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Abstract: Recent findings in nanomedicine have revealed that carbon nanotubes (CNTs) can 

be used as potential drug carriers, therapeutic agents and diagnostics tools. Moreover, due 

to their ability to cross cellular membranes, their nanosize dimension, high surface area and 

relatively good biocompatibility, CNTs have also been employed as a novel gene delivery 

vector system. In our previous work, we functionalized CNTs with two polyamine polymers, 

polyethyleneimine (PEI) and polyamidoamine dendrimer (PAMAM). These compounds have 

low cytotoxicity, ability to conjugate microRNAs (such as miR-503) and, at the same time, 

transfect efficiently endothelial cells. The parameters contributing to the good efficiency of 

transfection that we observed were not investigated in detail. In fact, the diameter and length 

of CNTs are important parameters to be taken into account when evaluating the effects on 

drug delivery efficiency. In order to investigate the biophysical and biological contributions of 

polymer-coated CNTs in delivery of miRNAs to human cells, we decided to investigate three 

different preparations, characterized by different dimensions and aspect ratios. In particular, 

we took into account very small CNTs, a suspension of CNTs starting from the commercial 

product and a 2D material based on CNTs (ie, buckypapers [BPs]) to examine the transfection 

efficiency of a rigid scaffold. In conclusion, we extensively investigated the biophysical and 

biological contributions of polyamine-coated CNTs and bidimensional BPs in the delivery of 

miRNAs to human cells, in order to optimize the transfection efficiency of these compounds to 

be employed as efficient drug delivery vectors in biomedical applications.
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Introduction
In the last few years, many studies about the use of carbon nanotubes (CNTs) in several 

research areas (ie, nanotechnology, physics, chemistry, tissue engineering, biology and 

biomedicine) outlined the importance of this kind of nanomaterial.1–4 Recent findings 

in nanomedicine have revealed that CNTs can be used as potential drug carriers, 

therapeutic agents and diagnostics tools as well.5–10 In particular, due to their ability to 

cross cellular membranes, their nanosize dimension, high surface area and relatively 

good biocompatibility, CNTs have also been employed as a novel gene delivery vector 

system.11–13 However, one of the major drawbacks is their low solubility and high 

propensity to aggregate in aqueous solutions. To avoid aggregation of unmodified 

(or “pristine”) CNTs, mainly due to their hydrophobicity, a proper surface function-

alization is required to suspend CNTs and impart them a good biocompatibility.14 
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Many different approaches have been adopted to functionalize 

CNTs (ie, oxidation, covalent and noncovalent functional-

ization, etc), but the preferred way of functionalization for 

medical applications is functionalization with proteins due to 

their excellent biocompatibility.15 In many cases, noncovalent 

functionalization methods are preferable since molecules 

can be attached to nanotubes straightforwardly and without 

affecting other molecular interactions.16 In particular, the 

noncovalent derivatization exploits the hydrophobic nature 

of CNTs (especially π–π interactions and Van der Waals’ 

forces) to coat them with amphiphilic molecules such as 

poly(ethylene glycol) (PEG), polyethyleneimine (PEI) or 

polyamidoamine dendrimer (PAMAM).

These polymers are able to impart hydrophilicity to 

CNTs, which facilitates their suspension in aqueous solu-

tions. Moreover, absorbed polymers generate a positively 

charged surface able to bind negatively charged nucleic 

acids (ie, siRNAs or plasmid DNA) through electrostatic 

interactions. These properties allow polymer-coated CNTs 

to be efficient transfection agents.8,17–20

In our previous work, we functionalized CNTs with two 

polyamine polymers, PEI and PAMAM. These compounds 

have low cytotoxicity, ability to conjugate microRNAs 

(such as miR-503) and, at the same time, transfect efficiently 

endothelial cells.21 However, the parameters contributing to 

the good efficiency of transfection that we observed were 

not investigated in detail. In fact, the diameter and length 

of CNTs are important parameters to be taken into account 

when evaluating the effects on drug delivery efficiency.22 

Many studies have focused the attention on this aspect, but 

authors observed that the transfection efficiency is inversely 

correlated with the length of CNTs.23–25 Therefore, in order 

to find the optimal CNT-based drug delivery system coated 

with polyamine polymers for delivery of miRNAs to human 

cells, we decided to investigate three different preparations, 

characterized by different dimensions and aspect ratios. 

In particular, we took into account very small CNTs, a sus-

pension of CNTs starting from the commercial product and 

a 2D material based on CNTs (ie, buckypapers [BPs]) to 

examine the transfection efficiency of a rigid scaffold.26 BPs 

are randomly entangled and densely packed CNT networks, 

which have been employed in retina and iris pigment epithelial 

transplantation27 as actuators,28 biosensors,29 carriers for drug 

delivery30 and finally as scaffolds for tissue engineering.31 

Although few studies have characterized the properties of 

BPs on cell adhesion, cell response and cytotoxicity32–34 and 

proposed the use of BPs in medical applications,35–37 the use 

of BPs as transfecting agents for nucleic acids has never 

been proposed. Therefore, our systematic investigation of 

the biophysical and biological properties of bidimensional 

CNT-based drug delivery systems is not only original and 

innovative but also very useful for a further extension of 

this work aimed at employing BPs as scaffolds or supports 

for cell growth.

In conclusion, in this study we extensively investigated 

the biophysical and biological contributions of polyamine-

coated CNTs and bidimensional BPs in the delivery of 

miRNAs to human cells, to optimize the transfection effi-

ciency of these compounds to be employed as efficient drug 

delivery vectors in biomedical applications.

Materials and methods
Materials
Multi-walled CNTs were purchased from Cheap Tubes Inc 

(Cambridgeport, MA, USA). PEI polymer (cat no 408727), 

PAMAM generation 5 (PAMAM G=5, cat no 536709), thiazolyl 

blue tetrazolium bromide (MTT, cat no M5655) and a fluores-

cein (FAM)-labeled oligonucleotide mimicking the precursor 

form of miRNA-503 (FAM-mir-503, batch no HA08019806) 

were purchased from Sigma-Aldrich Co. (St Louis, MO, USA) 

and used as received. Human Embryonic Kidney 293 cells 

(HEK 293T) were purchased from the American Tissue Culture 

Collection (ATCC, Manassas, VA, USA).

Preparation of polyamine-coated CNTs
For coating, CNTs (10 mg) were dispersed in three different 

solutions (2 mL) of PEI or PAMAM (10%, 20% and 40% 

w/w, respectively). The three suspensions were placed in a 

bath sonicator for 30 min and further stirred for 72 h at room 

temperature. A part of the sample was used “as is” (named 

PEI-CNTs and PAM-CNTs), while the remaining part was 

centrifuged at 20,800× g for 30 min and the collected super-

natant employed for in vitro assays (named supPEI-CNTs 

and supPAM-CNTs).

Quantification of polymer bound to CNTs
To assess the amount of polymer (PEI or PAMAM) bound to 

CNTs in the three solutions tested, we employed thermogra-

vimetric analysis (TGA). TGA curves were recorded using a 

TGA7 equipment (PerkinElmer Inc., Waltham, MA, USA). 

The samples investigated were heated in platinum crucibles 

in the temperature range 20°C–850°C, in pure nitrogen or 

air atmosphere (gaseous mixture of nitrogen and oxygen 

with 80% and 20%, v/v, respectively) under a flow rate of 

100 mL min−1. The scanning rate for the best resolution was 

found to be 10°C min−1. To ensure an accurate measurement 
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of sample temperature, the calibration was performed using 

the Curie-point transition of standard metals, according to 

manufacturer’s recommendations. Each sample was analyzed 

in triplicate.

Dynamic light scattering (DLS) and 
electrophoresis measurements
NanoZetaSizer (Malvern Instruments, Malvern, UK) appara-

tus has been employed to determine size and ζ-potential. For 

size measurements, a backscatter detection was employed. 

The instrument is equipped with a 5  mW He−Ne laser 

operating at a wavelength of 633 nm. To get the size distri-

bution of samples, the correlation functions were analyzed 

as intensity-averaged particle size using the DTS Software 

(v.7.01) within the framework of the Mie theory by using the 

non-negative least squares  algorithm.38 For the measurement 

of the electrophoretic mobility μ, Laser Doppler velocimetry 

with Phase Analysis Light Scattering (PALS) implemented 

with the patented mode M3 (mixed mode measurement) has 

been employed.39 This configuration allowed elimination of 

electro-osmotic effects and improvement of accuracy and 

repeatability of measurements. Preliminary to electrophoretic 

measurements, Zetasizer Nano automatically measures the 

conductivity of the sample directly in the ζ-potential cell 

to establish the appropriate voltage to be applied to avoid 

sample damage and improve measurement quality. The 

ζ-potential was determined from the measured electropho-

retic mobility μ by using the Smoluchowski approximation: 

ζ = μη/ε, where ε and η are the permittivity and the viscos-

ity, respectively, of the suspending medium. As in other 

electrophoretic investigations on CNTs,40 this approximation 

has been used even though it is rigorously valid only for 

spherical particles. The Smoluchowski approximation also 

assumes that the particle permittivity is much less than ε, 

which is true for semiconducting CNTs but not for metallic 

CNTs. Depending on the magnitude of the ζ-potential, the 

spherical Smoluchowski approximation may overestimate the 

actual ζ-potential by up to 20%. Both size and electrophoretic 

mobility measurements have been performed in thermostated 

cells at 25°C and have been carried out in triplicate.

Transmission electron microscopy (TEM)
Samples for TEM observation were prepared by depositing 

20 μL of the nanotube suspension on a gold grid (mesh 1,000) 

without using any supporting amorphous carbon film. Imme-

diately after deposition, the excess of liquid was removed by 

touching the grid with a piece of filter paper. Measurements were 

carried out using a FEI TECNAI 12 G2 Twin (FEI Company, 

Hillsboro, OR, USA), operating at 120 kV and equipped with 

an electron energy filter (Gatan image filter) and a slow-scan 

charge-coupled device camera (Gatan multiscan).

Gel retardation assays
Agarose gel retardation assays were performed following 

standard procedures.41 Polymer-coated CNTs and FAM-

mir-503 (50 nM) were mixed at CNT/miRNA weight ratios 

of 5:1, 10:1 and 20:1 (equivalent to 5, 10 and 20 μg/mL of 

CNTs, respectively). Compounds were incubated at room 

temperature for 15 min. Then, complexes were loaded into 

1% agarose gel (in tris-acetate-EDTA buffer) and run for 

30 min at 90 V. Hoechst 33258 (10 mg/mL) was added to 

the agarose gel as intercalating dye. Gels were visualized by 

ultraviolet (UV) and visible light. To assess the stability of 

CNT/miRNA complexes, heparin 5,000 U/mL (Teva Phar-

maceutical Industries, Petah Tikva, Israel) was added to CNT/

miRNA complexes, and the displacement of the complex was 

monitored after incubating for 30 and 60 min.

MTT assay
To assess the cytotoxicity of polymer-coated CNTs, Human 

Embryonic Kidney 293 cells (HEK 293T) were seeded on 

a 96-well plate at a density of 1×105 cells/mL per well. 

After 24 h, cells were treated with PEI (4, 8 and 12 µg/mL), 

with PAMAM (4, 8 and 20 µg/mL) and with PEI-CNTs or 

PAM-CNTs at concentrations of 10, 20, 30 and 50 µg/mL.

To test the supernatant toxicity also, cells were treated 

with supPEI-CNTs and supPAM-CNTs at the same concen-

tration of polymers (4, 8, 12 and 20 µg/mL) or CNTs (10, 

20, 30 and 50 µg/mL).

Each sample was analyzed in triplicate. After 24 h, the 

plate was centrifuged at 3,320×  g for 10  min, and MTT 

solution (50 µL, 5 mg/mL) was added to each well. After 

additional 3 h, the medium was removed and the obtained for-

mazan crystals were solubilized in 200 µL of pure dimethyl 

sulfoxide (DMSO). To eliminate the risk of obtaining false-

positive results due to the absorbance of CNTs, the plate 

was centrifuged at 3,320× g for 10 min and 100 µL of the 

formazan crystal solution was transferred in a new 96-well 

plate according to the protocol described in Worle-Knirsch 

et al’s study.42 The absorbance (570 nm) of formazan crystals 

was measured by an enzyme-linked immunosorbent assay 

(ELISA) plate reader (Benchmark Plus; Bio-Rad Labora-

tories Inc., Hercules, CA, USA). The growth medium was 

considered as the negative control (100% cell viability), 

whereas cells treated with DMSO were considered as the 

positive control (0% cell viability).
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Cellular uptake of miRNAs complexed to 
polyamine-coated CNTs
Human Embryonic Kidney 293 cells (HEK 293T) were 

cultured in DMEM medium (Euroclone S.p.A., Pero, Milan, 

Italy, cat no ECM0102L) supplemented with 10% fetal 

bovine serum (FBS), 50 U/mL penicillin and 50 µg/mL 

streptomycin at 37°C in 5% CO
2
. Cells were plated on eight-

chamber culture slides (Falcon cat no 354108) at a density of 

2×104 cells/mL per well. After 24 h of incubation, cells were 

treated with polymers alone or CNT/miRNA complexes. 

FAM-mir-503 (50 nM) was incubated with pure polyamines 

and polyamine-coated CNTs at different weight ratios 

(polymer/miRNA ratios of 2:1, 4:1, 8:1, 10:1 w/w and CNT/

miRNA 5:1, 10:1, 20:1 w/w, respectively) for 15 min at room 

temperature to allow complexation. Cells were incubated for 

4 h with the complex formed by FAM-miR-503 and CNTs, 

washed with phosphate-buffered saline (PBS) and cultured 

for 24 h. After 24 h, cells were washed three times with cold 

PBS and fixed by incubation with a methanol/acetone (2:1) 

solution for 10 min at −20°C. After three PBS washes, cells 

were stained with 150 µL of a solution of phalloidin-TRITC 

(10 µg/mL) for 1 h, washed again and the nuclei stained with 

150 µL of intercalating dye Hoechst 33258 (4 µg/mL). Fixed 

cells were mounted with a glycerol/PBS solution (3:1) and 

kept covered to prevent dye photobleaching until fluores-

cence image acquisition.

Confocal microscopy
The confocal microscopy imaging was performed using an 

Olympus Fluoview FV1000 confocal microscope (Olympus 

Corporation, Tokyo, Japan), equipped with FV10-ASW 

version 4.2 software, Multi Ar (458–488 and 512  nm), 

2× He/Ne (543 and 633 nm) and 405 nm diode laser, using 

60× (numerical aperture: 1.42) oil objective. Optical single 

sections were acquired with a scanning mode format of 

1,024×1,024 pixels, sampling speed of 20  µs/pixel and 

12  bit/pixel images. Automated-sequential collection of 

multichannel images was performed in order to reduce 

spectral crosstalk between channels. Each group of images 

was processed and analyzed using the same settings (ie, laser 

power and detector amplification) and processed using Adobe 

Photoshop software (Adobe Systems Incorporated, San Jose, 

CA, USA).

Preparation of polymer-coated BPs
To test the properties of large CNT aggregates in 2D form 

(ie, sheets of BPs), we realized a home-made support by filter-

ing a suspension of PAM-CNTs and comparing the obtained 

BP with a commercial one (Buckeye Composites, Kettering, 

OH, USA) coated with PAMAM. Briefly, CNTs (50 mg) 

were dispersed in distilled water (15 mL) containing PAMAM 

(∼30 mg). CNT suspensions were prepared as described previ-

ously. For BP preparation, the suspension of PAM-CNTs was 

filtered through a polyethersulfone filter (0.22 µm, Sartorius 

Stedim Biotech, Göttingen, Germany). The membrane was 

dried at room temperature, placed on a film of agarose gel (3%) 

in a Petri dish and sterilized under UV light. The PAM-BP 

was incubated with FAM-mir-503 (at a weight ratio of 10:1) 

for 15 min. The commercial BP was cut into 5 cm strips and 

incubated with PAMAM as described earlier. Then, commer-

cial PAMAM-coated BPs were cut into small pieces (0.1 cm2). 

Cells were seeded directly on the top of the membrane at a 

density of 6×104/cm2. After 24 h, supports were treated with 

4% paraformaldehyde at room temperature for 15 min. Cells 

were stained for confocal microscopy as described earlier.

Histological staining
BPs were embedded in paraffin and cut into small slices 

(5 μm). Sections were stained with hematoxylin and eosin 

(H&E) and examined by optical microscopy (DM500; Leica 

Microsystems, Wetzlar, Germany).

Statistical analysis
Statistical comparison between various groups was per-

formed by Student’s t-test or one-way analysis of variance 

(ANOVA) with either least significant difference (LSD) post 

hoc tests, using the SPSS software (12.0.2). Comparisons 

were made between mean values from several experiments. 

Differences were considered significant when p-values 

were ,0.05. Statistical significance is indicated with asterisk 

symbol for p,0.05.

Results
Sample preparation
To study the different biophysical and biological properties 

(ie, nucleic acid binding, dimensions, toxicity and transfec-

tion ability) of polyamine-coated CNTs as a function of their 

aspect ratio (ie, dimensions) and evaluate their contribution in 

miRNA delivery to human cells, we prepared three different 

types of samples (ie, very small CNTs, medium-sized CNTs 

and large bidimensional sheets of CNTs, named “bucky-

papers”). To establish the optimal preparation condition, 

we modified the synthesis method reported in our previous 

paper21 (Figure 1). Starting from a commercial batch of 

short (0.5–2  µm) multiwalled CNTs, we suspended them 

into three different polymer solutions of PEI or PAMAM 
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(at a concentration of 10%, 20% and 40%, w/w, respectively). 

Only the 40% w/w solution afforded products (PEI-CNTs and 

PAM-CNTs) that resulted to be stable for many weeks. The 

other solutions (10% and 20%, w/w) prevented the formation 

of stable suspensions of CNTs. In fact, after few minutes 

from initial incubation a great amount of CNT aggregates 

was visible at the bottom of each vial (Figure S1) and were 

not considered for further experiments. We hypothesize that 

this behavior can be explained by considering that the amount 

of polymer in the 10% and 20% solutions is not enough to 

completely bind CNTs and resuspend them.

In any case, we observed that after few weeks from the 

preparation of stable CNT suspensions, a precipitation of 

large nanotube aggregates took place. Interestingly, in our 

previous paper we found that after prolonged centrifugation 

of CNT suspensions, a certain amount of nanotubes, likely 

the smallest ones, remained in the supernatant. Therefore, to 

characterize the properties of these two fractions (ie, aggre-

gate and small CNTs) and assess their effectiveness to deliver 

miRNAs and contribute to the overall transfection efficiency, 

we decided to filter a part of the initial suspension to isolate 

the larger aggregates and retain the very small CNTs (coated 

with polymers) contained in the supernatant (Figure 1). The 

filtration of CNTs afforded a bidimensional product, com-

monly referred to as “buckypaper” for its resemblance to a 

sheet of paper. A third part consisting of a stable suspension 

of polymer-coated CNTs was used “as is” (Figure 1).

Quantification and localization of 
polyamine polymers on CNTs
The amount of polyamine polymers adsorbed on CNTs 

was measured by TGA. The percentage (in weight) of the 

polymers adsorbed on CNTs was 9.83%±2.18% for PEI and 

21.36%±3.57% for PAMAM. We reasoned that in order for 

the CNTs to absorb polymers, the hydrophobic part of the 

polyamine polymer should interact with the hydrophobic part 

of CNTs, and the overall effect is the deposition of a thin layer 

of polymer on CNTs, as shown by TEM (Figure 2).

Biophysical characterization of 
supernatants containing very small 
polymer-coated CNTs
The suspensions of polymer-coated CNTs are generally a 

mixture of large, medium and small CNTs. Their aspect 

ratio prevents the dimensional characterization by traditional 

DLS technique because CNTs are not spherical particles. 

Therefore, DLS can be employed only to measure very small 

nanotubes, assuming their “sphericity”. For these reasons, we 

characterized only the polymer-coated CNT fraction obtained 

after centrifugation (the supernatant), which contains the 

smallest compounds. In particular, we characterized two 

supernatant samples, supPEI-CNTs and supPAM-CNTs, 

and we analyzed their size and ζ-potential at different time 

points (0, 12 h and 20 days).

Figure 1 Schematic illustration of the general procedure for polymer-coated CNTs preparation (10%, 20% and 40% w/w solution of PEI and PAMAM).
Note: The most stable suspension (40%) was used for the preparation of buckypapers and very small CNTs (supPEI/PAM-CNTs).
Abbreviations: CNTs, carbon nanotubes; PAMAM, polyamidoamine dendrimer; PEI, polyethyleneimine.
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The dimensions of supPEI-CNTs and supPAM-CNTs 

are quite similar at t=0 (Table 1). In supPEI-CNTs, the pres-

ence of a population of small compounds sized 19.9±0.9 nm 

increased the polydispersity index (PDI) compared to 

supPAM-CNTs. We also measured the ζ-potential of the 

two compounds as a function of time (Table 2). ζ-Potential 

is correlated with the colloidal stability of the system 

under investigation; the higher its value the higher is the 

stability of the compounds. We found that the ζ-potential 

of supPEI-CNTs increased from 9.0±0.8 to 10.5±1.7 mV 

(in 20  days) but decreased in supPAM-CNTs (from 

31.5±0.7 to 20.2±1.2  mV). The ζ-potential of supPEI-

CNTs was always lower than that of supPAM-CNTs. This 

is in agreement with the slow precipitation behavior of the 

two compounds that we observed. Moreover, in the same 

timeframe, the size of supPEI-CNTs increased about 50% 

(from 148.1±0.9 to 203.5±0.9  nm), whereas the size of 

Figure 2 Schematic representation of the hypothetical binding of polyamine polymer to the surface of CNTs.
Notes: The thin layer of PAMAM polymer is visible by transmission electron microscopy as a cloudy matter absorbed on the CNT’s surface (black arrows). Aggregates of 
CNTs indicate that the polyamine polymer is able to interact with multiple CNTs leading to a complex and not homogeneous mixture.
Abbreviations: CNTs, carbon nanotubes; PAMAM, polyamidoamine dendrimer.

Table 1 Hydrodynamic mean diameter and polydispersity index 
(PDI) of polymer-coated CNT supernatants evaluated by two 
different and complementary methods, NNLS analysis of size 
distribution and Cumulant analysis

Samples Hydrodynamic diameter 
(nm)

PDI

NNLS peak 
mean

Cumulant 
Z-average

supPEI-CNTs (t=0) 19.9±0.9 213±19 148.1±0.9 0.477±0.005
supPAM-CNTs (t=0) 0 195±18 187.0±1.0 0.272±0.003
supPEI-CNTs (t=20 d) 25.7±6.2 340±86 203.5±0.9 0.553±0.004
supPAM-CNTs (t=20 d) 0 192±17 183.1±0.9 0.269±0.009

Note: Values were reported as mean value ± standard deviation on three repeated 
measurements.
Abbreviations: BP, buckypaper; CNTs, carbon nanotubes; PDI, polydispersity 
index; PEI, polyethyleneimine.

Table 2 To study aggregation phenomena, electrophoretic 
mobility (µmcm/Vs) has been measured to get ζ-potential (mV) 
of polymer-coated CNT supernatants at t=0, after 12 and 20 h 
from the initial preparation

Samples Time, t Mobility 
(µm cm/Vs)

ζ-potential 
(mV)

Conductivity 
(mS/cm)

supPEI-CNTs 0 0.71±0.06 9.0±0.8 0.143±0.005
12 h 0.81±0.01 10.4±0.1 0.145±0.001
20 days 1.21±0.13 10.5±1.7 0.191±0.002

supPAM-CNTs 0 2.47±0.05 31.5±0.7 0.108±0.005
12 h 1.88±0.14 24.0±1.8 0.117±0.005
20 d 1.59±0.09 20.2±1.2 0.140±0.005

Note: Preliminary to the mobility measurement, also conductivity (mS/cm) of the 
sample was determined within the same cuvette.
Abbreviations: CNTs, carbon nanotubes; PEI, polyethyleneimine.
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supPAM-CNTs remained almost constant (from 187.0±1.0 

to 183.1±0.9 nm) (Table 2).

Interestingly, after 10 days the conductivity of the two 

samples increased, which indicated an increasing amount of 

charged species in the solution, likely due to polymer deg-

radation or a possible detachment of the polyamine polymer 

from CNTs. However, this phenomenon has not been investi-

gated completely in this work and deserves further studies.

Gel retardation assays
To assess the ability of polyamine-coated CNTs to bind 

small nucleic acids (ie, oligonucleotides, miRNA mimic, 

etc), we performed agarose gel retardation assays (Figure 3). 

Both polyamine-coated CNTs were able to bind efficiently 

a ∼70 nt oligo mimicking a pre-miRNA (hsa-mir-503) even 

at the lowest CNTs/miRNA weight ratio (ie, 2:1) (Figure 3A). 

Both PEI and PAMAM polymers formed large aggregates 

with the miRNA that were unable to migrate into the gel, 

in agreement with data already reported.21,43 Similarly, the 

complete formation of PEI-CNTs and PAMAM-CNTs 

complexes occurred at a higher weight ratio of 10:1 (lane 8) 

and 20:1 (lane 16), respectively. The higher amount of PAM-

CNTs needed to bind completely the oligo suggests that this 

compound could bind the nucleic acid less tightly. Moreover, 

by comparing the fluorescence signal of PEI and PAMAM 

complexes within the wells of the agarose gel (lanes 3–6 and 

10–13, respectively), a more intense signal was observed 

for PAMAM compared to PEI. Interestingly, this might 

Figure 3 Agarose gel electrophoresis of polymer-coated CNTs complexed with a synthetic DNA.
Notes: Agarose gel (1%) stained with Hoechst 33258 shows that (A) PEI-coated and PAMAM-coated CNTs are able to bind DNA (10:1 w/w) (lanes 7–9 and 14–16) similar 
to starting polymers (lanes 3–6 and 10–13) but at a different weight ratio. DNA ladder (50 bp) was loaded in lane 1 and a well-characterized DNA fragment (∼250 bp) in 
lane 2. The heparin competitive assay (B) indicates that the nucleic acid bound to PAM-CNTs is more easily released (lanes 10–12), compared to PEI-CNTs (lanes 5–7 and 
13–15), whereas supPEI-CNTs and supPAM-CNTs can bind nucleic acid more strongly compared to their CNT counterparts.
Abbreviations: CNTs, carbon nanotubes; CTR, control; PAMAM, polyamidoamine dendrimer; PEI, polyethyleneimine.
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indicate a different kind of interaction and complexation 

(ie, minor- or major-groove binding) between the polymer 

and the oligonucleotide. We have observed previously that 

the minor groove binding by polyamine polymers prevents, at 

least in part if not completely, the fluorescence quenching of 

the intercalating dye.43 The tighter interaction of PEI and PEI-

CNTs with DNA compared to PAMAM was also confirmed 

by the heparin competition assay.44 This assay consists in the 

incubation of polymer-coated CNTs complexed with oligo-

nucleotides with a negatively charged high-molecular weight 

macromolecule (ie, heparin), which could electrostatically 

compete with the oligonucleotide and displace it (Figure 3B). 

PEI (lanes 3 and 4) and PEI-CNTs (lanes 5–7) bind the 

oligonucleotide stronger than PAMAM (lanes 8 and 9) and/

or PAMAM-CNTs (lanes 10–12), as indicated by the pres-

ence of the free oligo band. On the contrary, supPEI-CNTs 

and supPAM-CNTs form strong and very stable complexes 

(at the same weight ratio of PEI-CNTs or PAM-CNTs) 

with the oligonucleotide. In fact, heparin was not able to 

displace the complexed oligo even after 60 min incubation 

(Figure 3B, lanes 13–15 and 16–18). This result suggests 

that the length of CNTs might have an effect on both nucleic 

acid binding process and stabilization of the complex.

Cytotoxicity of polyamine-coated CNTs
Cytotoxicity of PEI-CNTs and PAM-CNTs
To evaluate the cytotoxicity of polyamine-coated CNTs, 

HEK 293T cells were incubated with increasing amount of 

polymers (PEI or PAMAM) in the range of 0.5–40 µg/mL 

and polymer–CNTs in the range of 10–50 µg/mL (Figure 4). 

For pure polymers, the cell viability decreased at higher 

concentrations (Figure 4A). PEI was relatively toxic at a 

Figure 4 Cytotoxicity assay after 24-h treatment with (A) PEI (red) and PAMAM (blue) polymers and CNTs functionalized with (B) PEI or (C) PAMAM.
Notes: Values are expressed as mean ± SE (n=5) (*P,0.05, **P,0.01).
Abbreviations: CNTs, carbon nanotubes; ns, not significant; PAMAM, polyamidoamine dendrimer; PEI, polyethyleneimine; vol, volume; wt, weight.
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concentration of 10 µg/mL (cell viability =69.8%±2.3%), 

whereas induced a significant cell death (53.9%±3.5%) 

at 20  µg/mL. On the contrary, PAMAM was less toxic 

compared to PEI. At 10  µg/mL, the cell viability was 

92.4%±3.2%, whereas even at 20 µg/mL the cell viability 

remained quite high (84.2%±6.0%). Only at a higher con-

centration (.40 µg/mL) PAMAM induced a significant cell 

death (66.1%±6.6%) (data not shown).

Similarly, we treated HEK 293T cells with PEI-CNTs 

(10–30 µg/mL) and PAMAM-CNTs (10–50 µg/mL). For PEI-

CNTs, the overall toxicity parallels that of pure polyamine 

or uncoated CNTs (especially at 10  µg/mL), whereas for 

PAMAM-CNTs the overall toxicity seems dependent only 

on the polymer amount (ie, at 50  µg/mL the toxicity of 

PAMAM-CNTs is 89.8%±8.0%, similar to 84.2%±6.0% 

of PAMAM, whereas that of CNTs is 54.3%±1.0%). This 

indicates that the coating with PAMAM is able to decrease 

significantly the toxicity of the pristine CNTs.

Cytotoxicity of supCNTs
To evaluate the cytotoxicity of very small CNT preparations, 

we treated HEK 293T cells with different amounts of supPEI-

CNTs and supPAM-CNTs. In particular, to compare the tox-

icity of supernatants with that of pure polymers we incubated 

cells with 4, 8, 12 or 20 µL of the suspension, which corre-

sponded to the same amount (in volume) of pure polymers. 

Moreover, in order to compare the toxicity of supernatants 

with that of polyamine-coated CNTs, we treated cells by using 

the same amount (in weight) of CNTs (10, 20, 30 or 50 µg) 

(Figure 4). The amount of CNTs contained in supernatants 

was determined by spectrophotometry (Figure S2).

By using the same amount in volume of supPEI-CNTs, we 

found that these compounds were not particularly toxic even 

at the highest concentration tested (viability =83.5%±2.0%) 

(Figure 4B) compared to pure PEI polymer. At this con-

centration, supPEI-CNTs were less toxic than pure PEI 

polymer. On the contrary, by using the same amount in 

weight of supPEI-CNTs, we found that these compounds 

were extremely toxic even at the lowest amount (10 µg) 

(33.7%±4.8%) compared to PEI-CNTs. We have no 

cytotoxicity data for higher amounts (20 and 30 µg), since 

we realized that the volume required to perform the assay 

was too big (not available or not compatible with culture 

conditions). It is likely that the high toxicity displayed by 

supPEI-CNTs is due to the dimension of nanotubes, as the 

amount of free polymer or residual CNTs in suspension is 

relatively low and do not justify such reduced viability.

Similar to PAM-CNTs, supPAM-CNTs also are rela-

tively not toxic (Figure 4C) in all of the conditions analyzed. 

Compared to the pure polymer, supPAM-CNTs even at 

the highest amount (20 µL) were not toxic (88.3%±2.2%). 

Interestingly, 20 µg of supPAM-CNTs induces a toxicity 

that is only a little bit higher compared to that obtained treat-

ing HEK 293T cells with the same amount of PAM-CNTs 

(Figure 4C). Once again, the toxicity data of supernatant 

CNTs confirm that the use of PAMAM to coat CNTs is 

preferable compared to PEI.

Cytotoxicity of BPs
To assess the toxicity of BPs, small pieces of BP coated 

with PAMAM (PAM-BPs) were used to grow cells. Inter-

estingly, the amount of PAMAM adsorbed by BPs is lower 

(8.87%±1.55% w/w) than that absorbed by PAM-CNTs. This 

can be explained by considering the different morphology of 

the 2D material and the different surface area (or aspect ratio) 

of the two materials. In fact, BPs are more compact compared 

to CNTs, and therefore the BP surface is less “exposed” to 

the solution where, on the contrary, CNTs are more free to 

float and bind the polymer (higher degree of freedom in solu-

tion). After cell growth, we noticed that many cells remained 

stacked to the surface even after trypsin treatment, and it was 

not possible to detach them and perform the assay determina-

tion. Moreover, MTT assay was not suited to quantify viable 

cells in BPs owing to the oxidation of the substrate (MTT) 

by reactive CNTs during the measurement.42 This induces 

a rapid coloration of the solution which prevented a correct 

cytotoxicity assessment by this assay.

Cellular uptake of a fluorescent 
microRNA mimic (FAM-mir-503)
Delivery mediated by PEI-CNTs and PAM-CNTs
In order to determine the effectiveness of our compounds 

to deliver miRNA mimics into mammalian cells, we treated 

HEK 293T cells with different amounts of polyamine-coated 

CNTs complexed with a fluorescent microRNA mimic 

(FAM-mir-503) (CNT/oligo ratios of 5:1, 10:1, 20:1 and 

25:1 w/w) and polyamine complexes (polymer/oligo ratios 

of 2:1, 4:1, 8:1 and 10:1, w/w). The delivery was evaluated 

24 h post-transfection by confocal fluorescence microscopy. 

PEI and PAMAM displayed an optimal transfection effi-

ciency occurring at CNT/oligo ratios of 8:1 and 10:1 w/w, 

respectively (Figures S3 and S4). PAMAM displayed a 

higher transfection efficiency compared to PEI. Similarly, 

PEI-CNTs and PAM-CNTs displayed a good transfection 

efficiency at CNT/oligo ratios of 10:1 and 20:1 w/w, respec-

tively (Figures S5 and S6). Similar to pure polymer, PAM-

CNTs were more efficient than PEI-CNTs to transfect FAM-

mir-503 (Figure 5).

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


International Journal of Nanomedicine 2018:13submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

10

Celluzzi et al

Delivery mediated by supernatants of 
polyamine-coated CNTs
To evaluate the uptake efficiency of mir-503 mimic by super-

natants of polyamine-coated CNTs, we treated HEK 293T cells 

with different amounts of supernatants from polyamine-coated 

CNTs complexed with FAM-mir-503. In particular, to compare 

the efficiency of supernatants to that of pure polymers, com-

plexes were formed by incubating 0.4 µg of FAM-mir-503 with 

8 µL of supPEI-CNTs or supPAM-CNTs, which correspond to 

the same amount (in microliters) of pure polymers used before. 

To compare the efficiency of supernatants to that of polyamine-

coated CNTs, complexes were formed by incubating 0.4 µg of 

FAM-mir-503 with an amount of 120 µL for supPEI-CNTs 

or supPAM-CNTs, which correspond to the same amount 

(in micrograms) of polyamine-coated CNTs used before. 

We observed (Figure 6) that the intracellular fluorescence is 

Figure 5 Fluorescence images of Hela cells after 24-h treatment with pure polymers and polymer-coated CNTs complexed with FAM-mir-503, at different weight ratios.
Notes: A brighter fluorescence of PAM-CNTs (35.8%) compared to PEI-CNTs (16.9%) indicates an increased transfection ability of the dendrimer-coated CNTs (Figure S7 
for quantitative data). The pure polymers PEI and PAMAM displayed a fluorescence intensity of 6.1% and 26.9%, respectively (compared to the blank control). Magnification 
60×, scale bars represent 20 µm.
Abbreviations: CNTs, carbon nanotubes; PAMAM, polyamidoamine dendrimer; PEI, polyethyleneimine.

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


International Journal of Nanomedicine 2018:13 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

11

Carbon nanomaterials and delivery of miRNAs

weak when cells were treated with supernatants at the same 

pure polymers concentration, whereas a significantly increased 

uptake was visible at the same polyamine-coated CNT concen-

tration, although we also observed an increased cytotoxicity. 

However, we did not observe a significant delivery of the 

bound miRNA, likely due to the high stability of the complex, 

as observed in agarose gel experiments. Overall, these data 

indicate that the amounts of polyamine-coated CNTs or the 

free polymers are negligible and are not enough to contribute 

to an efficient delivery of miRNA mimics.

Delivery mediated by bidimensional BP
To evaluate the uptake efficiency of mir-503 mimic by bidi-

mensional sheets of CNTs (ie, BPs), we prepared a flexible 

support made by PAMAM-coated CNTs on which cells were 

let to grow. For comparison purposes, we performed the same 

experiment with a commercial BP. This experiment allowed 

us to study the ability of huge aggregates of CNTs to trans-

fect cells as “nanoneedles” through a mechanism generally 

referred to as “piercing”,45 which consists in the passive 

penetration of the cell membrane by long CNTs (or parts 

Figure 6 Fluorescence images of Hela cells after 24-h treatment transfected with pure polymers (PEI and PAMAM), polymer-coated CNTs and supernatants (supPEI-CNTs 
[vol] and supPEI-CNTs [wt]) complexed with FAM-mir-503 at 10:1 weight ratio.
Note: Magnification 60×, scale bars represent 20 µm.
Abbreviations: CNTs, carbon nanotubes; PAMAM, polyamidoamine dendrimer; PEI, polyethyleneimine; vol, volume; wt, weight.
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of them) and not through classic endocytic mechanisms 

(ie, clathrin-mediated or caveolae-mediated pathways).

We observed the BP layer after having cultured cells 

on it (Figure 7A), and found only a few cells adhering on 

the surface. The commercial BP made by longer CNTs 

was thicker than our home-made BP (Figure 7B). Anyway, 

we were able to visualize few cells grown on it by H&E 

staining. This suggested that PAMAM-coated BP might be 

a suitable substrate for culturing cells without appreciable 

cytotoxicity. To investigate the binding efficiency of this 

bidimensional substrate, the commercial BP was coated 

with PAMAM and incubated with FAM-mir-503. Confocal 

microscopy (Figure 7C–E) revealed the intricate network of 

CNTs formed with the BP (the green bundles in Figure 7C) 

and the irregular layers that the BP is made of (the green 

lines in Figure 7D and E). Nuclear staining is suggestive of 

healthy cells, whereas the green spots within them indicate 

that these rigid bidimensional substrates are able to enter into 

cells and likely deliver miRNAs. However, further studies 

are needed to investigate better the binding of miRNA mimic 

and the kinetic of delivery that seem different compared to 

that observed with CNT suspensions.

Discussion
The characterization of the biophysical and biological 

properties of polyamine-coated CNTs and bidimensional 

BPs and the precise evaluation of their contributions in 

microRNA delivery to human cells are important aspects for 

the optimization of delivery vectors. Our study was aimed 

at studying various structural and biophysical aspects of 

polyamine-coated CNTs that are generally underevaluated 

in many studies. However, several studies emphasized that 

Figure 7 Cells grown on buckypapers.
Notes: Hematoxylin/eosin staining of cells grown on (A) home-made BP (scale bar =200 µm) and (B) commercial BP (scale bar =25 µm). The commercial PAM-BP incubated 
with FAM-mir-503 and visualized by confocal microscopy after cell culture (C and D). The green bundles show the intricate network of CNTs forming the BP, whereas the 
green lines represent the irregular layers of BP. The nuclear staining indicates the presence of healthy cells, whereas the green spots within them indicate that these rigid 
bidimensional substrates are able to penetrate cells and deliver their nucleic acid cargo. (Scale bar =20 µm.)
Abbreviations: BP, buckypaper; CNTs, carbon nanotubes.
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these contributions may affect the overall efficiency of 

delivery vectors.43,46,47

In our work, we studied how the size of two polyamine-

coated CNTs may influence toxicity and transfection effi-

ciency and ultimately impair the delivery of microRNAs to 

human cells. We found that the nominal size of commercial 

small CNTs (ie, 0.5–2 µm in our case) is actually not repre-

sentative of all the possible compounds present in the sample. 

In fact, we found a fraction of very short CNTs within the 

compound suspensions that have different properties com-

pared to longer CNTs. We also found that longer CNTs may 

transfect cells, despite their dimension, by exploiting their 

“nanoneedle” aspect and “piercing” cells effectively.

Apart from the dimension of CNTs, we also found that 

CNTs coated with different polyamines display essen-

tially the characteristics of the polymer used to coat them. 

Therefore, it is possible to obtain efficient polymer-coated 

CNT-based delivery vectors by simply employing poly-

mers with low toxicity and high transfection properties, 

like PEI and PAMAM. These polymers form a tiny layer 

over the hydrophobic surface of CNTs that are in any case 

able to bind oligonucleotides such as the miRNA mimic we 

have designed.

Interestingly, we also found that bidimensional sheets of 

CNTs (ie, BPs) can be efficiently prepared starting from CNT 

suspensions by a straightforward filtration step. We found 

that these bidimensional BPs are versatile supports for cell 

cultures once functionalized to reduce their hydrophobicity. 

The coating of BPs with PAMAM allowed us to obtain 

hydrophilic sheets of nested CNTs that can be used to culture 

cells for longer periods without any drawbacks.

Finally, we demonstrated that each of the three main 

components of a standard suspension of polymer-coated 

CNTs (ie, very short, medium-sized and very long CNTs) 

are able to contribute differently to miRNA transfection. 

Therefore, we think that our investigation may be useful to 

help researchers involved in modulating gene expression to 

choose or optimize the transfection efficiency of miRNA 

delivery by CNT-based vectors.

Conclusion
The characterization of the biophysical and biological 

properties of polyamine-coated CNTs and bidimensional 

BPs allowed us to precisely evaluate their contributions in 

microRNA delivery to human cells. This is an important 

aspect for the optimization of delivery vectors. Here, we 

studied how two polyamine-coated CNT systems may 

influence the toxicity and the transfection efficiency of 

microRNAs to human cells. We found that a fraction of very 

short CNTs within the compound suspensions has different 

properties compared to longer CNTs, and longer CNTs may 

transfect cells by “piercing” cells effectively, ultimately con-

tributing to overall transfection. Interestingly, we also found 

that bidimensional sheets of CNTs (ie, BPs) are versatile 

supports for cell cultures, and when properly functionalized 

they have a reduced toxicity. In conclusion, we think that 

our investigation will be useful to researchers interested to 

modulate the gene expression of human cells through the 

delivery of microRNAs by CNT-based vectors.
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Supplementary materials

Figure S1 Preparation of PAM-CNTs starting from 10 mg of pristine CNTs and different amounts of polymer solution (10%, 20% and 40%, w/w).
Note: A stable suspension was obtained only using the 40% solution.
Abbreviations: CNTs, carbon nanotubes; PAMAM, polyamidoamine dendrimer.

λ

Figure S2 Calibration curve obtained by measuring absorbance (570 nm) of different dilutions (from 0 to 300 µg/mL) of carbon nanotube dispersions.
Note: Dotted line is the linear fit of the obtained data. 
Abbreviations: CNTs, carbon nanotubes; PAMAM, polyamidoamine dendrimer; PEI, polyethyleneimine.
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Figure S3 Fluorescence microscopy of HEK 293 cells treated with PEI/FAM-miR-
503 at different polymer to miRNA ratios (w/w) that indicate the best ratio to use 
in transfections.
Abbreviation: PEI, polyethyleneimine.

Figure S4 Fluorescence microscopy of HEK 293 cells treated with PAMAM/FAM-
miR-503 at different polymer to miRNA ratios (w/w) that indicate the best ratio to 
use in transfections.
Abbreviation: PAMAM, polyamidoamine dendrimer.

Figure S5 (Continued)
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Figure S6 Fluorescence microscopy of HEK 293 cells treated with polymers compared to supernatants of polymer-coated CNTs.
Notes: supernatants were complexed with FAM-miR-503 at 10:1 and 20:1 w/w ratio. Magnification 60×.
Abbreviations: CNTs, carbon nanotubes; MWCNTs, multi-walled CNTs; PAMAM, polyamidoamine dendrimer; PEI, polyethyleneimine.

Figure S5 Fluorescence microscopy of HEK 293 cells treated with polymers compared to polymer-coated CNTs complexed with FAM-miR-503 at different weight ratios.
Note: Magnification 60×.
Abbreviations: CNTs, carbon nanotubes; MWCNTs, multi-walled CNTs; PAMAM, polyamidoamine dendrimer; PEI, polyethyleneimine.
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Figure S7 Fluorescence image densitometry of Figure 5 (main text).
Note: Absolute values presented in bold.
Abbreviations: CNTs, carbon nanotubes; PAMAM, polyamidoamine dendrimer; PEI, polyethyleneimine.
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