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Abstract: Premature atherosclerosis in diabetes accounts for much of the decreased life span. 

New treatments have reduced this risk considerably. This review explores the relationship 

among the disturbances in glucose, lipid, and bile salt metabolic pathways that occur in diabetes. 

In particular, excess nutrient intake and starvation have major metabolic effects, which have 

allowed us new insights into the disturbance that occurs in diabetes. Metabolic regulators such 

as the forkhead transcription factors, the farnesyl X transcription factors, and the fibroblast 

growth factors have become important players in our understanding of the dysregulation of 

metabolism in diabetes and overnutrition. The disturbed regulation of lipoprotein metabolism 

in both the intestine and the liver has been more clearly defined over the past few years, and 

the atherogenicity of the triglyceride-rich lipoproteins, and – in tandem – low levels of high-

density lipoproteins, is seen now as very important. New information on the apolipoproteins 

that control lipoprotein lipase activity has been obtained. This is an exciting time in the battle 

to defeat diabetic atherosclerosis.

Keywords: obesity, type 2 diabetes, dyslipidemia, low-density lipoprotein, fibroblast growth 
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Introduction
Diabetes is still often considered a sugar-related disease, but the disease might well 

have been named diabetes lipidus if only lipids instead of sugar could have been tasted 

in the urine, as suggested by Shafrir and Raz.1 Only in recent years has the devastat-

ing complication of the lipid-related disease atherosclerosis become more feared 

than the glucose-centric small vessel disease.2–5 Whereas small vessel disease is very 

much related to hyperglycemia, large vessel disease has been difficult to attribute to 

dysglycemia. Many studies have failed to reduce cardiovascular disease (CVD) events 

by improvement in blood sugar control.6–9 On the other hand, cholesterol-lowering 

treatment, in particular, statins, have been shown to have a major impact on cardio-

vascular events from the first statin trials in diabetic patients.10–12 The pathways by 

which insulin regulates fuel usage are still being discovered. It is clear that there is 

a switch from glucose to fat metabolism overnight when, in the fasting state, insulin 

deficiency results in not only high serum glucose but also high serum triglyceride levels. 

The triglycerides are packaged in lipoprotein particles driving the cascade through 

abnormal chylomicrons, very-low-density lipoprotein (VLDL), intermediate-density 

lipoprotein (IDL), low-density lipoprotein (LDL), and finally high-density lipoprotein 

(HDL) (Figure 1).
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Fasting hypertriglyceridaemis is significantly associated 

with cardiovascular events and death.13 A similar picture 

emerges when postprandial triglycerides are examined.14–16 

Starvation and bariatric surgery both have a profound effect 

on serum lipids.17–19 Cholesterol is both absorbed and syn-

thesized. Insulin regulates both these pathways, and since 

cholesterol synthesis is regulated through the bile acid cho-

lesterol pathway, bile acids play a major part in cholesterol 

homeostasis.20

The purpose of this review is to explore the relationship 

among insulin resistance, diabetes, and dyslipidemia. We 

highlight areas of research that may lead to the discovery of 

possible new treatments to prevent premature heart disease 

in diabetes.

Insulin action
The secretion of insulin is glucose dependent. This is relevant 

in the fed state to prevent postprandial hyperglycemia. In 

fasting conditions, when the blood sugar is low, insulin is 

still needed; otherwise, free fatty acids will rise and hepatic 

glucose suppression will not occur, leading to hyperglycemia. 

In the fasting state, when blood sugars are low, fatty acids, 

not glucose, stimulate insulin secretion from the β cells.21

It has been shown that fatty acids acutely enhance insulin 

secretion, oxygen consumption rate, and extracellular acidifi-

cation rate in human islets at fasting glucose concentrations, 

with monounsaturated fatty acids (MUFAs) being more 

potent than saturated fatty acids (SFAs).22 Cen et al22 sug-

gest that the high fatty acids in their study may account for 

the hyperinsulinemia in patients who have raised fatty acids 

but normal blood sugars. In overnutrition, insulin initially 

manages to store the excess calories in the adipose tissue. 

This process breaks down at some stage and fatty acids collect 

in the liver and the muscle, leading to insulin resistance, and 

a vicious cycle arises in which the pancreas fails to deliver 

sufficient insulin to cope with the increased demands. This 

leads to even more difficulty in disposal of the fatty acids, and 

then the lack of inhibition of glucose release in the liver leads 

to hyperglycemia against a background of raised fatty acids. 

The high glucose level inhibits β-oxidation via a product of 

the glycolytic pathway, malonyl coenzyme A (Co-A), and 

fatty acids are directed toward formation of triglycerides.23 

In the long term, the rise in free fatty acids has a detrimental  

effect on the β cells, leading to apoptosis.24

Diacylglycerol and insulin resistance
Diacylglycerol (DAG) is the precursor for triglyceride bio-

synthesis. The DAG kinases (DAGKs) are a group of kinases 

that regulate signal transduction via protein kinase C (PKC), 

Ras and Rho family proteins, and phosphatidylinositol 

5-kinases.25 Elevated DAG content is linked with the develop-

ment of insulin resistance in type 2 diabetes.26,27 DAGK delta 

activity and total DAG level are reduced in skeletal muscle 

from type 2 diabetic patients.28,29 Adenosine monophosphate 

(AMP)-activated protein kinase (AMPK) is a central regula-

tor of energy metabolism. Metformin, the most commonly 

used drug to treat type 2 diabetes, activates AMPK to suppress 

gluconeogenesis.30 AMPK also suppresses gluconeogenesis 

by the downregulation of FoxO1 target genes.31 Transform-

ing growth factor beta (TGF-b)/daf-16 (FoxO1) interact 

Figure 1 Lipoprotein cascade.
Notes: In the circulation, VLDL is gradually delipidated, resulting in increasingly smaller lipoprotein particles, ie, IDL, LDL, and small dense LDL. The intestinally derived 
chylomicron, characterized by presence of apoB48, is delipidated to form the chylomicron remnant, which is taken up by the liver.
Abbreviations: HDL, high-density lipoprotein; IDL, intermediate-density lipoprotein; LDL, low-density lipoprotein; VLDL, very-low-density lipoprotein.
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with AMPK to regulate metabolic and nutrient sensory path-

ways and glucose metabolism.32,33 Yadav et al33 have shown 

that that TGF-b1 signaling suppressed the liver kinase B1 

(LKB1)–AMPK axis, thereby facilitating the nuclear trans-

location of FoxO1 and activation of key glucogenic genes 

regulating glucose-6 phosphatase and phosphoenolpyruvate 

carboxykinase both in the fasting state and in type 2 diabetes. 

PKC blocks AMPK activation.34 Nutrient excess in type 2 

diabetes or obesity elevates DAG levels and PKC activity, 

in addition to impairing insulin sensitivity.35 AMPK activity 

is reduced in insulin-resistant and obese animal models.36 

AMPK is involved in lipid metabolism through acetyl-CoA 

carboxylase and malonyl-CoA decarboxylase.37,38 Jiang et 

al39 have shown that DAGK delta deficiency impairs AMPK 

and lipid metabolism, as well as influencing skeletal muscle 

energetics. It seems that DAGK delta is a major player in the 

reduction in lipid oxidation and the insulin resistance found 

in type 2 diabetes (Figure 2).

Bile acids
There is a third player in this process, namely, the bile 

acids. The two primary bile acids are chenodeoxycholic and 

cholic acids. They are synthesized in the liver, conjugated 

with taurine or glycine, and excreted in the bile.20 They aid 

fat absorption through their ability to form micelles, thus 

solubilizing fat and cholesterol.40 An increase in dietary 

cholesterol suppresses cholesterol synthesis and a decrease 

in dietary intake increases de novo synthesis in the liver. The 

bile acid-activated receptors play an important regulatory 

part in not only maintaining lipid, but also glucose, homeo-

stasis.41–43 Chenodeoxycholic acid, which is an important 

farnesoid X receptor (FXR) agonist, lowers the biliary secre-

tion of cholesterol, and reduces the cholesterol saturation of 

LDL through reduced clearance of plasma apolipoprotein B 

(apoB).44 Hepatic microsomal cholesterol 7 alpha hydroxy-

lase (CYP7A1) and 3-hydroxy-3-methylglutaryl CoA (HMG 

CoA) reductase activities were reduced and specific LDL 

receptor binding was also reduced.45–47 Ghosh et al48 have 

shown that chenodeoxycholic acid reduces plasma clearance 

of LDL, somewhat mitigated by a decrease in LDL produc-

tion. Proprotein convertase subtilisin/kexin type (PCSK9), 

apoA1, apoC111, lipoprotein (a), triglycerides, and insulin 

levels were reduced. This is of interest because FXR ago-

nists have been shown to prevent the development of insulin 

resistance in animals.49

Glucose-dependent insulinotropic polypeptide (GIP) 

stimulates insulin secretion. The action of GIP is impaired 

in type 2 diabetes. GIP has been shown to lower nonesteri-

fied fatty acid (NEFA) concentration in obese type 2 diabetic 

patients despite diminished insulinotropic activity. GIP has 

also been shown to increase subcutaneous adipose tissue tri-

glycerides. Reduction in NEFA concentration with GIP cor-

related with a reduction in adipose tissue insulin resistance.50

Fibroblast growth factors (FGFs)
FGF 15/19 and FGF 21 play an important role in metabolic 

regulation.51–53 Both molecules have demonstrated ability 

to lower serum glucose, triglyceride, and cholesterol levels; 

improve insulin sensitivity; and reduce body weight.54,55 

FGF 19 activates FGF receptor 4 (FGFR4), the predomi-

nant receptor expressed in the liver, and regulates bile acid 

homeostasis.53,56–57 FGF 21 has recently been shown in mice 

to antagonize the action of FGF 15/19.53 Zhang et al53 have 

found, as expected, that overexpression of either FGF15 or 

FGF 21 reduced body weight, fasting glucose level, and insulin 

level, as well as decreasing plasma triglyceride and cholesterol 

levels. FGF 15 lowered the bile acid pool, but unexpectedly, 

the authors report that they found that FGF 21 increased the 

bile acid pool size through the beta-Klotho/FGFR4 complex. 

CYP7A1 catalyzes the first and rate-limiting step in the classic 

bile acid pathway.58 Cyp7A1 is tightly regulated by a negative 

feedback loop mediated by FGF 15/19.59,60 Overexpression of 

FGF15 significantly reduces Cyp7A1 mRNA.53 In contrast, 

FGF 21 overexpression results in CYP7A1 upregulation, sug-

gesting that bile acid synthesis was the reason for the increased 

bile acid pool size in these animals. Serum FGF 21 has been 

shown to be increased in obesity.61 The authors have shown 

that there was a positive correlation between adiposity, fast-

ing insulin, and triglycerides and a negative correlation with 

HDL cholesterol. Logistic regression analysis demonstrates 

an independent association between serum FGF 21 and the 

metabolic syndrome.61 FGF 21 has been shown to be raised in 

type 2 diabetic patients with nonalcoholic fatty liver disease.62 

More recently, Alonge et al63 have shown that glucagon and 

Figure 2 Metformin stimulates AMPK, which downregulates gluconeogenesis both 
directly and through downregulation of FoxO.
Abbreviation: AMPK, adenosine monophosphate-activated protein kinase.

Metformin

AMPK

FoxO

Gluconeogenesis

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy 2017:10submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

336

Tomkin and Owens

insulin cooperatively stimulate FGF 21 gene transcription by 

increasing the expression of activating transcription factor 4. 

It has also been shown that FGF 21 is a superior biomarker to 

other adipokines.64 The authors suggested that serum FGF 21 

might be considered an alternative to the oral glucose tolerance 

test.64 An FGF 21 analog has been shown to be superior to 

glargine insulin and a glucagon-like peptide-1 (GLP1) agonist 

liraglutide in reducing hemoglobin A1c (HbA1c) and improv-

ing glycemic control, insulin resistance, serum lipids, and 

liver function states in type 2 diabetic db/db mice (Figure 3).65

The FGF 21 analog LY2405319 has shown, in a 28-day 

proof-of-concept study66 in type 2 obese diabetic patients, sig-

nificant improvement in lipids, with favorable effects on body 

weight, fasting insulin, and adiponectin. There was a trend 

toward glucose lowering.66 Another analog, PF-05231023, has 

been shown – in type 2 diabetes – to decrease body weight, 

improve lipoprotein profile, and increase adiponectin levels.

The drug had no effect on glycemic control. The drug had 

effects on multiple markers of bone formation and resorp-

tion, and it increased insulin-like growth factor-1 (IGF-1). 

In adults, FGF 21 has been shown to be raised.64 In Chinese 

children aged between 6 and 18  years, the opposite has 

been described, with deficiency – rather than resistance – 

being found.67 The authors suggest that in children, FGF 21 

deficiency – rather than resistance – contributes to insulin 

resistance and hypoadiponectinemia. Interestingly, leptin has 

recently been shown to increase FGF 21 levels in Wistar rats 

and in human-derived hepatoma HepG2 cells.68 Thus, the 

pathways between bile, cholesterol, glucose, and fat meta-

bolic processes are linked, but there are still many discover-

ies yet to be made. Looking at the problem the other way, a 

deficiency of insulin leads to hyperglycemia, hypertriglyc-

eridemia, and hypercholesterolemia, apart from abnormal 

bile acid metabolism, which affects the apoB-containing 

lipoproteins, and an interconnected decrease in HDL.

Serine/threonine protein kinase 
(STK25)
The networks controlling fat deposition and insulin respon-

siveness are very complex and attract much attention. The 

enzyme STK25 has been shown to influence intramyocellular 

lipid accumulation, impair skeletal muscle mitochondrial 

function and sarcomeric ultrastructure, and induce perimysial 

and endomysial fibrosis, thereby reducing endurance exercise 

capacity and muscle insulin sensitivity.69 The same group had 

previously shown that STK25 regulates lipid partitioning in 

human liver cells by controlling triglyceride synthesis as well 

as lipolytic activity and, thereby, NEFA release from lipid 

droplets for β-oxidation and triglyceride secretion.70

Forkhead transcription factors
FoxO1 plays an important role in orchestrating fuel metabo-

lism and influences glucose, fat, and bile metabolic pathways 

through its effect on mitochondrial function and adipocyte 

differentiation.71–75 FoxO1 alters mitochondrial biogenesis, 

morphology, and function in the liver of insulin-resistant 

mice, while genetic ablation of FoxO1 significantly normal-

izes mitochondria and metabolism.73,76 In the adipocyte, 

silencing of FoxO1 inhibits cell differentiation and lipid 

accumulation, with changes in expression of mitochondrial 

respiration chain proteins.71,73,74 FoxO1 has been shown to 

control lipid droplet growth and adipose autophagy.77–81 

Inhibition of autophagy leads to browning of white adipose 

tissue, which is characteristic of increased expression of 

uncoupling protein 1 (UCP1).78–81 UCP1 uncouples mito-

chondrial respiration from adenosine triphosphate (ATP) 

production/oxidative phosphorylation, dissipating energy 

as heat.82,83 Liu et al84 have recently shown that FoxO1 inter-

acts with transcription factor EB (Tfeb), a key regulator of 

autophagosomes and lysosomes, and mediates the expression 

of UCP1, UCP2, and UCP3. However, the study84 showed 

that inhibition of FoxO1 suppressed Tfeb and autophagy, 

attenuated UCP2 and UCP3, but increased UCP1 expression 

(Figure 4). The enzyme protein deglycase  (DJ-1) is involved 

in multiple physiological processes. Wu et al85 have recently 

shown that this protein is involved in maintaining energy 

balance and glucose homeostasis, regulating brown adipose 

tissue (BAT) activity. They showed that DJ-1-deficient mice 

had reduced body mass, increased energy expenditure, and 

improved insulin sensitivity. DJ-1 has been shown to inhibit 

FoxO1-dependent UCP1 expression in BAT. FoxO1 has also 

been shown to downregulate apoA1 gene activity in HepG2 

cells under oxidative stress induced by hydrogen peroxide.86 

ApoA1 forms HDL particles and has an antioxidant function.

Figure 3 FGF 15/19 and FGF 21 have opposing effects on bile acid synthesis through 
their effect on Cyp7A1.
Note: Glucagon, leptin, and insulin increase FGF 21, which increases adipose tissue 
UCP1. Cyp7A1 is also termed cholesterol 7a-hydroxylase.
Abbreviation: FGF, fibroblast growth factor.
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Leptin is an important metabolic regulator. Leptin injec-

tions have been shown to increase plasma FGF21 in vivo in 

Wistar rats and in vitro using human-derived hepatocarci-

noma HepG2 cells, mediated by STAT 3 activation.68 FoxO1, 

FoxO3, and FoxO4 have been shown to be involved in muscle 

proteasomal and autophagy–lysosomal degradation. Diabetes 

strongly affects protein metabolism, muscle wasting being 

a very significant finding in uncontrolled diabetes. Insulin 

and IGF-1 enhance muscle protein synthesis through their 

receptors.87 O’Neill et al88 have shown that both IGF-1 and 

the insulin receptor are involved in muscle proteostasis, the 

insulin receptor being more important than IGF-1. They 

found that muscle-specific deletion of FoxO1, FoxO3, and 

FoxO4 in double knockout of both insulin receptor and IGF-1 

in mice completely rescued the muscle mass without chang-

ing the proteasomal activity.

FoxO1, rapamycin, and perilipin 
(PLIN)
Muscle is an important tissue for whole-body glucose 

homeostasis.89,90 Target of rapamycin (TOR) C2 is found in 

the insulin signaling pathway and is responsible for regu-

lating muscle glucose metabolism.91–93 Acute inhibition of 

mTOR complexes increases lipid utilization, probably due 

to the effect of mTOR C2.91 PLIN 3 is a regulator of lipid 

storage.94–96 Knockdown of PLIN 3 in the liver of high-fat-

diet-fed mice improves hepatic steatosis along with glucose 

homeostasis.97 PLIN 3 overexpression has been shown 

to increase muscle triglyceride.98 FoxO1 is a regulator of 

PLIN 1. AMPK modulates FoxO1 transcriptional activity.99 

A FoxO1 antagonist has been shown to suppress autophagy 

and lipid droplet growth in adipocytes.77

Fibroblast activation protein (FAP)
FAP is a serine protease, and it has been shown to regulate 

the degradation of FGF 21100 Sánchez-Garrido et al101 have 

shown that inhibition of FAP using a known FAP inhibitor, 

talabostat, enhances levels of FGF21 in obese mice, reduc-

ing body weight, food consumption, and adiposity while 

increasing energy expenditure, glucose tolerance, and insu-

lin sensitivity, as well as lowering cholesterol levels. The 

metabolic effect of FAP inhibition was markedly reduced 

in lean animals.101

Peroxisome proliferator-activated 
receptor (PPAR)
Insulin resistance in skeletal muscle plays a major role in 

obesity and type 2 diabetes.27 The PPAR superfamily of tran-

scription factors includes the isoforms PPAR-alpha, which 

modifies insulin resistance in the liver; PPAR-γ, which regu-

lates genes involved in fatty acid metabolism, inflammation, 

and macrophage homeostasis;102 and PPAR delta, which has 

been implicated in obesity-associated insulin resistance.103 

It is highly expressed in muscle compared to PPAR alpha 

and gamma. A high-fructose diet-induced obesity results 

in insulin resistance in mice with hyperinsulinemia, hyper-

leptinemia, hyperlipidemia, and hypoadiponectinemia. The 

diet has been shown to impair insulin and AMPK signaling 

pathways and reduce glucose transporter type 4(GLUT-4) 

and GLUT-5 expressions. The study showed that a PPAR 

delta agonist GW0742 had no effect on control mice, but in 

the high-fructose-diet animals, it increased the expression of 

PPAR delta and significantly attenuated all the effects of the 

diet on the phosphorylation of insulin receptor substrate-1 

(IRS-1), protein kinase B (PKB) or AKT, and glycogen syn-

thase kinase 3 beta (GSK-3B). The agonist reduced skeletal 

muscle triglyceride and increased muscle glucose uptake. The 

drug increased phosphorylation of both AMPK and acetyl 

Co-A carboxylase (ACC) and increased protein expression 

of carnitine palmitoyl transferase-1 (CPT-1), all suggesting 

an increase in fatty acid oxidation. There was a dramatic 

increase of FGF-21 production in the muscle.104

DAG transferase
Hypertriglyceridemia is a major finding in uncontrolled 

diabetes. Indeed, many years ago,105 Shafrir and Gutman105 

showed that as glucose intolerance increased from normal to 

diabetes through prediabetes, free fatty acids became much 

more markedly abnormal and preceded the glucose shift from 

normal to diabetes. Free fatty acids are converted to DAG 

through diglyceride acyltransferase (DGAT)-1 and then to 

triacylglycerol through DGAT2. The other major pathway of 

triglyceride synthesis is the glycerol phosphate pathway. In 

both pathways, fatty acyl-CoA and DAG are converted jointly 

to form triglyceride, catalyzed by DGAT. A novel DGAT1 

Figure 4 Effect of FoxO1 on adipocyte differentiation and mitochondrial function.
Notes: FoxO is a regulator of glucose metabolism, lipid accumulation, and 
adipocyte differentiation. It also increases adipocyte browning and interacts with 
Tfeb to regulate UCPs 1, 2, and 3.
Abbreviation: Tfeb, transcription factor EB.
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inhibitor has been shown in mice to improve insulin resistance 

in adipose tissue, as well as systemic glucose metabolism, 

through a reduction in body weight.106

Triglyceride and cholesterol 
absorption in diabetes
Excess calories are first stored as triglyceride in adipose tis-

sue to be released as fuel through the fatty acid cycle when 

carbohydrate is in short supply. Lipoprotein lipase (LpL) is 

suppressed by insulin, and therefore in insulin deficiency 

states, lipolysis increases even in a high-glucose environ-

ment. FoxA2 has been shown in the liver to regulate the 

LpL gene; thus, FoxA2 may be another important regulator 

of lipid and glucose metabolic pathways.107 Dietary fat is 

solubilized by bile acids in the intestine and, apart from the 

short-chain fatty acids, is absorbed by the lymphatic system 

passing to the liver. Triglyceride absorption is unregulated, so 

that fecal fat remains in very small quantities even in very-

high-fat diets. Fatty acids stimulate synthesis of apoB100, 

which is edited to apoB48 in the intestine.108 ApoB48 is the 

solubilizing protein by which triglycerides and cholesterol 

are carried to the liver and then around in the circulation 

in the postprandial state. Although triglyceride absorption 

is unregulated, cholesterol absorption is tightly regulated. 

NPC1L1 is the regulating transporter protein in the first step 

in cholesterol absorption in the intestine. NPC1L1 mRNA is 

upregulated in diabetes.109 It has been shown that in a high- 

glucose environment, cholesterol absorption is increased.110

The dimer proteins ABCG 5/8 act together in the intestine 

to excrete excess cholesterol back into the lumen. These 

genes are downregulated in diabetes.109 Genetic variants in 

ABCs G5/8 have been shown to protect against myocardial 

infarction (MI) but also to increase the risk of symptom-

atic gallstone disease, demonstrating the interdependence 

between bile acid and cholesterol metabolic pathways.111 The 

final step in the absorption process is the attachment of the 

triglyceride and cholesterol onto apoB48 through MTP. MTP 

is upregulated in diabetes, and this is reflected in higher levels 

of apoB48 in serum (Figure 5).112 These particles are thought 

to be particularly atherogenic because of their large size and 

rapid turnover, so even though their cholesterol quantity per 

particle is low, the total carrying power of these particles is 

large; therefore, they are inherently atherogenic since the 

particles lodge in atheromatous plaques.113

The postprandial apoB48-containing particles and the 

VLDL apoB100 triglyceride-rich particles gather various 

apoproteins in the circulation. For example, apoC1 inhib-

its clearance of triglyceride by LpL. High levels of white 

adipose tissue apoC1 secretion has been shown to delay 

clearance of postprandial chylomicrons in overweight and 

obese subjects.114 ApoC11 is an obligatory cofactor for LpL. 

Recently, deficient cholesterol esterification has been found 

to occur in an apoC11-deficient zebrafish, which mimics 

the familial chylomicronemia syndrome in human patients, 

with a defect in apoC2 or LpL genes.115 ApoC111 inhibits 

the delipidation of triglyceride from the particle by inhibiting 

the action of LpL, thus delaying the clearance of the particle 

from the circulation.116 The Bruneck Study117 was designed 

to examine the importance of various apolipoproteins in 

the genesis of cardiovascular events over a 10-year period. 

The study found that apoC11, apoC111, and apoE were the 

apolipoproteins most significantly associated with incident 

Figure 5 Cholesterol absorption and chylomicron assembly and breakdown.
Notes: Diacylglycerol is formed from free fatty acids under the influence of DGAT-1. Dietary cholesterol uptake from the intestine into the lymph is regulated by NPC1L1. 
ApoB48 is synthesized in the intestine. Triglyceride, cholesterol, and apoB48 are combined under the influence of MTP to form the chylomicron. In the circulation, the 
chylomicron is delipidated by LPL and cleared by the liver.
Abbreviations: DGAT, diglyceride acyltransferase; LPL, lipoprotein lipase.
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CVD. These associations were independent of HDL and 

non-HDL cholesterol and extended to stroke and MI. Interest-

ingly, these three apolipoproteins, apoC1, apoC11, and apoE, 

were implicated in de novo lipogenesis, glucose metabolism, 

complement activation, blood coagulation, and inflammation, 

through the lipidomic and proteomic profiles determined in 

the study.118 In the liver, NPC1L1 plays a part in the transport 

of cholesterol to the canaliculi, wherein the VLDL particle 

is assembled. The ABCs G5/8 play an important part in 

regulating the amount of cholesterol diverted to the bile for 

excretion. AUP1 is an endoplasmic reticulum-associated 

protein. Very recently, it has been shown to be involved in 

the regulation of apoB100, hepatic lipid droplet metabolism 

in the liver, and intracellular lipidation of VLDL particles.119 

Its role in the intestine is so far unknown.

Diabetes disturbs the synthesis and metabolism of 

triglyceride-rich lipoprotein particles, increasing their ath-

erogenicity. The specific role of triglycerides in atherogenesis 

has been difficult to tease out as the lipoprotein cascade is 

so interdependent and changes in the chylomicron influence 

VLDL assembly in the liver through the increase in delivery 

of both triglyceride and cholesterol to the liver.120 The increase 

in triglyceride content of the VLDL particle translates to an 

LDL particle with an increase in fatty acids. LDL atheroge-

nicity is dependent at least in part on its oxidizability. The 

more the number of fatty acids with more-than-one double 

bond, the easier it is to oxidize, and it is the oxidized LDL 

that is taken up in an unregulated way by the macrophage, 

the hallmark of the atheromatous plaque.120 Small dense LDL 

particles are particularly associated with atheromatous risk 

and these particles arise from triglyceride-rich VLDL par-

ticles. An analysis of lipoprotein subfractions in 920 patients 

with and without type 2 diabetes confirmed the increase in 

concentration and size of smaller LDL particles.121

Free radical production is increased in the hyperglycemic 

state, so the diabetes environment increases the oxidation of 

LDL. In this context, delays in treatment intensification with 

oral antidiabetic drugs have been shown to increase the risk 

of major cardiovascular events.122

Diabetes dyslipidemia, 
atherosclerosis, and HDL
The hallmark of diabetes dyslipidemia is high triglycerides 

with low HDL.123,124 The interdependence of triglycerides and 

HDL has made it very difficult to separate the risk of athero-

sclerosis from one or the other. Until recently, HDL has come 

out on top and the triglyceride-rich lipoproteins have been 

undervalued as risk factors for accelerated atherosclerosis. 

Epidemiological studies in the 1970s established the strong 

inverse relationship between low HDL levels and coronary 

heart disease.125,126 More recently, the focus has been on the 

quality of HDL since functionality has been shown to be 

of major importance in predicting atherogenic risk.127,128 

Hermans et al128 have suggested that the ratio of HDL-C/

apoA1 might be a better way to predict angiopathic risk. Sun 

et al129 have shown that HDL from people with type 2 diabetes 

had the ability to stimulate secretion of tumor necrosis fac-

tor (TNF)-a, an inflammatory cytokine, in incubated human 

peripheral blood mononuclear cells to a greater extent as 

compared to HDL from control subjects. They showed that 

HDL from the patients with coronary artery disease (CAD) 

had a greater capacity to stimulate TNF-a as compared to 

HDL from the type 2 diabetic subjects who did not have 

coronary heart disease. The proinflammatory ability of 

HDL was a significant predictor for the presence of CAD 

in patients with diabetes. HDL particle number, rather than 

cholesterol content, may be a better predictor of atherogenic-

ity. A multiethnic study130 of atherosclerosis has examined 

this in patients with the metabolic syndrome and diabetes. 

Tehrani et al130 found that HDL particle number in diabetes 

predicted coronary heart disease (CHD) and CVD. In those 

with metabolic syndrome, only LDL particle number was 

positively associated with CVD.

A retrospective study131 among >47,000 patients attending 

Italian diabetic centers investigated >15,000 patients with no 

evidence of renal disease. A 4-year follow up demonstrated 

that low HDL and high triglyceride levels were independent 

risk factors for the development of diabetic kidney disease 

over 4  years.131 Poor glycemic control in type 2 diabetes 

enhances functional and compositional alterations of small 

dense HDL3.132 Gomez Rosso et al132 showed that defective 

functionality of small dense HDL particles was present in 

patients with type 2 diabetes mellitus with poor glycemic 

control. The HDL had also diminished its antioxidant ability. 

One of the benefits of lifestyle intervention is the increase 

in HDL and, in particular, large HDL. It has recently been 

shown that lifestyle intervention can offset unfavorable 

genetic loading for most lipid traits, including the size of 

HDL.133 The understanding of functionality of HDL may 

become clearer following the description of the use of atomic 

force microscopy to examine the organization of apoA1.134

Conclusion
The dysregulation of metabolism when relative or absolute 

insulin deficiency appears has been more clearly defined in 

the past few years. The interplay between the bile, cholesterol, 
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and carbohydrate metabolic pathways and the genes involved 

have opened up new possibilities of treatments to ameliorate 

the atherogenic potential of diabetic dyslipidemia. Overfeed-

ing leads to obesity and insulin resistance. Hyperinsulinemia 

progresses to a relative, and then absolute, deficiency of 

insulin. It is difficult to dissect the metabolic disturbances 

that occur at each stage of the disease process. Dyslipidemia 

potentiates the disease process through oxidation of LDL, 

which further damages the β-cell. The abnormal HDL and 

the deficiency of its antioxidant functions in the defense of 

the β-cell have made for exciting speculations on treatments 

that might slow or stop β-cell destruction. Calorie excess, 

together with inadequate exercise, remains central to type 

2 diabetes and diabetic dyslipidemia. Bariatric surgery and 

starvation both have shown how calorie restriction can ame-

liorate the metabolic dysfunction of type 2 diabetes, which 

includes dyslipidemia.

The most obvious lipid defect in uncontrolled diabetes 

is the elevated level of triglycerides. A consequence is the 

lowering of HDL. The triglyceride-rich lipoproteins have 

again come into fashion as important atherogenic particles. 

Although these particles carry much less cholesterol than 

LDL per particle, their actual load is similar to LDL if one 

takes into account their rapid half-life. LDL has a half-life 

of days rather than minutes in the case of chylomicrons. The 

influence of insulin on regulation of the apoB48-containing 

chylomicron in the intestine through a complex series of 

steps has helped to understand how dysregulation occurs 

in diabetes.
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