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Abstract: Hepatocellular carcinoma (HCC) is the fifth most common malignancy, the third 

most common cause of cancer death, and the most common primary liver cancer. Overall, there 

is a need for more reliable biomarkers for HCC, as those currently available lack sensitivity and 

specificity. For example, the current gold-standard biomarker, serum alpha-fetoprotein, has a 

sensitivity of roughly only 70%. Cancer cells have different characteristic metabolic signatures 

in biofluids, compared to healthy cells; therefore, metabolite analysis in blood or urine should 

lead to the detection of suitable candidates for the detection of HCC. With the advent of meta-

bonomics, this has increased the potential for new biomarker discovery. In this article, we look 

at approaches used to identify biomarkers of HCC using proton nuclear magnetic resonance 

(1H-NMR) spectroscopy of urine samples. The various multivariate statistical analysis tech-

niques used are explained, and the process of biomarker identification is discussed, with a view 

to simplifying the knowledge base for the average clinician. 

Keywords: hepatocellular carcinoma, biomarkers, metabonomics, urine, proton nuclear mag-

netic resonance spectroscopy, 1H-NMR

Background
Globally, hepatocellular carcinoma (HCC) is the fifth most common malignancy in men 

and the seventh in women.1 HCC is up to four times more common in men and is the 

most common primary liver cancer,2 with most cases occurring in sub-Saharan Africa 

and East Asia, due to the high prevalence of hepatitis B virus (HBV).3–5 Roughly 80% 

of HCCs occur on a background of cirrhosis.6 The mortality rate is almost identical to 

the incidence, which is increasing.7 However, in Taiwan, HBV vaccination programs 

have reduced incidence rates.8

HCC is the second leading cause of cancer death, with over half a million cases 

diagnosed per year,1 although data quality varies worldwide. Prognosis is poor, with 

5-year survival <5% due to late presentation, as HCC is often asymptomatic in the 

early stages.9 However, HCC is potentially curable, following the defined treatment 

algorithm,10 if detected early, but liver transplantation must conform to strict criteria 

used to assess suitability of patients with cirrhosis and HCC, such as the Milan criteria.11

In terms of the importance of this review topic, urine-based nuclear magnetic 

resonance studies are considered valuable methods of analyzing large quantities of 

data and have a wide variety of uses. Most notably of these uses is the detection of 

biomarkers, which have increasingly important roles in disease discovery and moni-

toring. Furthermore, there is the advantage of urine-based tests being noninvasive, 
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compared to blood tests, which can cause discomfort or harm. 

Greater understanding of this topic offers further insight into 

disease development, prognosis, and pathogenesis. This is 

done through achieving metabolic and spectral fingerprints 

of urine, which allow for identification of relevant signals, 

that differ in ill health. These signals are ultimately processed 

using multivariate analysis techniques to identify biomark-

ers for disease, which aim to detect diseases, such as HCC, 

earlier to resultantly improve prognosis. 

HCC risk factors
Chronic hepatitis and cirrhosis of any cause accounts for 

70–90% cases of HCC occurring on a background of chronic 

liver disease.6 Human immunodeficiency virus co-infection 

with either HBV or hepatitis C virus (HCV) leads to quicker 

progression to cirrhosis and HCC.12 Of note, 80% of HCC 

cases occur in Eastern Asia and sub-Saharan Africa, where 

the main risk factor remains to be chronic HBV. HCC inci-

dence increases when there are higher levels of HBV DNA 

and with a longer duration of infection.13 HBV has two main 

ways of causing HCC:

1. HBV causes cirrhosis from chronic inflammation of the 

liver, predisposing to HCC and 

2. HBV is directly oncogenic, whereby the virus integrates 

into the host genome, causing carcinogenic mutations.14

By contrast, HCV is the main risk factor for HCC in 

Europe, North America, and Japan. Roughly 3–5% of indi-

viduals with HCV cirrhosis develop HCC per year.15 Acute 

infection leads to chronic hepatitis and then cirrhosis, thereby 

leading to the risk of HCC. However, fortunately antiviral 

therapy may reduce this risk.16 Alcohol and tobacco abuse 

are further risk factors for HCC. Prolonged, heavy drinking 

(40–60 g alcohol per day) is a well-established risk factor 

for HCC, independently and in combination with HCV.17 

Alcoholic cirrhosis has a role in up to 35% of all HCCs.18,19 

Tobacco independently increases the risk of HCC in cir-

rhotic patients with a dose-dependent effect.20 Furthermore, 

an increase in the number of cases of non-alcoholic fatty 

liver disease in more developed countries due to a more 

obesogenic environment is an emerging risk of HCC.21,22 

However, estimates of risk are unclear. HCC has been found 

to be twice as likely to develop in diabetic patients compared 

to non-diabetics.23,24

Aflatoxin is a carcinogenic mycotoxin produced from 

certain species of fungi such as Aspergillus flavus, which 

colonizes food crops, most heavily impacting developing 

countries.25 HCC occurs through chronic low-level  ingestion 

from dietary aflatoxin contamination,26 as aflatoxin is metabo-

lized in the liver, allowing for its toxic effects to be exerted. 

Tumor suppressor gene p53 becomes mutated at the third 

position of codon 249, leading to the development of HCC.27 

Aflatoxin B1 is the most toxic and prevalent type, further 

described as the most potent known experimental carcino-

gen.28 There is up to a 30 times increased risk of HCC when 

individuals are also infected with HBV, suggesting that HBV 

and aflatoxin promote HCC development synergistically.29

Currently available biomarker: 
alpha-fetoprotein (AFP)
The current gold-standard and only established noninvasive 

diagnostic marker for HCC is serum AFP, but this fails 

in diagnostic performance ability, making it unreliable.30 

The American Association for the Study of Liver Diseases 

(AASLD) describes the relationship of AFP to HCC as 

lacking “adequate sensitivity and specificity for effec-

tive surveillance and diagnosis”.10 Serum AFP level and 

6-monthly ultrasound (US) scans are used for surveillance 

and diagnosis of HCC.5 However, these are often unsuitable 

for resource-limited settings as imaging is often expensive 

or unavailable. Furthermore, sensitivity and specificity are 

known to be poor. Sensitivity of US to discover malignant 

liver lesions and characteristic changes in vascularization 

is often operator dependent. AFP alone has been reported 

to detect ~70% of HCC cases as it is only produced by 

about two-thirds of cases.30 Area under receiver operating 

characteristic curve values are seen to vary between 0.60 

and 0.70,31 which highlights the need for a more effective 

diagnostic biomarker. 

However, AFP is not the only available biomarker for 

HCC. There are many others, including cell surface heparan 

sulfate proteoglycan glypican 3, circulating microRNAs 

(miRNAs), and abnormal coagulation protein des-gamma 

carboxyprothrombin, also known as PIVKA-II (protein 

induced by vitamin K absence or antagonist II). Despite 

having great potential, the sensitivity and specificity of these 

have been disappointing and consequently none are routinely 

used in clinical practice around the world.

Metabonomics and its utility in 
HCC
To study disease biomarkers, metabonomics can be used. 

It has been defined by Nicholson et al as “the quantitative 

measurement of the dynamic multiparametric metabolic 

response of living systems to pathophysiological stimuli 

or genetic modification”.32 This differs from metabolomics 
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which identifies and analyzes all metabolites in a system,33,34 

although terms are often used interchangeably. Metabonom-

ics is useful to investigate HCC, because in terms of molecu-

lar pathogenesis, there are 30–40 mutations per tumor,35 and 

according to the Warburg hypothesis, tumors have altered 

metabolism compared to healthy cells.36,37 More specifically, 

there are variations in mitochondrial respiration as malig-

nant tissue consumes more glucose. Consequently, the key 

focus is on metabolites associated with energy, altered lipid 

metabolism, and membrane turnover for identification of 

potential HCC biomarkers.38 Once identified, in the future, 

these biomarkers would have the potential to be detected 

in urine using a simple dipstick test, with the aim for it to 

be cheap and readily available at the point of care, to help 

identify the presence of HCC.

Why use urine in metabonomic 
studies to identify biomarkers?
Urine is a stable and convenient biofluid for metabonomics 

because collection is noninvasive and easily accessible. Urine 

can be used for widespread screening and surveillance through 

a simple dipstick test, suited to the developing world where 

cost and access to imaging techniques are more problematic. 

Consequently, work is being done involving urine samples 

to identify and validate metabolites for HCC that could act 

as potential biomarkers for accurate detection of the disease. 

Proton nuclear magnetic resonance 
(1H-NMR) spectroscopy background
The NMR phenomenon can be applied as magnetic resonance 

imaging (MRI) to provide anatomical structural details and 

study tissue metabolism in vivo. However, for the analysis 

of urine samples, 1H-NMR spectroscopy is used, which is a 

noninvasive analytical chemistry technique and is used to 

determine protein structure and chemical composition of 

biofluids. A familiarity and basic knowledge of 1H-NMR 

theory for readers is assumed.

Furthermore, 1H-NMR spectroscopy has been used for 

metabolic phenotyping since the 1980s. Mass spectrometry 

(MS) is more sensitive, but 1H-NMR is more robust and 

versatile, with very high reproducibility when there is con-

sistent sample preparation and setup.39 The use of 1H-NMR 

spectroscopy for biomarker discovery has the advantage of 

simpler sample preparation and more reproducible results. 

However, it is not as sensitive as liquid chromatography 

mass spectrometry (LCMS) and it has the challenge of signal 

overlap leading to difficulty in making assignments. While 

LCMS offers greater sensitivity, it is more laborious to set 

up and results depend on individual experimental conditions 

which make metabolite assignments and data analysis more 

challenging. 1H-NMR is non-destructive and, therefore, 

precious samples can be reused for biomarker determina-

tion, unlike in MS. Consequently, 1H-NMR spectroscopy is 

deemed to be a well-suited technique for analysis of samples 

in metabonomic studies. As neither technique can detect all 

chemical compounds present in a biofluid sample, the two 

approaches should be considered complementary in the dis-

covery of biomarkers. This review will focus on the workflow 

of biomarker discovery using 1H-NMR.

Chemical shift and metabolite 
interpretation 
The chemical shift phenomenon refers to the differences in elec-

tron density surrounding nuclei depending on the local chemical 

environment within molecules which causes variation in the 

opposing magnetic field.40 This is integral in 1H-NMR spectros-

copy for metabolite interpretation and biomarker identification 

in metabonomics. Chemical shift is calculated by determining 

the difference in resonance frequency of the nucleus, against 

a standard. 3-(Trimethylsilyl)-2,2′,3,3′-tetradeuteropropionic 

acid (TSP) is most commonly used as an internal chemical 

shift reference in metabonomics for reasons listed in Table 1.41,42 

However, TSP can be affected by protein in urine, causing the 

peak to become smaller and wider, as protein binds to TSP. Peak 

position is indicative of the chemical environment, whereas 

peak area is proportional to the number of nuclei with the same 

chemical environment generating the signal and the overall 

concentration of the compound in the sample.

Chemical shift (d) is expressed on the horizontal scale, 

where TSP is assigned to zero parts per million (ppm) to 

serve as the reference peak. ppm measures frequency signals 

instead of Hertz, on the x-axis, as it more simply represents 

frequency and aids comparison of spectra from spectrom-

eters with different magnetic strength. Moreover, ppm is 

used when assigning metabolite identity to determine what 

is present in a sample.

NMR applications within hepatology
NMR spectroscopy has several versatile research applica-

tions in hepatology, as the liver has a variety of metabolic 

and detoxification functions to be assessed and interpreted. 

These include using markers to assess the functional capac-

ity of the cirrhotic liver,43 grading liver disease in hepatitis 

C,44 and identifying biomarkers of cholangiocarcinoma in 

bile.45 Advancements are constantly being developed to 

improve NMR performance, such as the ongoing invention 
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of the “microcoil” for enhanced resolution of in vivo MRI.46 

Metabonomic biomarker discovery is an important applica-

tion of 1H-NMR within hepatology, as many papers are now 

focused on identifying biomarkers in HCC. However, it must 

be noted that 1H-NMR is not intended to be a replacement 

for imaging but is to be used as a complementary technique.

In vitro urine 1H-NMR spectra
1H-NMR spectroscopy of urine aims to acquire high-resolution 

spectra, to determine composition by identifying metabolites, 

without prior structural knowledge. Sample randomization 

prior to analysis is important to avoid bias from operator 

differences or conditions.47 The 1H-NMR urine spectrum is 

generally composed of low molecular weight metabolites, 

forming thousands of sharp resonances.48 Urine has a high 

water content; therefore, water suppression achieved by con-

stant irradiation which saturated the resonance of water is key 

to reduce interference for optimum detection of metabolites. 
1H-NMR offers high reproducibility without compensating 

throughput; therefore, spectra of the same urine sample should 

be superimposable, making it a suitable mode of analysis for 

detecting potential biomarkers of HCC. 

High-quality samples are required for successful metabo-

nomic studies, but quality may have varied between samples 

in different studies. Similarly, in comparison, some samples 

will have been left in the NMR spectrometer for longer than 

others. Although, like the logistical delay between collecting 

and analyzing samples, this is not expected to impact upon 

the urinary 1H-NMR profile, as urine is metabolically stable 

unless contaminated.49 However, several factors influence 

urinary metabolic profiles. 

Factors affecting 1H-NMR urine 
spectra
A variety of factors can affect the utility of biomark-

ers in HCC due to variations in 1H-NMR urine spectra 

which impacts upon the identification of metabolites as 

 potential biomarkers. However, given the vast assortment of 

metabolites found in urine, wide variations in human gene- 

environment exposure can make disease biomarkers even 

more difficult to identify.50

Diet affects the gut microbiome and is the biggest con-

tributor altering urinary metabolites. This has been demon-

strated by studies considering dietary variation and metabolic 

profiles of urine, showing diet can be a confounding factor in 

disease biomarker studies. For example, variations in urinary 

metabolites are seen between vegetarian diets and in meat 

eaters, thereby suggesting differences in urine metabolic 

signatures, based on diet. Diets including meat have shown 

increased concentrations of metabolites, such as creatinine, 

carnitine, acetylcarnitine, and trimethylamine-N-oxide 

(TMAO). In contrast, those on vegetarian diets have higher 

levels of p-hydroxy phenylacetate, suggesting that alterations 

in the microbiome and diet contribute to urinary metabolic 

profile.42 Moreover, urine samples are more affected by 

changes in the diet than serum samples.51

Drugs such as non-steroidal anti-inflammatory drugs 

can affect the metabolic composition of urine.52 Most nota-

bly, antibiotics affect the gut microbiome, which may alter 

urinary metabolites.53 Similarly, paracetamol metabolites 

in urine heavily influence analysis and therefore they could 

be justifiably excluded from further analysis if discovered.54 

Dietary supplements, herbal remedies, and over-the-counter 

medications can in cases be found in urine, but with dif-

ficulty to determine the identity of the compound.47 Overall, 

interference by drug metabolites can cause changes in urine 

composition to be more difficult to identify or missed alto-

gether. Likewise, urinary changes have been identified due 

to diabetes.55,56 If diabetes is detected in urine spectra by high 

glucose, the peak should be removed from analysis if possible. 

The whole sample should be justifiably excluded from further 

analysis because if the peak is so strong it biases the model.

The degree of physical activity is directly associated 

with metabolism, whereby different levels of exercise have 

Table 1 Reasons for using TSP as a reference standard during 1H-NMR spectroscopy

•	 Reference peak with chemical shift frequency is far from that of signals from metabolites of interest
•	 Resonance of TSP does not overlap with sample components
•	 TSP is chemically stable
•	 TSP does not interact with sample components
•	 Shifts from TSP are precisely characteristic of certain nuclei within a metabolite and are very sensitive to environmental changes such as pH and 

temperature, although there is minimal variation when prepared accurately 
•	 TSP dissolves well in aqueous solvents used in metabonomics, unlike tetramethylsilane (TMS), another commonly used reference standard in 

1H-NMR
•	 TSP generates a single signal peak, unlike TMS which can give more, thereby obstructing the metabolic profile of the spectra
•	 TSP can be used as a concentration reference to calculate concentration of metabolites

Note: Data from Holzgrabe et al41 and Stella et al.42

Abbreviations: TSP, 3-(trimethylsilyl)-2,2′,3,3′-tetradeuteropropionic acid; 1H-NMR, proton nuclear magnetic resonance.

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


International Journal of General Medicine 2017:10 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

435

Utility of biomarkers in HCC

short- and long-term effects. For example, urine lactate 

increases after exercise,57 among a variety of other changes 

in urinary metabolites. 1H-NMR has the potential to dif-

ferentiate between urine taken before and after exercise, 

according to metabolic profile.58 Genetic factors contribute 

to the high variability of the human urine metabolome due 

to inter-individual differences.47 Age has also been suggested 

to play a role in urine metabolite levels as 1H-NMR spectra 

have been found to distinguish between those of young and 

old.59 Furthermore, time of sample collection is important 

to monitor and keep consistent, as some studies have seen 

diurnal variation in all urine samples.60

Metabolites found to be 
discriminatory for HCC
Hormone profiles differ between men and women and signifi-

cant differences in steroid metabolite excretion profiles have 

been identified, among other metabolite variations affecting 
1H-NMR urine spectra.61 Moreover, female hormones are 

known to be protective against HCC, whereas male hor-

mones, like testosterone, have been shown to correlate with 

HCC risk.62 Evidence suggests this could relate to interleu-

kin-6 (IL-6), which is a mediator synthesized by Kupffer cells 

that promotes HCC but is inhibited by estrogens. In mouse 

models, when IL-6 was ablated, there were no longer gender 

differences in hepatocarcinogenesis.63

Altered composition of urinary metabolites in HCC 

vs controls has been previously confirmed by 1H-NMR 

 studies,38,49,54,64 whereby reportedly discriminatory candidate 

biomarkers are described in Table 2. However, in most cases, 

there is also a general trend in the difference between HCC 

and cirrhotic patients, but not often shown to be significant. 

Many Chinese studies65–69 have also been carried out compar-

ing HCC with healthy controls by considering HCC urinary 

biomarkers using MS, but there is a need for more large-scale 

African studies, where HCC is an issue of equivalent mag-

nitude. Each study highlights the need for further validation 

studies to discriminate between metabolic phenotypes of 

disease states alone, such as HCC, HBV, and cirrhosis, as 

most HCCs occur on the background of cirrhosis; therefore, 

metabolic differences in chronic liver disease also need to 

be identified. Creatinine,49,54,64,65 hippurate,49,64 citrate,64,67 

and carnitine49,54 are the main metabolites corroboratively 

reported to be discriminant in HCC based on independent 

studies. For more information beyond the scope of this review, 

the uses and derivation of notable metabolites in HCC are 

detailed in a thorough review by Kimhofer et al.70

Creatinine is the breakdown product of creatine phos-

phate in muscle; therefore, reduced creatinine may be found 

because of decreased muscle mass, linked to cancer cachexia. 

Renal impairment causes increased serum creatinine and, 

therefore, it is important to check for differences in renal 

function between disease classes. Dietary animal protein 

increases creatinine levels,38 but it is rare for sub-Saharan 

individuals to consume much meat due to economic con-

straints. Diet in sub-Saharan Africa mostly consists of veg-

etables and crops, such as yam, and fish in coastal regions. 

Overall, the reduction of creatinine in previous publications 

is likely to be due to the diverse effects of the tumor on 

physiology.49,54,64,65

Table 2 Previously published studies aiming to identify HCC biomarkers through analysis of urine by 1H-NMR spectroscopy

Studies Year Country Main HCC etiology Significant metabolites discriminatory for HCC vs 
controls

↓/↑

Shariff et al54 2010 Nigeria HBv Creatinine

Carnitine

↓

↑
Shariff et al64 2011 egypt HCv Glycine, TMAO, hippurate, citrate

Creatine

↓

↑
Ladep et al38 2014 Nigeria HBv Hippurate, TMAO, pyruvate, citrate

Acetylcarnitine, dimethylglycine, carnitine, indole-3-acetate, 
creatine, methionine, unknown spectral signal putatively 
assigned to N-acetylated amino acid, 2-oxoglutarate

↓

↑

Cox et al49 2016 Bangladesh HBv Creatinine, hippurate, TMAO

Carnitine

↓

↑
Notes: Statistically significant metabolites discriminatory for HCC vs controls are shown and arrows indicate whether increased or decreased in HCC.
Abbreviations: HCC, hepatocellular carcinoma; HBv, hepatitis B virus; HCv, hepatitis C virus; TMAO, trimethylamine-N-oxide; 1H-NMR, proton nuclear magnetic 
resonance.
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Benzoate is formed by the metabolism of gut microbes 

from dietary aromatic compounds due to reduced hepatic 

function in HCC.71,72 Consequently, hippurate, an acyl gly-

cine formed by conjugation of benzoate and glycine in liver 

and kidney mitochondria,73 may act as a surrogate marker 

of hepatic function. Hippurate levels have been found to be 

reduced in previous studies38,49,64 due to less efficient benzoate 

conjugation, possibly from dysbiosis of microbiota, because 

of the disease.

Previous publications have also reported a reduction of 

citrate in HCC.38,64,67 Citrate is an intermediate in the Krebs 

cycle and, therefore, downregulation of citrate follows the 

Warburg effect relating to alterations in mitochondrial aerobic 

respiration of tumor cells.36,37 However, this is not specific for 

HCC. Citrate concentration has been shown to be higher in 

women, which is postulated to relate to estrogen levels,74,75 

but more research is required.

Carnitine is mainly derived from the diet and has an 

essential role in mitochondrial metabolic pathways as a 

product of tumor respiration.64 Significantly raised urinary 

carnitine levels have been found in HCC,49,54 whereas in 

healthy individuals <5% is usually excreted.76 Carnitine 

overproduction may result from rapid tumor growth, fueled 

by increased mitochondrial activity. Carnitine is important 

for energy metabolism, specifically as a cofactor to transport 

fatty acids from cytosol to mitochondria for the initial phase 

of beta-oxidation.77 

Process of biomarker determination
There is quite a challenging process involved in biomarker 

determination, involving several important steps. 1H-NMR 

spectral data must be acquired from urine samples following 

standardized protocols conforming to experimental protocols 

by Dona et al48 and then must be matched with associated 

demographic and anonymized clinical data. Pre-processing is 

carried out on the unedited spectra (Figure 1), involving the 

removal of the uninformative TSP, water and urea regions, 

alignment, and normalization. 

After editing of spectra, scaled principal component 

analysis (PCA) score plots (Figure 2) can be generated to 

summarize all samples, with potential to identify trends in 

data, and remove outliers determined by the Hotelling T2 con-

fidence interval,78 if well-reasoned, such as interference from 

drug metabolites or glucose. PCA is an unsupervised method 

involving principal components that are linearly uncorrelated 

coordinates used to express the greatest variance within a 

data set in decreasing orthogonal fashion. Component scores 

describe variations between samples.79 

Orthogonal partial least-squares discriminant analysis is 

a supervised method used to generate loadings plots. These 

show statistical deviations in response to the difference 

between the variable of interest, used to help determine peaks 

that significantly differ, such as the classification of different 

patient groups or certain clinical measurements (Figure 3). 

Statistical total correlation spectroscopy (STOCSY) is a 

technique developed by Cloarec et al to help determine the 

chemical structure of the molecule responsible for a peak of 

interest.80 Signals are identified from specific metabolites 

as well as associated signals involved in the same pathway. 

This is done by inputting ppm value of a signal and then the 

correlation between resonances is calculated. Posma et al’s 

development of subset optimization by reference matching 

(STORM)50 offers improved visualization of peaks (Figure 4), 

compared to STOCSY, as well as the ability to select subsets 

of 1H-NMR spectra. This optimizes the statistical approach 

to identify and assign metabolites.

However, multiple testing is prone to false positives; 

therefore, to help determine the true significance of signals, 

Bonferroni–Hochberg81 method of p-value correction for 

multiple testing is an important step to include to ensure 

significant results are not due to chance.82

Assignment of metabolites is then done by comparing 

spectral signals to published literature and databases, such as 

the Human Metabolome Database (HMDB), or by searching 

internal reference databases according to metabolite name 

or ppm value of 1H-NMR signal. Furthermore, experiments 

involving spiked-in quantities of putatively assigned metabo-

lites act as the gold standard, forming the basis of biomarker 

discovery.

Furthermore, two-dimensional (2D) JRES (J-resolved 

spectroscopy)83 1H-NMR data is useful alongside the overlay 

of one-dimensional (1D) spectra to verify multiplicity of peak 

signals (Figure 5). In general, 2D NMR is mainly used to 

provide additional detail of complicated molecular structures, 

through increased scan number.84 

One limitation of publications so far is that many com-

pounds are yet to be identified due to peak overlap being 

problematic for assignment and metabolites not documented 

in databases. 2D NMR data is underused, such as correlation 

spectroscopy85 and total correlation spectroscopy.86 However, 

they can aid confirmation of metabolite assignments by pro-

viding additional information about the relationship between 

peaks, to help with overlap. Similarly, more studies including 

spike-in experiments are required to confirm metabolite iden-

tity, which involves analyzing authentic compounds added 

to samples, to observe the peaks produced. However, both 
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Figure 1 (A) Unedited 1H-NMR spectra example. Different colors correspond to individual samples overlaid. (B) Median spectra of unedited data for ppm values ranging 
from above 4.5 to below 9.5. (C) Median spectra of unedited data for ppm values ranging from 1 to 4.5. Numbers indicate the following commonly reported metabolites – 
1: lactate; 2: alanine; 3: acetoacetate; 4: carnitine; 5: citrate; 6: creatinine; 7: creatine; 8: TMAO; 9: glycine; 10: hippurate; 11: 1-methylnicotinamide; 12: water; 13: urea; 14: 
formate.
Abbreviations: 1H-NMR, proton nuclear magnetic resonance; d, chemical shift; PPM, parts per million; TMAO, trimethylamine-N-oxide; TSP, 3-(trimethylsilyl)-2,2′,3,3′-
tetradeuteropropionic acid.
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1D and 2D NMR can sometimes be inconclusive, making 

metabolite assignment more challenging. For instance, in 

cases where spectra are of poor quality, insufficient intensity, 

or have resonance overlap. 

Conclusion
This review is based on the observation of an unmet medical 

need for an effective, reliable, and affordable diagnostic HCC 

test. HCC is an important issue due to its poor prognosis and 

late diagnosis.87 Consequently, in some parts of the world, HCC 

is the leading cause of death for those under 40 years old.5 

Urine is a suitable biofluid for 1H-NMR spectroscopy to detect 

significant markers of HCC, as urine samples are easily acces-

sible and acceptable to patients. Similarly, the development 

of a simple urine dipstick test for HCC based on the diverse 

effects of HCC tumorigenesis on metabolic pathways would be 

inexpensive and convenient for use in resource-deprived areas, 

where HCC incidence is highest.3,4 1H-NMR spectroscopy is 

useful in the development of a candidate biomarker panel. Such 

dipstick technology is a future line of research but has not yet 

Figure 2 example of univariance scaled PCA scores plot after data processing using 
the first and third principal components.
Abbreviations: PCA, principal component analysis; HCC, hepatocellular 
carcinoma; PC, principal component.
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been effected. Metabonomic studies and biomarkers are now 

even more essential to continue improving as we need to be 

looking beyond the genome to make more progress toward 

facilitating the diagnosis, treatment, and cure of HCC.

Future directions
Overall, studies so far suggest that urinary diagnostics are 

possible, and metabolites associated with energy, altered 

lipid metabolism, and markers of cell membrane turnover 

Figure 4 Identification of peaks from the same compound (hippurate) using STORM.50 Significant signals (pFDR<0.05) are shown in colors corresponding to the correlation 
coefficient (|r|).
Abbreviations: STORM, subset optimization by reference matching; d, chemical shift; PPM, parts per million; pFDR, false discovery rate.
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are probably discriminatory for HCC. However, larger 

studies are required, involving multiple sample popula-

tions, including different geographical locations, genetics, 

and etiologies of HCC. Furthermore, it is important to pay 

attention to confounding factors of 1H-NMR in studies, such 

as diet, smoking, and drugs. The inclusion of more women 

is also key to identifying and confirming the significant 

metabolites for a diagnostic panel of HCC biomarkers. Fur-

ther independent validation studies of new sample sets are 
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needed, with  comprehensive clinical data, including AFP for 

comparison of diagnostic performance against any potential 

new biomarkers identified for HCC. Ultimately, this should 

lead to the development of a novel pregnancy test–style urine 

dipstick test for HCC, which is theoretically plausible, and 

possible in the future, after further research and development. 

Biomarkers in HCC could have a massive medical impact in 

alleviating disease burden through low cost, earlier detection, 

and before the cancer stage is too late for curative treatment.
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