hesperidin-loaded SLNs also 

showed a potential anti-RA effect with a particle size of about 

279  nm in male Wistar rats. In another study, curcumin-

loaded SLNs also showed an excellent delivery of curcumin 

in the RA-induced rats with potential anti-inflammatory or 

antioxidative mechanisms.90 Other phytocompounds such 

as EGCG were also efficiently loaded in SLN systems and 

showed excellent bioavailability in animal models. This 

could also be potentially applied to treat RA. Many other 

bioactive compounds with potential anti-RA activities can 

also be efficiently loaded in SLN systems91 for use in future 

treatments with nanomedicines. Furthermore, to improve the 

sustained release of the bioactive compounds, MSLNs can 

also be developed with specific bioactive compounds with 

higher anti-RA activities.

Anti-Alzheimer’s effect
Phyto-bioactive compounds-loaded SLNs were recently used 

to treat Alzheimer’s disease (AD), overcoming conventional 

limitations in treating neurodegenerative diseases.92–96 Ini-

tially, SLN- or MSLN-loaded bioactive compounds were 

given intranasally or intravenously, and these showed exten-

sive bioavailability in the brain, thereby preventing inflam-

mation and further progression of AD.97–101 Quercetin-loaded 

SLN with a particle size of about 200 nm was studied for its 

efficacy in the AD model, and it showed excellent delivery 

of quercetin to the brain with a higher antioxidative effect in 

brain cells.102 The transport of bioactive compounds to the 

brain occurs through the endocytosis of the brain capillar-

ies, and these compounds can thereby cross the blood–brain 

barrier. In a recent study, piperine-loaded SLNs showed 

enhanced bioavailability in the brain cells, and can thereby 

prevent a further prognosis of the AD. The study also revealed 

that piperine can enhance acetyl cholinesterase activity, 

reducing the formation of plaques and thereby improving 

cognitive activity.96 Another study investigating ferulic acid-

loaded SLNs against neurotoxicity found that ferulic acid 

can be extensively delivered to brain cells and can thereby 

prevent oxidation without any toxicity.103 Curcumin is another 

potential compound that showed excellent anti-Alzheimeric 

effect in various in vitro and in vivo studies,104–112 but it 

showed limitations in its bioavailability through oral delivery 

with a very low content in the brain, and could not achieve 

a significant potential effect. Therefore, many recent studies 

were intended to improve the bioavailability of curcumin to 

the brain through oral delivery via SLNs.

Recently, curcumin-loaded SLN was studied for its poten-

tial effect in an aluminum-induced AD model. Curcumin-

loaded SLN showed excellent delivery of curcumin to the 

brain, and the bioavailability of curcumin varied from 32 

to 155 times in a dose-dependent manner with an enhance-

ment in cognition and the biochemical parameters associated 

with it. In comparison with free curcumin, treatment with 

curcumin-loaded SLN showed 73% higher recovery of the 

biochemical aspects. This confirmed that curcumin-loaded 

SLN will be a potential delivery system for the oral deliv-

ery of curcumin for AD treatment.113 However, to further 

improve the bioavailability, curcumin-loaded MSLN was 

recently developed, and it showed improved delivery of the 

curcumin for AD treatment. Recently, resveratrol has gained 

more interest to treat AD due to its greater neuroprotective 

effect, and many studies confirmed that resveratrol treat-

ment significantly improved the cognition and biochemical 

parameters.114–123 Recently, resveratrol-loaded SLN was stud-

ied for its bioavailability and brain delivery. Resveratrol was 

efficiently delivered to the brain and exhibited its potential 

bioactivity. To improve the sustained bioavailability, resver-

atrol-loaded chitosan-coated MSLN was also studied, which 

showed an enhanced and sustained delivery of resveratrol to 

the brain. In another study, resveratrol-loaded SLN with func-

tionalized antibody showed excellent cellular uptake compared 

to normal SLN.93 Many other phyto-bioactive compounds 

loaded onto SLNs or MSLNs are still in the development 

pipeline with a size suitable for effective transport through the 

blood–brain barrier, and these can result in higher protection 

of brain cells to overcome age-related degenerative diseases.195

Anti-Parkinson’s effect
Parkinson’s disease (PD) is another neurodegenerative 

disease that occurs most commonly in the elderly due to 

the loss of the dopaminergic neurons and the activation 

of microglial cells.124–130 Phyto-bioactive compounds have 

shown an excellent anti-neuroinflammatory effect through 

various pathways.131–141 However, they have limitations in 

oral delivery due to their extensive first-pass metabolism 

and difficulty in crossing the blood–brain barrier. Recently, 

SLN-loaded phyto-bioactive compounds have shown excel-

lent bioavailability through oral delivery and a higher brain 

bioavailability.107,132,142,143 Curcumin is a bioactive compound 

that has shown an anti-Parkinson effect in various in vitro 

and in vivo studies.144–152 However, its brain bioavailability 

is limited. Recently, curcumin-loaded SLN was studied for 
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its efficacy and brain bioavailability. The bioavailability of 

curcumin-loaded SLNs or MSLNs in the brain was greatly 

enhanced,7,8,12 which showed its potential for use in treating 

PD in future. Similarly, resveratrol-loaded SLNs or MSLNs 

also showed potential for delivery to the brain cells, and 

can also exert an anti-Parkinson effect. Many recent 

approaches assessed the brain bioavailability to exert a 

preventive effect against neuronal loss. Nevertheless, there 

is still a limited role for SLN- and MSLN-loaded phyto-

compounds in PD animal models through oral delivery. 

Many new studies are currently in the pipeline to achieve 

an anti-Parkinson effect using SLN-loaded phyto-bioactive 

compounds to prevent neuronal loss and thereby ageing.

Antihepatic effect
Liver damage is associated with various chronic complica-

tions. The liver can be protected using dietary phyto-bioactive 

compounds,45,153–166 but their potential for liver protection 

through oral delivery systems is very limited. However, SLN-

loaded phytocompounds showed excellent bioavailability 

with enhanced liver protection.1,20,52,93,167–170 Recently, Ficus 

benjamina-loaded SLN was studied against the hepatotoxicity, 

and the results showed a higher delivery of bioactive compounds 

with enhanced hepatoprotectivity.171 Similarly, sesamol-loaded 

SLN also showed excellent hepatoprotection along with lower 

irritation when administered through oral delivery.20,21,95,172 

However, many phytocompounds that have shown excellent 

hepatoprotection have not yet been studied for their efficacy and 

bioavailability through SLN or MSLN delivery systems.

Chitosan-based surface modification 
of SLN delivery systems for the 
bioavailability of phytocompounds 
to the target organs
Owing to the higher release of SLN-loaded phyto-bioactive 

compounds in the stomach with an acidic pH, surface modifica-

tion was effectively carried out with mucoadhesive polymers 

to enhance the sustained release of phyto-bioactive compounds 

in SLNs.4,173–175 Chitosan has various advantages over other 

polymers including lower toxicity, enhanced absorption 

and high mucoadhesive and antimicrobial properties which 

enhance the oral delivery of the phyto-bioactive compounds. 

In order to further enhance the absorption properties of the 

chitosan-coated SLNs, grafting of chitosan moieties was done 

through conjugation of amine and hydroxyl groups leading 

to functional chitosan like TMC.7 SLN coated with TMC has 

excellent properties compared with chitosan which include 

higher mucoadhesiveness, enhanced delivery and low toxic-

ity. Further, modified chitosan grafted with lipids showed 

target-specific delivery of the core compounds. For example, 

palmitic acid-grafted TMC-coated SLNs showed enhanced 

delivery of the different phytocompounds through controlled 

release by providing excellent surface environment through 

nanomicelles. Recently, Ramalingam et al studied the delivery 

of curcumin to the brain compared to that of free curcumin, 

chitosan-coated, non-chitosan-coated and TMC-g-palmitic 

acid-coated SLNs.7 Among those, TMC-coated SLNs showed 

enhanced bioavailability of the curcumin in the brain cells. 

The same research group also found that resveratrol-loaded 

TMC-g-palmitic acid-coated SLNs showed 3.8 times higher 

bioavailability than the resveratrol suspension. In another 

study, N-carboxymethyl chitosan-coated SLNs showed 

enhanced bioavailability of curcumin in lymphatic cells. The 

uptake by the lymphatic cells and the oral bioavailability of 

the curcumin were found to be 6.3 and 9.5 times higher than 

that of curcumin suspension.176 Based on the above studies, 

we can confirm that chitosan derivatives can be extensively 

used to improve the delivery of the phyto-bioactive compounds 

against various chronic diseases (Table 1).

SLN modified with chitosan and its 
derivatives, and its bioavailability 
through oral delivery
Chitosan-coated SLNs
Chitosan-coated SLN is the first-generation modified SLN 

developed to enhance the delivery of phyto-bioactive 

Table 1 Phyto-bioactive compounds loaded in chitosan-coated solid lipid nanoparticles used in various disease models

Type of chitosan-modified solid 
lipid nanoparticles

Bioactive 
compounds

Disease models References

Chitosan-coated solid lipid nanoparticles Curcumin Pancreatic cancer models Thakkar et al181

Resveratrol Brain bioavailability studies Ramalingam and Ko13

Caffeic acid Oral bioavailability studies Fathi et al183

Ferulic acid Pancreatic cancer models Thakkar et al181

Trimethyl chitosan-coated solid lipid 
nanoparticles

Curcumin Brain bioavailability studies Ramalingam and Ko7

Resveratrol Brain bioavailability studies Ramalingam and Ko12,13

N-trimethyl chitosan-g-palmitic acid 
surface-modified solid lipid nanoparticles

Resveratrol Brain bioavailability studies Ramalingam and Ko12

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


International Journal of Nanomedicine 2018:13 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

1577

SLN delivery systems for oral delivery of phyto-bioactive compounds

compounds. Various properties of chitosan, such as high 

mucoadhesion, cationic nature, low toxicity and high bio-

availability, have resulted in more researchers using this 

polysaccharide as a coating for SLNs to improve the delivery 

of bioactive compounds.4,19,175,177 Chitosan-coated SLN was 

also used in other delivery routes including nasal, vaginal and 

skin, due to its enhanced and sustained delivery.19,178–180 Based 

on the type of chitosan and lipids involved, the application 

and delivery routes vary. In oral delivery, chitosan-coated 

SLN is preferred for its mucoadhesion and sustained release. 

Although many commercial drugs have been extensively 

studied for use with chitosan-coated SLNs for sustained oral 

delivery,174,177,180,181 there are few studies on phyto-bioactive 

compound loading. Recently, ferulic acid-loaded chitosan-

coated SLNs were studied to treat pancreatic cancer, and 

these showed an enhanced effect via oral delivery. Similarly, 

chitosan-coated SLNs loaded with curcumin showed a 

sustained release of curcumin in various organs. Further-

more, toxicity studies were conducted for certain drugs in 

combination with curcumin in chitosan-coated SLNs, and 

the results indicated no toxicity during pancreatic cancer 

treatment.182 In another study, resveratol loaded in chitosan-

coated SLNs also showed a higher bioavailability in animal 

models. Similarly, caffeic acid-loaded SLNs coated with 

alginate chitosan showed higher antioxidant activity and 

sustained release.183

TMC-coated SLNs
TMC-coated SLN is another modified SLN that overcomes 

the drawbacks of chitosan-coated SLN by increasing the 

solubility over a broad range of pH, improving the mucoad-

hesion and achieving a sustained release of the bioactive 

compounds in the SLN during oral delivery.184–186 Many 

early studies were conducted to deliver various drugs, 

including insulin, vaccines and proteins via sustained 

delivery with TMC-coated SLNs to enhance the biomedical 

effects in treating various chronic diseases.187,196–198 Fewer 

studies were conducted on the delivery of phytocompounds 

through TMC-coated SLNs.7,12 A recent study report on the 

delivery of curcumin to the brain through TMC-coated SLNs 

showed sustained delivery to the brain through paracellular 

transport, and this presents a potential treatment for AD 

models.7 The same research group also performed a study 

with resveratrol as a core compound and found 3.8 times 

higher delivery of the resveratrol to the target organ through 

oral delivery.12 These studies show a pathway for future 

studies of various phyto-bioactive compounds for sustained 

release via oral delivery and improved bioavailability to 

treat various diseases.

Hydroxypropyl trimethyl ammonium 
chloride chitosan (HACC)-modified SLNs
HACC-modified SLN is another modified chitosan-loaded 

SLN that was recently developed to improve the stability in 

the gastrointestinal environment for sustained release.188–192 

A recent study with docetaxel showed that HACC-modified 

chitosan administered orally exhibits a higher drug bio-

availability via various absorption mechanisms including 

transcellular, paracellular and M cell uptake.193 Interestingly, 

the study also found that HACC-modified SLNs showed 

a higher uptake of the drug in the Peyer’s Patches than 

normal cells. The same research group also showed that 

HACC-modified SLNs with a uniform particle size achieved 

enhanced bioavailability with around 2.45 times increase of 

the drug through oral delivery.187 In addition, the toxicity of 

the HACC-modified SLNs was also studied in Caco-2 cells, 

and the results showed no toxic effect and no irritation in 

the mucosa of the rats. This study confirmed that there is a 

chance of increase in the bioavailability of phyto-bioactive 

compounds like curcumin, quercetin and resveratrol through 

HACC-modified SLNs, which will be the scope for future 

studies on enhanced delivery. Figure 4 shows the mucoad-

hesion and bioavailability of the phytocompounds loaded in 

the SLNs or MSLNs.

Challenges associated with SLNs 
and MSLNs in the food systems
Even though SLN and MSLN delivery systems try to 

accomplish the criteria required for the enhanced delivery 

of the phyto-bioactive compounds, it is not possible to use 

a single delivery system for all the phyto-bioactive com-

pounds. However, both systems have unique advantages in 

both food and pharmaceutical applications like use of high 

food-grade lipids, bulk production with lower production 

cost and higher loading capacity in comparison to the food 

bioactive compounds. The incorporation of SLNs or MSLNs 

in the food particles, their physiological changes in the food 

systems during storage, and toxicity of these systems to the 

target organs are yet to be studied. The research in these 

aspects will increase the utilization of the SLNs or MSLNs 

in the food products. Food-based medicine will be a greater 

demand soon owing to the toxicity of various synthetic 

medicines. These systems could efficiently deliver the phyto-

bioactive compounds along with the nutrients, and they will 

be helpful in the development of fortified food products or 

functional foods in future. In addition, MSLN development 

is not cost effective, and further research is necessary in the 

development of low-cost chitosan and modified chitosan 

for their effective usage and research in the toxicological 
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aspects could widen their applications in many other  

associated industries.

Conclusion
SLNs and MSLNs are promising colloidal delivery systems 

that help deliver phytocompounds to various organs, includ-

ing the brain, via oral delivery. The bioavailability of these 

phytocompounds loaded in SLNs has been found to be about 

5–10 times greater than that of their native form. Furthermore, 

the sustained release of these phyto-bioactive compounds 

through oral delivery can also be achieved through surface 

modification of the SLNs, which opens the way for develop-

ment of many new phytocompounds loaded onto SLNs or 

MSLNs to treat various chronic diseases. The sustained and 

improved delivery of phyto-bioactive compounds via oral 

delivery is a focus of future development in nanomedicine.
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