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Abstract: Cardiovascular disease (CVD) is recognized as the leading cause of mortality through-

out the world. About one-third of global mortality is attributable to CVD. In addition to clinical 

presentation, specific clinical exam findings can assist in treating and preventing CVD. CVD 

may initially manifest as pulmonary pathology, and thus, accurate cardiopulmonary ausculta-

tion is paramount to establishing accurate diagnosis. One of the most powerful tools available 

to physicians is the stethoscope. The stethoscope first emerged in the year 1818, invented by 

a French physician, René Laennec. Since then, the initial modest monaural wooden tube has 

evolved into a sophisticated digital device. This paper provides an analysis of the evolution of 

the stethoscope as well as highlights the advancement made by the modern digital stethoscope 

including the application of this tool in advancing care for patients suffering from CVD.
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Introduction
Cardiovascular disease (CVD) is recognized as the leading cause of mortality in coun-

tries throughout the world, and thus, timely detection, treatment, and prevention are the 

cornerstone of the comprehensive care that a physician provides to his/her patients.1 

In 2015, 31% of global mortality was attributable to CVD, where 17.7 million people 

died from a cardiac cause.1 Auscultation of the cardiovascular system can assist in 

timely diagnosis of valvular heart disease (VHD), congestive heart failure, hypertensive 

disease, arrhythmias such as atrial fibrillation, obstructive arterial disease, and struc-

tural heart disease among several others. Furthermore, multiple pulmonary diseases 

can manifest as right-sided heart disease and multiple heart diseases can first present 

as pulmonary pathology; thus, pulmonary auscultation and interpretation can further 

assist in forming accurate diagnosis.

Cardiovascular examination usually comprises the following: evaluation of the 

carotid arterial pulse and jugular venous pulse; auscultation for bruits; auscultation 

of venous hums, precordial impulses, and palpation of heart sounds and murmurs; 

auscultation of the heart sounds; and evaluation of the peripheral arterial and venous 

system.2 Auscultation of the heart sounds is the foundation upon which a physician 

can diagnose CVD and provide cost-effective means for additional tests. Auscultation 

represents recognition of mechanical vibration from the body surface at the frequency 

range of sound (20–20,000 Hz).3 Vibrations below this frequency range are defined 

as “infrasonic” and are usually appreciated as thrusts, heaves, and arterial or venous 

pulsations.
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In the modern world, several modalities are used in addi-

tion to the clinical examination in evaluation of CVD. An 

electrocardiogram (ECG) is an inexpensive and noninvasive 

test that can assist in recognition of arrhythmias and acute 

coronary syndromes and can be used as a screening tool for 

CVD.4 Other modalities include the echocardiogram, cardiac 

magnetic resonance imaging (CMRI), and computed tomog-

raphy (CT). Echocardiography uses reflected ultrasound 

waves to give information regarding cardiac hemodynamics, 

function, and structure. It is a powerful tool that is generally 

used in addition to ECG and chest X-ray for initial CVD 

assessment.5 CMRI uses magnetic resonance imaging to 

provide clear delineation of the cardiac anatomy, provides 

a detailed myocardial tissue analysis that aids in diagnosis 

of specific cardiomyopathies, provides myocardial viability 

data, and can assist in evaluation of cardiac function.6 CT uses 

X-rays in the acquisition of data with high spatial resolution. 

Cardiac CT today can be used to assess atherosclerosis in 

coronary artery disease, compute a calcium score, evalu-

ate the cardiopulmonary vasculature, and evaluate valves.7 

However, despite advances in these imaging modalities, each 

technique requires a technician trained to perform these tests 

and an experienced operator who can interpret the findings 

accurately. In addition, these machines are usually only 

available in large institutions, leaving many underserved 

areas without such advanced technology to aid in diagnosis 

and treatment of CVD.1 Thus, it is imperative for a physician 

to develop clinical acuity as well as employ easily available 

tools such as a stethoscope for a timely diagnosis and treat-

ment of CVD.

The conventional stethoscope
The stethoscope is an acoustic device that transmits the 

sounds from the chest piece through an air-filled hollow 

tube to the listener’s ears. The French physician René 

Laennec first invented it in the 1800s. The design was 

modest and consisted of a hollow wooden tube that was 

monaural. Around the same time period, a British physi-

cian, Golding Bird, described his version of the stethoscope 

that comprised flexible tubing that was also monaural. 

Later, an Irish physician, Arthur Leared, advanced the 

design and a binaural stethoscope emerged.8 The binaural 

stethoscope has evolved tremendously since then; however, 

the concept remains the same. The current acoustic binaural 

stethoscope consists of a hollow tube attached to a chest 

piece consisting of a wider-based diaphragm and a smaller 

hollow bell. The diaphragm will transmit higher frequency 

sounds, whereas the bell will transmit lower-frequency 

sounds. Thus, the acoustic stethoscope will attenuate sound 

transmission proportional to the frequency created by the 

heart sounds. Due to the variation in sensitivity of a human 

ear, some sounds may not be heard due to low frequency, 

such as below 50 Hz. This limitation of the acoustic stetho-

scope has led to the emergence of an electronic device that 

is far more sophisticated than the original conventional 

stethoscope (Figure 1).

Figure 1 Main components of the conventional stethoscope.

Eartips

Binaural

Binaural spring Stem

Flexible tubing

Chest piece with tunable diaphragm allowing
simulation of a diaphragm for high

frequencies or a bell for low frequencies
based on pressure change

www.dovepress.com
www.dovepress.com
www.dovepress.com


Medical Devices: Evidence and Research 2018:11 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

31

Digital stethoscope

Cardiac and pulmonary auscultation
It is vital for a physician to appreciate cardiac and pulmonary 

sounds in his/her patients in order to accurately formulate 

a diagnosis. Auscultation with a stethoscope provides clini-

cal information that can assist in diagnosing, and altering 

and directing patient care. Heart sounds are created due to 

opening and closure of the valves, blood flow through any 

orifice, flow of blood into the ventricular chambers, and rub-

bing of the cardiac surfaces.9 Heart sound frequencies can be 

impacted by valve apparatus; however, they normally range 

from 10 to 200 Hz.10,11 The main areas of auscultation are 

depicted in Figure 2.

Normal heart sounds comprise the first heart sound (S1), 

which is produced by the closure of the atrioventricular (AV) 

valves that are the mitral and tricuspid valves. This corre-

sponds to the end of diastole and the beginning of ventricular 

systole and precedes the upstroke in the carotid arteries.9–12 

Variability in auscultation of S1 is described in Figure 3.

The second heart sound (S2) is due to the closure of the 

aortic valve (A2) and the pulmonic valve (P2) at the conclusion 

Figure 2 Main areas of cardiac auscultation.
Abbreviation: ICS, intercostal space.

Base of the heart

Interscapular area

Pulmonary area: 2nd
ICS left of sternum

Left axilla

Tricuspid area: 4th and
5th ICS left of sternum

Mitral area: Cardiac
apexApex of the heart

Carotid arteries

Aortic area: 2nd ICS
right of the sternum or
3rd ICS left of
the sternum

Figure 3 Variability of auscultation of S1. Adapted from Leng S, Tan RS, Chai KT, Wang C, Ghista D, Zhong L. The electronic stethoscope. Biomed Eng Online. 2015;14:66. 
Creative Commons license and disclaimer available from: http://creativecommons.org/publicdomain/zero/1.0/.15

Note: S1 is the first heart sound.
Abbreviations: MS, mitral stenosis; TS, tricuspid stenosis; MVP, mitral valve prolapse; LV, left ventricular; ASD, atrial septal defect; AV, atrioventricular; MR, mitral 
regurgitation; TR, tricuspid regurgitation; DCM, dilated cardiomyopathy; CM, cardiomyopathy; MI, myocardial infarction; M1, mitral valve; T1, tricuspid valve; RV, right 
ventricular.

Loud S1: Increased transvalvular gradient
(MS, TS, atrial myxoma), increased force of

ventricular contraction (tachycardia,
hyperdynamic states), shortened PR interval

(tachycardia, preexcitation syndromes ex
Wolff–Parkinson–White syndrome), MVP

Diminished S1: Inappropriate apposition of the
AV valves (MR, TR, DCM), prolonged PR
(bradycardia, heart block, digoxin toxicity),
decreased force of ventricular contraction

(CM, MI), increased calcification of AV valve,
increased distance from

the heart (pericardial effusion, obesity,
emphysema, pleural effusion)

Reverse splitting S1 (M1 follows the
closure of T1): Left bundle branch block,

RV pacing, severe MS,
left atrial myxoma

Muffled S1: Pleural
effusion, pericardial

effusion, pneumothorax,
emphysema, obesity

Split S1: Premature ventricular contraction,
right bundle branch block, LV pacing, ebstein

anomaly, ASD
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of systole, and it marks the beginning of the diastolic period. 

Variability in auscultation of S2 is further described in Figure 4.

The third heart sound (S3) occurs in early diastole as the 

blood enters the ventricle from the atria. It can be normal in 

individuals up to the age of 40 years; however, if audible in 

patients of older age, then S3 is pathologic. Pathologically, 

this can be due to systolic or diastolic ventricular dysfunction, 

ischemic heart disease, hyperkinetic states (fever, anemia, preg-

nancy, thyrotoxicosis, AV fistula), VHD, or volume overload.9

The fourth heart sound (S4) is a late diastolic sound and 

is usually produced when the blood from the atria is sud-

denly decelerated due to a noncompliant left ventricle. Thus, 

ventricular hypertrophy, ischemic heart disease, ventricular 

aneurysm, and hyperkinetic states causing forceful atrial 

contraction can all produce an S4.9–12

In addition to the above heart sounds, an opening snap, 

valvular ejection clicks, and a variety of murmurs can also be 

appreciated.9 A summary of common murmurs is described 

in Table 1.

Furthermore, another vital component of auscultation is 

classification of pulmonary pathology to assist in making cor-

rect diagnosis. However, accurate interpretation of pulmonary 

auscultation is subjective and largely dependent on the training 

of the physician. Auscultation should take place in a quiet room 

Figure 4 Variability of auscultation of S2. Adapted from Leng S, Tan RS, Chai KT, Wang C, Ghista D, Zhong L. The electronic stethoscope. Biomed Eng Online. 2015;14:66. 
Creative Commons license and disclaimer available from: http://creativecommons.org/publicdomain/zero/1.0/.15

Notes: A2 represents the closure of the aortic valve. P2 is the closure of the pulmonic valve. S2 is the second heart sound.
Abbreviations: TGA, transposition of great arteries; AI, aortic insufficiency; AS, aortic stenosis; PAH, pulmonary arterial hypertension; ASD, atrial septal defect; PV, 
pulmonic valve; RBBB, right bundle branch block; LV, left ventricular; PVC, premature ventricular contraction; WPW, Wolff–Parkinson–White syndrome; RV, right ventricle; 
PVS, pulmonic valve stenosis; AV, atrioventricular; MR, mitral regurgitation; VSD, ventricular septal defect; LBBB, left bundle branch block; PVR, pulmonary vascular 
resistance; SVR, systemic vascular resistance.

Intensity of A2: 1) Increased-systemic
hypertension, coarctation of the aorta,

aortic aneurysm, tetralogy of fallot and TGA.
2) Decreased – AI, calcific AS, decreased systemic

arterial pressure.
Intensity of P2: increases with PAH and ASD

Wide S2 splitting: 1) Delayed closure of PV –
conduction (RBBB, LV pacing, PVCs, WPW with

preexcitation of the LV) or hemodynamic
abnormalities (RV outflow tract obstruction, PAH,

PVS, pulmonary artery branch stenosis)
2) Early closure of AV: MR, VSD, left to right

shunting

Wide fixed S2 splitting (respiratory variability
between A2–P2 is lost): ASD with left to right

shunting, RV failure due to primary RV failure, PAH,
and RV outflow tract obstruction

Reverse S2 splitting: 1) Conductive disturbance
(LBBB, RV pacing, PVCs of RV origin,

preexcitation of RV in WPW)
2) Hemodynamic-LV outflow tract

obstruction caused by AS

Split S2: PVR is less than SVR
thus normally AV closes
slightly before PV and is

exaggerated with inspiration

Table 1 Description of common murmurs

Murmur Location Quality Description Radiation Pitch

AS Apex/RUS border Harsh Systolic, crescendo–decrescendo Carotid arteries High
AR RUS border/left 3rd–4th ICS Blowing Diastolic, decrescendo Apex
MS Apex Rumbling Mid-late diastolic with presystolic 

accentuation
Low

MR Apex Blowing Holo-systolic Axilla/base of heart High
PS Left 2nd ICS Blowing Systolic, crescendo–decrescendo High
TR Left 4th ICS Blowing Diastolic Left sternal border/xiphoid High
HOCM Left lower sternal border Harsh Mid-late systolic High
VSD Left lower sternal border Harsh Holo-systolic High
PDA Left upper sternal border Harsh Continuous crescendo–decrescendo with 

peak about S2
High

MVP Apex Blowing Mid-late systolic Axilla/base High

Note: Adapted from Leng S, Tan RS, Chai KT, Wang C, Ghista D, Zhong L. The electronic stethoscope. Biomed Eng Online. 2015;14:66. Creative Commons license and 
disclaimer available from: http://creativecommons.org/publicdomain/zero/1.0/.15

Abbreviations: AS, aortic stenosis; RUS, right upper sternal;AR, aortic regurgitation; ICS, intercostal space; MS, mitral stenosis; MR, mitral regurgitation; PS, pulmonic stenosis; 
TR, tricuspid regurgitation; HOCM, hypertrophic obstructive cardiomyopathy; VSD, ventricular septal defect; PDA, patent ductus arteriosus; MVP, mitral valve prolapse.
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with the patient in a seated position. Auscultation should be 

done in a symmetrical fashion starting at the apices anteriorly 

moving to the base and then progression to the posterior chest. 

Patients should be asked to take deep breaths with their mouth 

open, while breath sounds should be evaluated for their quality, 

intensity, and for the presence of unanticipated sounds.

Normal frequency of pulmonary sounds varies from 100 

to 1000 Hz.13 Moreover, frequency of wheezing ranges from 

100 to 5000 Hz, rhonchus is 150 Hz, coarse crackle is 350 

Hz, and fine crackle is 650 Hz.13 Tracheal sounds that are 

normal are clearly heard in both phases of respiratory cycle, 

whereas normal lung sound is only heard on inspiration 

and early phase of expiration.14 Wheezing can be heard on 

inspiration, expiration, or both, and is musical in nature with 

a high pitch.14 Rhoncus may be heard on inspiration, expira-

tion, or both, and is low pitch in nature similar to snoring.14 

Fine crackles are heard on mid-to-late inspiration and can 

be heard on expiration, and are usually not transferred to the 

mouth and unaffected by cough.14 Coarse crackle is heard 

on early inspiration and throughout expiration, is affected by 

cough, and is transferred to the mouth.14 Pleural friction rub 

and stridor are explosive and high-pitch sounds, respectively, 

which can also be appreciated during auscultation.14 Since 

multiple pulmonary sounds can be appreciated, and at times 

simultaneously, digital stethoscope has facilitated in allow-

ing a clinician to accurately understand the pathology behind 

the sound. As seen by the information that can be gleaned as 

noted above, the stethoscope serves as an important tool to 

diagnose a plethora of cardiovascular and pulmonary disease 

processes by auscultating heart and lung sounds.

The emergence of the digital 
stethoscope
A digital stethoscope is able to convert an acoustic sound to 

electronic signals, which can be further amplified for optimal 

listening. These electronic signals can be further processed 

and digitalized to transmit to a personal computer or a lap-

top.15 The diagnostic power provided by digital stethoscope 

auscultation to a physician can assist in altering management 

in patient care (Figure 5).

The digital stethoscope consists of three different mod-

ules, data acquisition, preprocessing, and signal processing, 

before the listener can appreciate the auscultated sound.15 

The data acquisition module involves a microphone and a 

piezoelectric sensor. It is responsible for filtering, buffer-

ing, and amplification of the auscultated sounds, as well 

as conversion of the acoustic sound to a digital signal. The 

preprocessing module filters the digital signal and removes 

any artifacts. These digital data are then forwarded to the 

signal-processing module, which will package the informa-

tion in a higher-order classification and cluster the data for 

a clinical diagnostic decision.15

Unlike the acoustic stethoscope, the transducers on a 

digital stethoscope are of wide variety. One of the transducing 

Figure 5 Main components of the digital electronic stethoscope.

Eartips

Binaural

Binaural
spring

Flexible
tubing

Chest piece with diaphragm and electronic display.
Recoding and Bluetooth® capabilities are present.
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methods involves the microphone in the chest piece.16 The 

sound signals are detected by the stethoscope diaphragm, 

which is transferred to another diaphragm inside the micro-

phone. This allows for the conversion of a simple and direct 

acoustic sound to an electrical signal. The signal can then 

be displayed as a phonocardiogram on an electronic device 

(Figure 6). However, two diaphragms separated by an air path 

can result in excessive ambient noise signals and inaccurate 

electrical signal transfer.15

A piezoelectric sensor functions differently to the 

double-diaphragm mechanism. In a piezoelectric transducer, 

the sounds picked up by the stethoscope diaphragm cause 

distortion of a crystal substance that is responsible for then 

producing an electrical signal.16,17 The distortion of the crystal 

can produce the electrical signal that may not truly capture 

the original sound ascertained by the diaphragm.15

A capacitive micro-electromechanical system is another 

modality used for a transducer. The diaphragm of the stetho-

scope is suspended in a nominal capacitance field, where 

the capacitance changes according to the acoustic pressure 

formed by the heart sound. The change in capacitance is able 

to generate an electrical signal.18

Currently, almost all available digital stethoscopes allow 

for selection of different frequency response modes allowing 

the listener to better hear sounds from the heart, lung, and 

other areas of the body. There are also multiple mechanisms by 

which a digital stethoscope can suppress ambient and friction 

noise to allow the listener to hear sounds that are as original as 

possible. For instance, the 3M® Littmann Range offers piezo-

electric sensor which uses the ambient noise reduction as an 

adaptive noise canceller by which it allows to amplify sounds 

up to 24 times.19 The Thinklabs® One Digital stethoscope is 

able to amplify sounds up to 100 times by applying capacitive 

transducer.20 This technology is able to employ ambient noise 

reduction but can also use specific heart sound extraction 

creating a rigorous tool to hear specific heart sounds such as 

valvular clicks as well as use specific computer algorithms to 

extrapolate frequencies to understand pulmonary pathology.20 

The Welch-Allyn® Elite Electronic Stethoscope allows for a 

bell mode ranging from 20 to 420 Hz, specifically for heart 

sounds, and diaphragm mode ranging from 350 to 1900 Hz, 

which is better used for lung auscultation.21 Furthermore, the 

Ekoscope® stethoscope offers built-in ECG capability, and the 

ViScope® stethoscope can empower a physician with real-time 

display of multiple waveforms.22,23 A digital stethoscope also 

allows the operator to record the heart sounds and upload 

them to a computer for further visualization, analysis, and 

transmission. Additionally, some digital stethoscopes can 

also be connected to Bluetooth® to wirelessly transmit sound 

signals to a remote processing unit.

Medical advancements and 
applications in cardiac and 
pulmonary auscultation
Aside from providing increased precision and audible advan-

tage over the conventional stethoscope, digital stethoscopes 

have also been studied for their utility of screening for 

obstructive coronary artery disease. Turbulent blood flow 

occurs due to hemodynamically significant coronary artery 

disease and manifests as intracoronary murmurs. However, 

conventional stethoscopes lack the auscultation power to 

detect these murmurs. We studied the correlation between 

diagnosis of coronary artery disease using an electronic 

stethoscope and lesions noted on cardiac CT.24 In our pro-

spective single-site study, we wanted to study the accuracy 

in correlation between the severity and location of coronary 

artery disease seen on cardiac CT and the microbruits pro-

cessed by the Cardiac Sonospectrographic Analyzer (CSA; 

SonoMedica, Vienna, VA, USA) of the electronic stetho-

scope. A total of 161 patients were studied, and the overall 

sensitivity of the CSA to ascertain coronary artery disease of 

>50% in any major epicardial artery was 89.5% (p < 0.001).24

Similarly, Azimpour et al studied similar correlation 

between audible intracoronary murmurs using a digital 

stethoscope and the findings on coronary angiography.25 In 

123 patients, they were able to ascertain the sensitivity and 

specificity of acoustic detection of lesions with >50% stenosis 

in any coronary artery to be 0.70 and 0.80, respectively.25

The promise of this new tool to supplement noninvasive 

imaging in the diagnosis of obstructive coronary disease rests 

on the premise that small audible signals generated by the 

turbulent flow in the coronary artery can be appreciated. The 

CSA, CADence™, and CADScor®System are a few examples 

of acoustic detection systems that are currently being studied 

to validate against CT and invasive coronary angiography.26 

A summary of recent studies is provided in Table 2.

Figure 6 Simulated phonocardiogram of normal S1 and S2 heart sounds seen on a 
portable device through Bluetooth® integration.
Note: S1 and S2 represent the first and the second heart sound respectively.

S1 S2
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Furthermore, due to the innovation of the digital stetho-

scope and the capability to transmit the heart sounds wire-

lessly, there is potential to develop and advance the field of 

telemedicine.27 This will allow physicians to access patients’ 

heart sounds live and alter care and trajectory of their health 

directly.

Digital aspect of pulmonary auscultation involves record-

ing of the pulmonary sound, computer analysis of the signals 

obtained, and classification of the sounds based on the fre-

quency analyses.28 Computer-based pulmonary sound analysis 

allows for optimizing and quantifying auscultated lung sounds 

based on the lung sound as well as the spectral characteristics. 

The Fourier transform has been the most common analysis 

tool that has been used to understand pulmonary ausculta-

tion.28 The Fourier transform is able to degenerate the signal 

to the frequencies that comprise the signal. Neural network, 

which is a machine-learning algorithm, can further process 

this information and classify the different frequencies into 

pulmonary sounds.28 Gurung et al performed a meta-analysis 

of studies that have tried to understand the prognostic power 

of combining digital pulmonary auscultation with computer-

based algorithms. Although the sample size was limited, 

they were able to uncover that the specificity and sensitivity 

of identifying abnormal pulmonary sounds using computer-

based algorithms were 85% and 80%, respectively.28

It is also important to note that multiple cardiopulmonary 

pathologies are connected, and researchers have started to 

use digital technology to garner accurate diagnosis. For 

instance, Kaddoura et al used automated machine learn-

ing and language-recognition-inspired-speech algorithm to 

ascertain if the digitally acquired heart sounds were linked to 

pulmonary hypertension (PH).29 The algorithm used was able 

to closely examine the heart sound and collect information 

such as amplitude, intensity, shape, and frequency. The heart 

sounds from PH patients were compared to non-PH patients, 

and they discovered the algorithm accurately diagnosed PH 

74% of the time.29 These recent discoveries have opened 

the door for further research to further optimize the current 

technology, to ultimately empower the physician to better 

assist the patient.

Conclusion
Multiple cardiopulmonary pathologies can be appreciated 

by the simple mechanism of auscultation. The prevalence 

of CVD is rising in the world, and multiple CVDs may first 

manifest as pulmonary symptoms; thus, it is imperative that 

a physician has the ability to accurately examine a patient 

even with limited resources. The stethoscope is a powerful 

tool that is easy to use and allows for direct impact on patient 

care. With multiple sophisticated advancements made in 

medicine, which aid in clinical diagnosis and management, 

none of the modalities compare to the simplicity and vitality 

of a stethoscope. The emergence of a digital stethoscope has 

only made this historic tool even more refined. The physician 

can now hear heart and lung sounds with more accuracy and 

precision. Through this advancement, there is now potential 

Table 2 Summary of recent studies utilizing acoustic detection system in diagnosing obstructive coronary artery disease

Acoustic detection system Technology Title and results References

CSA SonoMedica model 3.0 CSA is a noninvasive digital 
electronic stethoscope devised to 
identify microbruits in the frequency 
range of 400–2700 Hz

Utility of an advanced digital electronic stethoscope 
in the diagnosis of coronary artery disease compared 
with coronary computed tomographic angiography

24

Results: SonoMedica stethoscope with CSA predicted 
presence of CAD with sensitivity of 89.5% and 
specificity of 57.7%

CADence™ Ironman CADence is a noninvasive device 
which combines bedside auscultation 
with echocardiographic data which 
is transmitted to a central server for 
analysis, and final report is sent to 
the physician

Unpublished study of 1000+ patients from UCLA 30
Designed by Aum Cardiovascular Results: In a moderate-risk population, obstructive 

CAD can be detected with sensitivity of 81% and 
specificity of 83%

CADScor® System (Acarix A/S) 
microphone

CAD-score algorithm system 
includes acoustic properties of heart 
sounds combined with clinical risk 
factors

Diagnostic performance of an acoustic-based system 
for coronary artery disease risk stratification

31

System is mounted at the fourth 
intercostal space applying a 
dedicated adhesive patch, and 
heart sounds are analyzed using 
automated and device-embedded 
algorithm

Results: Low risk is indicated by a CAD-score value 
≤20. At this cutoff, hemodynamically significant CAD 
was detected with sensitivity of 81% and specificity of 
53% with NPV of 96%

Abbreviations: CSA, Cardiac Sonospectrographic Analyzer; CAD, coronary artery disease; UCLA, University of California, Los Angeles; NPV, negative predictive value.
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to auscultate for obstructive coronary artery disease, and other 

bruits and obstructive vascular diseases such as carotid artery 

stenosis, and examine multiple frequencies that may comprise 

pulmonary auscultation. Furthermore, there is also potential 

to drastically impact patient care by appreciating disease pro-

cesses earlier and to prevent fatal outcome. Medical care can 

also be provided in areas that are underserved or which do not 

have medical facilities by applying digital stethoscope tech-

nology to telemedicine to allow remote assessment. Although 

research still needs to be implemented to validate the digital 

stethoscope further, currently this tool allows the user to be a 

better diagnostician and thereby deliver better medical care.
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