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Abstract: Breast cancer metastatic to bone has a poor prognosis despite recent advances in 

our understanding of the biology of both bone and breast cancer. This article presents a new 

approach, the ABC7 regimen (Adjuvant for Breast Cancer treatment using seven repurposed 

drugs), to metastatic breast cancer. ABC7 aims to defeat aspects of epithelial-to-mesenchymal 

transition (EMT) that lead to dissemination of breast cancer to bone. As add-on to current 

standard treatment with capecitabine, ABC7 uses ancillary attributes of seven already-marketed 

noncancer treatment drugs to stop both the natural EMT process inherent to breast cancer and 

the added EMT occurring as a response to current treatment modalities. Chemotherapy, radia-

tion, and surgery provoke EMT in cancer generally and in breast cancer specifically. ABC7 uses 

standard doses of capecitabine as used in treating breast cancer today. In addition, ABC7 uses  

1) an older psychiatric drug, quetiapine, to block RANK signaling; 2) pirfenidone, an anti-fibrosis 

drug to block TGF-beta signaling; 3) rifabutin, an antibiotic to block beta-catenin signaling; 

4) metformin, a first-line antidiabetic drug to stimulate AMPK and inhibit mammalian target 

of rapamycin, (mTOR); 5) propranolol, a beta-blocker to block beta-adrenergic signaling; 6) 

agomelatine, a melatonergic antidepressant to stimulate M1 and M2 melatonergic receptors; and 

7) ribavirin, an antiviral drug to prevent eIF4E phosphorylation. All these block the signaling 

pathways – RANK, TGF-beta, mTOR, beta-adrenergic receptors, and phosphorylated eIF4E – 

that have been shown to trigger EMT and enhance breast cancer growth and so are worthwhile 

targets to inhibit. Agonism at MT1 and MT2 melatonergic receptors has been shown to inhibit 

both breast cancer EMT and growth. This ensemble was designed to be safe and augment 

capecitabine efficacy. Given the expected outcome of metastatic breast cancer as it stands today, 

ABC7 warrants a cautious trial.

Keywords: ABC7, breast cancer, agomelatine, capecitabine, metformin, pirfenidone, proprano-

lol, quetiapine, repurposing, ribavirin, rifabutin, TGF-beta

Plain language summary
This article presents the rationale and thinking behind the ABC7 regimen for metastatic breast 

cancer. Since there is currently no cure for breast cancer once it has spread to bone and other 

organs beyond the breast itself, the ABC7 regimen was designed to take advantage of ancillary 

attributes of seven common and readily available noncancer treatment drugs that, in theory, 

should make current traditional cytotoxic chemotherapy with capecitabine more effective. The 

ABC7 regimen has not been shown to be safe or effective yet. In the current article, we discuss 

an untested proposal for a new treatment approach to metastatic breast cancer.
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Introduction
Estrogen-positive metastatic breast cancer cannot be cured 

currently.1 One major metastatic site of breast cancer is 

bone. Once breast cancer metastasizes to bone, the survival 

rate declines despite recent advances in local treatments of 

breast cancer. Current treatment strategies for bone metas-

tasis, including bone-targeted agents (bisphosphonate and 

denosumab), provide only palliation. New and effective 

therapeutic strategies for this still incurable disease are 

therefore urgently needed.

This article reviews the attributes of seven currently mar-

keted drugs that, as indicated by prior research data, will block 

or partially block the escape pathways from current traditional 

treatments. The seven drugs of ABC7 were chosen by first 

identifying the basic pathways by which EMT is initiated and 

maintained. We then reviewed 1000 of the most commonly used 

drugs2 for which we have both usual plasma levels and pub-

lished data showing potential inhibitory interaction with these 

pathways. The resulting list was reduced by semi-subjective 

evaluation of the strength of data on their EMT inhibition 

benefit versus the drugs’ expected tolerability. The better the 

tolerability, the weaker the data had to be for inclusion.

This ABC7 regimen is designed to block several core 

breast cancer growth signals in a coordinated manner, thereby 

augmenting the cytotoxicity of a currently used cytotoxic 

chemotherapy drug, capecitabine. Figure 1 shows an over-

view schematic of the biochemistry that ABC7 is designed 

to influence. This is explained in detail in the respective drug 

discussions in the “Drugs to inhibit EMT” section. Table 1 

gives an overview of the ABC7 drugs and their intended 

targets in treating breast cancer.

The ABC7 regimen follows the approach of previous 

cancer treatment regimens, for example, MTZ regimen,3 

COMBAT regimen,4 MEMMAT regimen, a current trial of 

Peyrl et al’s seven-drug cocktail (ClinicalTrials.gov Identifier: 

NCT01356290), and CUSP9 regimen.5,6 In all of the studies, 

extensive use is made of drugs not primarily marketed to treat 

cancer but that have ancillary attributes that research data 

indicate would enhance the anticancer effect of a cytotoxic, 

traditional cancer treatment drug. The ancillary drugs exert 

anticancer effects by blocking various growth-enhancing sur-

vival pathways used by the target cancer or as for agomelatine 

are agonists at growth-retarding receptors.

Similar to other cancers, breast cancer has heteroge-

neous regions within the same tumor – different areas that 

depend on or use different growth-signaling pathways. This 

is related to but distinct from the idea of clonal evolution 

driven by cytotoxic chemotherapy selection. Both forms of 

heterogeneity exist in a typical breast cancer, proteomic and 

genomic. ABC7 aims to inhibit breast cancer by pharmaco-

logical manipulation of what genes are expressed and what 

genes are not, as well as by targeting different clonal variants 

of the original breast cancer clone.

Because of these limitations, we do not expect testing 

for molecular markers to be predictive or useful. In addition, 

further intensifying the spatial and temporal diversity of 

the molecular status, particularly for EMT markers, are the 

diversity-driving effects of chemotherapy7 and discussed in 

greater detail in the following sections.

Cytotoxic chemotherapy also induces important receptor 

status changes in a large minority of breast cancer cases.8,9 

Typical findings are as follows: 13% changed from HR+ to 

HR−, 5% changed from HR− to HR+, 6% changed from 

HER2+ to HER2, 3% changed from HER2 to HER2+, and 

13% changed to triple negative.8

Multiple signaling systems have been identified that 

drive metastatic breast cancer.1,9–11 These growth-driving 

receptors can cross cover for each other.1,9–11 When one is 

pharmacologically blocked, several parallel growth-driving 

pathways can become active, taking the place of the blocked 

pathways. Growth factor signaling converges from a wide 

variety of outer membrane receptors to more restricted, fewer, 

intracellular pathways. This is, more elegantly stated, the 

spatial–temporal genomic and proteomic range, the “genetic 

collectives [that] dominate the landscape of advanced-stage 

(malignant) disease.”11,12 We see this as mandating an inte-

grated, coordinated polypharmacy to successfully address 

these malignancy attributes.

Capecitabine is intracellularly metabolized to 5-FU; 

the details are given in the “Capecitabine: 359 Da, half-life 

<1 hour” section. ABC7 drugs are designed to make 5-FU 

more effective.

The results of several recent ER+ metastatic breast cancer 

studies are listed in Table 2. These studies cannot be judged 

simply by overall survival in that entry requirements were 

different, with different kinds and number of prior treat-

ments. These numbers in Table 2 are for general idea only.1 

One cannot conclude that one of these is better than another.

In general, post-progression survival durations in recent 

Phase III studies of combination therapy ranged from 

approximately 16 to 33 months.1

EMT is a feature of cancers generally13 and breast cancer 

specifically.14,15

Table 3 lists several features and behaviors associated 

with the two (epithelial and mesenchymal) states. Interest-

ingly, a transcription factor ZEB1, known to control EMT, 
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contributes to breast cancer osteolytic bone metastasis, but 

not brain or lung metastasis.16,17

EMT is a phase transition, where flat, sessile, mutually 

adherent epithelioid cells take on a rounded, non-adherent, 

motile mesenchymal shape and behavior.18–20 The reverseless 

transient state and process, MET, also occurs and is also a 

feature of robust or aggressive cancer growth.21 Post-EMT 

cells tend to be invasive but proliferation restricted. Post-MET 

cells tend to be proliferative but have limited invasiveness.18–20 

Breast cancers develop in proximity to adipose tissue. 

Adipocytes are a further trigger to EMT.22 The relationship 

between stem cell subpopulations within a cancer and EMT 

Figure 1 The basic biochemical, intracellular, and receptor pathways relating to interventions of the ABC7 regimen for advanced breast cancer.
Notes: This is the basic breast cancer intracellular circuitry that the ABC7 regimen attempts to address. The two major controllers or stimuli for eIF4E activation are 
indicated by yellow arrows, the p-mTOR and the MNK paths.
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Table 1 The drugs of ABC7, their targets during treatment of breast cancer, and suggested doses

Drug Target in breast cancer treatment Starting dose Target dose

Capecitabine DNA synthesis 600 mg/m2 twice daily.
7 days on, 7 days off

1250 mg/m2 twice daily. 7 days on, 7 days off or 14 days on, 
7 off

Quetiapine RANK/RANKL 50 mg once at bedtime 300–600 mg once at bedtime
Pirfenidone TGF-beta 200 mg three times daily 600 mg three times daily
Rifabutin BCL-6; beta-catenin 150 mg/day 300 mg/day
Metformin AMPK*; mTOR; mitochondria oxphos 500 mg once daily 1000 mg twice daily
Propranolol Beta-adrenergic receptors 10 mg twice daily Uptitrate as tolerated
Agomelatine Melatonergic receptors* 25 mg once at bedtime 50 mg once at bedtime
Ribavirin** eIF4E; MNK; IMPDH 600 mg/day 1200 mg/day

Notes: The drugs are listed in a suggested order of addition. Pace of drug addition is individualized per patient and physician estimations of risk/benefit. *Note that all entries 
denote inhibition of named target except for metformin that activates AMPK and agomelatine that stimulates melatonin receptors. All drugs, except capecitabine, are given 
continuously without interruption. Capecitabine is given on 7 days on, 7 days off, or 14 days on, 7 days off cycles. **Ribavirin is likely to give unpleasant side effects and 
depressed mood but is potentially a beneficial enough drug to try.

Table 2 Representative recent trials in metastatic HR+ breast 
cancer

Intervention Months survival Trial

Anastrozole + fulvestrant 48 SWOG

Anastrozole + fulvestrant 38 FACT

Anastrozole + fulvestrant 21 SoFEA

Letrozole + fulvestrant 52 LEA

Everolimus + exemestane 31 BOLERO 2
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process is also unclear,23 and the two populations probably 

largely overlap.

Perhaps our deepest insight into the EMT process in breast 

cancer came from a study by Bulfoni et al.24 They showed 

that all patients with metastatic breast cancer had CTCs. 

These circulating cancer cells split into four groups: those 

with epithelial, those with mesenchymal, those with both, 

and those with neither marker. Patients with higher numbers 

of circulating cancer cells that expressed both markers had 

shorter overall survival.

Survival as a function of E-cadherin expression, repre-

sentative of epithelial state, and fibronectin, representative of 

mesenchymal state, was examined by immunohistochemistry 

on 1495 breast cancer biopsies.25 More E-cadherin and less 

fibronectin are associated with longer survival.25 Breast 

cancer patients whose tissue expresses greater EMT-related 

protein have shorter survival.26 EMT drives chemotherapy 

resistance and other poor prognosis features in breast 

cancer.27–29 In addition, a greater degree of metabolic changes 

characteristic of EMT in breast cancer predicts shorter overall 

survival.30

Medical research discusses vimentin, fibronectin, and 

N-cadherin as markers of EMT process, but these proteins 

would be more accurately viewed as mediators of the attri-

butes we designate EMT.

As indicated in Table 3, fibronectin is a characteristic 

marker of EMT. Higher breast cancer tissue expression of 

fibronectin correlates with shorter survival.31,32 A range of 

other characteristic behavioral and morphological attributes 

of EMT and MET states is also outlined in Table 3.

Chemotherapy triggers EMT
Paclitaxel triggers EMT in breast cancer, increasing mesen-

chymal markers, vimentin and fibronectin, and decreasing 

epithelial marker, ZO-1.33 Experimental inhibitors of TGF-

beta signaling block paclitaxel-induced EMT and suppress 

paclitaxel-induced CSC properties.33 Paclitaxel also increases 

EMT markers in mouse breast cancer cell line, MCF-7/PAX.34 

Doxorubicin exposure enhances gastric cancer’s EMT marker 

expression.35

These reports, combined with similar findings in other 

cancers, allow a general statement of a core principle of 

oncology: cytotoxic chemotherapies tend to provoke EMT. 

Such a conjecture is amply supported by the recent work 

of Yoshimasu et  al36 who reported that cisplatin, 5-FU, 

gemcitabine, paclitaxel, and vinorelbine show hormesis when 

tested individually.

Surgical trauma or fine-needle biopsy 
triggers EMT
Of concern in current medical practice, there is a tendency 

for cancers generally, and breast cancer specifically, to be 

triggered by any kind of tissue disruption – including fine-

needle biopsy – to undergo EMT with consequent cancer 

cell shedding to circulation. Such hematogenous tumor cell 

dissemination could be the origin of later overt metastases.

Breast cancers in mice release a flood of CTCs after 

simple fine-needle biopsy.37 Clinical needle biopsy of breast 

cancer triggers recruitment of inflammatory cells to the biopsy 

site and causes increased tumor cell mitoses in the biopsied 

area.38 In a second murine breast cancer study, both fine-

needle biopsy and surgical resection resulted in the release 

of a flood of CTCs, but noteworthy in this work is that biopsy 

resulted in greater and longer lasting appearance of circulat-

ing cancer cells than did surgical resection.39 These murine 

data were replicated by Kaigorodova et al40 who showed that 

simple fine-needle biopsy of human breast cancers releases 

a flood of breast cancer cells into the general circulation. 

These authors found that although some released CTCs had 

CSC markers and attributes and some did not, none of them 

had the particular EMT markers for which they were tested.

This worrisome situation in breast cancer is similar to 

data collected in other cancers. For example, treatment with 

radioactive needle insertion into prostate cancer results in 

significant hematological shedding of tumor cells post pro-

cedure.41 Standard transrectal ultrasound-guided prostate 

needle biopsy results in detectable prostate cancer cells in 

the circulation in half of patients.42 Oral squamous cell car-

cinoma biopsies result in 16% of patients having post-biopsy 

Table 3 Characteristic protein markers and mediators of EMT 
in breast cancer

Marker Epithelial state Mesenchymal state

E-cadherin Increased Decreased
N-cadherin Decreased Increased
ZO-1 Increased Decreased
Occludin Increased Decreased
Vimentin Decreased Increased
Fibronectin Decreased Increased
MMP-2 Decreased Increased
MMP-9 Decreased Increased
Phenotype Epithelial state Mesenchymal state
Motility Sessile Motile
Shape Elongated Rounded
Adherence Adherent to neighbors Non-adherent to neighbors
Invasion Noninvasive Invasive
Proliferation Higher proliferation Lower proliferation
Microtentacles Absent Present 

Abbreviation: EMT, epithelial-to-mesenchymal transition.
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CTCs.43 Simple wide excision that does not disrupt the tumor 

tissue integrity did not result in postoperative CTCs, whereas 

incisional biopsy did.44

A study is therefore required comparing the long-term 

outcome potential difference between those having fine-

needle biopsy versus those having initial wide lesion excision. 

If initial excision that leaves the suspicious mass intact does 

result in fewer later disseminated metastases, it might be 

worth the iatrogenic morbidity incurred by the consequent 

excision of some benign masses.

Radiation triggers EMT
Above we reviewed some evidence that chemotherapy and 

mechanical tissue disruption give rise to CTC and EMT in 

surviving cells. Below we review data showing radiation 

causes CTC and EMT as well.45,46 For a few specific examples, 

as in other cancers,47 breast cancers synthesize GM-CSF 

that then functions as a growth factor for them.48 Clinically 

used, radiation treatment not only kills breast cancer cells 

and prolongs survival in breast cancer but also triggers 

exposed residual cells that are not killed to undergo EMT, 

to start migrating, and to synthesize increased amounts of 

autocrine growth factor, GM-CSF.49 Radiation also increases 

IL-6, migration, and EMT markers in murine and human 

breast cancer cell lines.50 The subject of radiation-induced 

EMT and radiation-induced increase in CTCs was recently 

reviewed by Lee et al.51

Clinically, finding greater post-EMT CTCs confers a 

worse prognosis with more aggressive disease course and 

greater metastatic proclivity in colon cancer52 and finding 

circulating clusters of vimentin-positive gastric cancer cells 

confers a worse prognosis53 as did finding circulating cancer 

cell clusters and vimentin-positive CTC in colon cancer.54 

Surgery for epithelial ovarian cancer causes an increase in 

both EMT-positive and EMT-negative CTCs, but there is a 

disproportionate increase in EMT positive. The increase in 

EMT-positive CTCs was even stronger after platinum-based 

chemotherapy.7 As Kolbl et al55 point out, EMT precedes the 

release of CTCs but after entering circulation CTC can revert 

to epithelial or partial epithelial phenotype.

Based on all these evidences, it seems that inhibiting 

EMT is a worthwhile goal during breast cancer treatment 

and that current common cancer treatments have elements 

of cancer growth stimulation inherent to them, or as Niccolo 

Machiavelli (born 1469–died 1527) said in 1513:

People should either be caressed or crushed. If you do 

them minor damage they will get their revenge; but if you 

cripple them there is nothing they can do. If you need to 

injure someone, do it in such a way that you do not have to 

fear their vengeance.

ABC7 regimen was crafted with that in mind.

Drugs to inhibit EMT
Quetiapine: 384 Da, cyp3A4 to 
norquetiapine, 6-hour half-life
The RANK, its ligand (RANKL), and the soluble decoy 

receptor OPG (or bone protector) are central elements in 

breast cancer’s establishment of metastases to bone.56 Early 

indications are that quetiapine inhibits the RANK/RANKL 

signaling system.57

Several forms of pro-RANKL are expressed on osteo-

blasts. After proteolytic release, RANKL binds to RANK 

leading to osteoclast syncytium formation then osteoclasts’ 

resorption of bone. Osteopetrosis results when RANK/

RANKL system is nonfunctional. RANK/RANKL also 

functions in guiding normal breast gland ontogeny. There 

occurs an ebb and flow of RANK expression in mammary 

duct epithelial cells during the menstrual cycle, the increase 

occurring in late luteal phase. RANK/RANKL function is 

essential to the luminal epithelial proliferation seen particu-

larly where ducts branch.56 Higher levels of RANK/RANKL 

in human breast cancer biopsy tissue correlate with higher 

metastasis likelihood and shorter survival.58

PR-negative cells are affected through RANKL-induced 

paracrine actions leading to proliferation of mammary epi-

thelial PR-negative cells.59

RANK/RANKL is a core physiologic signaling system 

allowing circulating breast cancer cells to metastasize to 

bone.60,61 RANK/RANKL is a principal part of the complex 

signaling giving rise to breast cancer’s propensity to metas-

tasize to bone.

Since breast cancer commonly metastasizes to bone 

with consequent bone pain, pathological fractures, ver-

tebrae compressions, and hypercalcemia, this process is 

important to block. Breast cancer cells are continuously 

shed into circulation from the primary and metastatic 

sites. Why then do these CTCs choose to establish growth 

preferentially in bone? This is because these CTCs can 

establish growth-enhancing communication with bone 

cells, specifically osteoblasts, and they do so primarily via 

RANK/RANKL.62 Muscle, skin, liver, spleen, fat, and other 

sites of less common breast cancer metastasis cannot so 

reciprocally communicate.

Osteoblasts receiving RANKL signaling transform to 

syncytial osteoclasts that resorb bone and increase TGF-beta. 

TGF-beta is also stored in bone, then released with any bone 
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dissolution. This creates room for the CTCs to grow and free 

TGF-beta signaling prompting them to do so,62,63 making the 

TGF-beta blocking drug pirfenidone, which is discussed in 

the following sections, an ideal partner drug for quetiapine 

during metastatic breast cancer treatment.

An initial dose can be 50 mg once at bedtime, uptitrating 

to a target dose of quetiapine 300 mg or more as tolerated, 

given once at bedtime. Tiredness for a few hours on awaken-

ing is common upon starting quetiapine. It then abates after 

a week or so but reappears after each dose increase. Some 

weight increase due to increased appetite can be expected. 

Otherwise, side effects are not common.

Pirfenidone: 185 Da, cyp1A2, 3-hour  
half-life
Pirfenidone is a 185 Da drug approved and marketed to treat 

idiopathic pulmonary fibrosis.64 Mild-to-moderate, reversible, 

nausea, dyspepsia, and rash are side effects in about one-third 

of treated patients, but these often resolve with continued 

use. Approximately 2403 mg/day divided into three equal 

doses is a common pirfenidone dose in treating its marketed 

indication, idiopathic pulmonary fibrosis.64,65

Pirfenidone blocks TGF-beta signaling.66–70 TGF-beta 

is a 25 kDa signaling protein proteolytically clipped from 

a larger precursor protein. Carboplatin induces elevation 

of TGF-beta and triggers EMT in NSCLC, as given in the 

“Chemotherapy triggers EMT” section,71 both effects blocked 

by coadministration with pirfenidone.71

TGF-beta signaling is a major driver of EMT in cancer 

generally72–74 and in breast cancer EMT specifically.75–78 TGF-

beta is a facilitating element of many cancers by promoting 

angiogenesis and differentiation, by immune suppression, 

by promoting loss of cell-to-cell contact, and particularly 

by promoting EMT. Pirfenidone inhibits TGF-beta-induced 

phosphorylation of SMAD3, p38, and AKT. TGF-beta pro-

vides a “get up and go” signal for breast cancer.79 In a murine 

breast cancer model, TGF-beta exposure also enhances 

normal lung’s ability to better support establishment of breast 

cancer metastases.80 TGF-beta drives breast cancer’s EMT 

and various biochemical, morphological, and behavioral 

changes characteristic of EMT.10,81–83 The manifold paths by 

which TGF-beta signaling leads to or enhances EMT spe-

cifically in breast cancer were outlined by Tan et al,18 Chen 

et al,81 Nooshinfar et al,84 and Felipe Lima et al.75

TGF-beta dependency for taking on typical mesenchy-

mal morphology, increased motility, and increased vimentin 

expression after radiation exposure was shown in breast, 

colon, and lung adenocarcinoma cell lines.85

Preclinical studies have shown activity in pirfenidone’s 

enhancing cisplatin cytotoxicity to NSCLCs.86 In addition, 

pirfenidone enhances radiation and sunitinib cytotoxicity in 

Lewis lung cancer cells87 and reduces desmoplasia in pan-

creatic cancer.88 Growth of human TNBC tissue (ER nega-

tive, PR negative, HER2 negative) xenografted to nude mice 

was inhibited more by pirfenidone and doxorubicin than by 

doxorubicin alone.89 In another murine breast cancer model, 

pirfenidone reduced intratumoral collagen and hyaluronan 

by TGF-beta inhibition with consequent improvement of 

doxorubicin efficacy.90

Pirfenidone disrupts Hh signaling in parallel with TGF-

beta inhibition, a worthwhile added benefit during breast 

cancer treatment.91

The starting dose of pirfenidone is 267 mg three times a 

day. This is gradually increased at 14-day intervals as toler-

ated to 801 mg three times daily. Pirfenidone at 400 mg three 

times daily (1200 mg/day) used to treat potential progression 

of hepatitis C-related fibrosis reduced circulating TGF-beta 

and IL-6.92 Abdominal pain, rash, and nausea were seen in a 

half of treated patients, but these side effects tended to subside 

within a month or two and no patient dropped out due to them.

Ribavirin: 244 Da, 6-day half-life for a 
single oral dose, up to 12 days after 
continuous use
Since its introduction to clinical practice in the late 1970s, 

ribavirin had been used to treat various viral infections, later 

becoming central to a now-outmoded hepatitis C treatment. 

Ribavirin remains useful in treating human respiratory syn-

cytial virus infections and selected other rarer virus infec-

tions such as those of the hantavirus group.93 Ribavirin is 

currently being investigated in numerous clinical trials for 

its therapeutic activity in various cancers, particularly acute 

myeloid leukemia (NCT02109744, NCT02073838), head 

and neck cancer (NCT01268579), and notably for ABC7, 

metastatic breast cancer (NCT01056757).

Although ribavirin’s mechanisms of antiviral and anti-

cancer action are uncertain and probably will vary between 

viruses, several potential mechanisms of action have been 

identified. One proposes that ribavirin enters the cell via a 

nucleoside transport mechanism, intermingling itself within 

the viral RNA, thus inhibiting/altering viral RNA synthesis. 

However, ribavirin, particularly when paired with interferon-

alpha, activates anti-inflammatory responses in various other 

ways. Alternatively, due to the fact that ribavirin is structur-

ally analogous to GTP, a purine nucleoside, ribavirin can be 

incorporated into the cell passively, thereafter competitively 
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binding to, and inhibiting, RNA polymerase, and RNA syn-

thesis as a whole; ribavirin often achieves this via blocking the 

IMPDH pathway, among other pathways such as the eIF4E 

pathway. Ultimately, five major mechanisms of action have 

been proposed:94–96

1.	 Immunostimulation by upregulating cytokines to shift 

Th1/2 cell balance to Th1 dominance.

2.	 Inhibition of 24 kDa eIF4E function, thereby inhibiting 

mRNA capping and translation initiation.

3.	 Modulation of interferon-alpha-related gene expression.

4.	 Direct inhibition of IMPDH with consequent depletion 

of intracellular GTP.

5.	 After triphosphorylation, ribavirin triphosphate is incor-

porated into replicating RNA viral RNA polymerases with 

consequent induction of viral mutagenesis.

How ribavirin acts vis-a-vis eIF4E is as follows:

eIF4E forms part of the multimeric cap-dependent mRNA 

translation initiation complex. Mammalian cap-dependent 

translation starts with that complex binding to an RNA 

methyl-nucleotide. eIF4E has many positive and negative 

control points, two of which are 1) posttranslational phos-

phorylation and 2) 4E-BPs.97–99 There are several variants of 

4E-BP protein, hereafter designated simply as 4E-BP. 4E-BP 

is in turn controlled by its phosphorylation status.

eIF4E non-covalently bound to 4E-BP is inactive in 

translation initiation. Both currently recognized complexes 

of mTOR (mTORC1, loosely associated with growth and 

mTORC2, loosely associated with cell survival and apoptosis 

resistance) can phosphorylate 4E-BP.100 Unphosphorylated 

4E-BP has non-covalent affinity to and prevents transcription 

initiation activity of eIF4E. When phosphorylated, 4E-BP1 

loses that affinity and separates from eIF4E, thereby allowing 

eIF4E to function in cap-dependent mRNA translation.97,99–101

MAP kinase interacting kinases (hereafter referred to 

as MNK) can also phosphorylate 4E-BP, releasing it from 

eIF-4E.99,102–105 A wide variety of internal and extracellular 

events converge on mTOR and/or MNK to enhance or inhibit 

their activity. Development of resistance to mTOR inhibitors 

such as everolimus is often caused by eIF4E amplification 

or MNK upregulation.97,105

eIF4E overexpression has been identified in 30% of 

human cancers generally,97,106–110 including in invasive 

breast cancer where the degree of eIF4E, both gene and 

protein overexpression, has been positively correlated with 

occurrence, recurrence, and metastasis.111–118 eIF4E protein 

expression was associated with shorter survival, higher tumor 

mitotic index, and higher-grade breast cancer.115 Increased 

phosphorylated 4E-BP confers a worse prognosis and faster 

disease progression in breast, ovary, and prostate cancers.103

A crucially important oddity of eIF4E in breast cancer 

is the homogenous spatial uniformity of phosphorylated 

eIF4E protein overexpression in breast cancer tissues, both 

metastatic and primary.116 This is particularly notable given 

the spatial heterogeneity of ER, PR, HER2, mTOR, and other 

commonly overexpressed markers in breast cancer.

In addition, in 200 patients with Stage 4 breast cancer, 

immunohistochemistry analysis revealed that greater increase 

in eIF4E phosphorylation in response to chemotherapy with 

doxorubicin, cyclophosphamide, or FU was correlated with 

shorter median overall survival,114 4.7 years in patients with 

a two- to fourfold increase in eIF4E phosphorylation versus 

3.1 years in patients with a 9–11-fold increase. A second 

study a few years later found similar results.118 Among 

patients undergoing primary debulking for a node-positive 

breast cancer when nodes were positive, after 4-year follow-

up, systemic recurrence occurred in 22% of women with low 

eIF4E protein expression, 27% of the intermediate group, 

and in 49% expressing large amounts of eIF4E.119 Even more 

serious was the presence of multiple distant metastases in 

60% of women whose primary expressed large amounts of 

eIF4E but in 15% of women whose primary expressed low 

amounts of eIF4E, again after 4-year follow-up.119

In an unusually exciting and instructive study, Li et al120 

studied breast cancer biopsy tissue by immunohistochemistry 

both before and after chemotherapy. After cytotoxic chemo-

therapy with doxorubicin, or cyclophosphamide or 5-FU, the 

expression of phosphorylated eIF4E increased in the posttreat-

ment biopsy material, as given in the “Chemotherapy triggers 

EMT” section, and chemotherapy-activated Wnt/beta-catenin, 

as given in the “Rifabutin: 847 Da, 2-day half-life” section, 

signaling in a phosphorylated eIF4E-dependent manner.120

Although the significance of eIF4E phosphorylation or 

its range of functions is not fully understood, some aspects 

are predominantly the empirical data in the abovementioned 

paragraph. Regulation of eIF4E function is partly achieved 

through this phosphorylation process. Untreated GBMs show 

an excess of phosphorylated (unbound) 4E-BP.98,102 Inhibi-

tion of 4E-BP phosphorylation with consequent retention 

of its association with 4E-BP leads to inhibition of protein 

synthesis, inhibition of glioma cell proliferation in vitro, 

and tumor growth in vivo, in an orthotopic GBM mouse 

model.98,102 We know ribavirin gets good brain tissue levels 

based on the psychiatric morbidities associated with its use in 

treating hepatitis C. Volpin et al121 suggested using ribavirin 

to treat GBM based on these considerations.

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Breast Cancer - Targets and Therapy 2017:9submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

502

Kast et al

That metformin inhibits 4E-BP1 phosphorylation via 

mTOR inhibition122 makes metformin a good coordinated 

partner drug to ribavirin. That ribavirin also inhibits MNK and 

since MNK phosphorylation of eIF4E is an alternate eIF4E 

activation pathway particularly used during the development 

of resistance to the mTOR inhibitor everolimus,98,99,102,123,124 

ribavirin might be combined with everolimus or metformin 

to advantage. This would be a good example of the phenom-

enon mentioned in the “Introduction” section that when one 

growth pathway is pharmacologically blocked other paral-

lel growth-driving pathways can become active, taking the 

place of blocked paths. mTOR phosphorylates 4E-BP1, or if 

mTOR is inhibited then MNK can take over, phosphorylat-

ing 4E-BP1. This would also explain why and how mTOR 

inhibitors have not been successful in treating some tumors 

such as GBM even though they express an overabundance 

of mTOR. MNK simply takes over when mTOR is blocked.

TGF-beta promotion of EMT that occurs largely through 

phosphorylation of eIF4E by MNK (with multiple intermedi-

ates between the two)103 makes pirfenidone a good partner 

drug for both metformin and ribavirin.

In addition, experimental MNK inhibitors decrease eIF4E 

phosphorylation levels in breast cancers,120 and GBM,98 

where MNK inhibition enhanced temozolomide cytotoxic-

ity. In parallel fashion, in 103 cases of astrocytomas, high 

expression of phosphorylated eIF4E was significantly cor-

related with shorter overall survival rates.107

All treated breast cancers were found to overexpress phos-

phorylated (activated) eIF4E,116,120 a remarkable and unique 

finding in any cancer. Decreased eIF4E phosphorylation in 

breast cancer also resulted in increased E-cadherin and beta-

catenin protein levels125 reflecting a shift from mesenchymal 

toward epithelial attributes. The abovementioned combined 

data suggest that ribavirin could be of potential benefit by 

inhibiting eIF4E in breast cancer. Kentsis et  al126,127 have 

demonstrated that ribavirin inhibits m7G mRNA cap binding 

to eIF4E. Ribavirin directly bound to eIF4E with a micro-

molar affinity at the functional site used by m7G mRNA cap, 

reducing eIF4E/mRNA binding and disrupting the translation 

process. Of note, not all mRNA translation is eIF4E depen-

dent, but important mRNAs in breast cancer are, for instance, 

the one coding cyclin D1/3, c-Myc, VEGF, FGF2/4, and 

MCL-1. Some preclinical studies in several murine models 

of breast cancer revealed that ribavirin inhibits breast cancer 

cell proliferation through eIF4E blockage.128,129 Moreover, in 

these studies, multiple-aspect characteristics of EMT were 

reversed or diminished by ribavirin.128,129

More recently, two studies demonstrated significant 

glioma cell killing by ribavirin,121,130 confirming a 2014 study 

showing that ribavirin induced G0/G1 arrest in seven glioma 

cell lines at a median 55 µM IC
50

 (range 28–664).131 This lat-

ter study positively correlated mRNA expression of PDGF 

receptor-alpha, a major driver of GBM growth, with better 

glioma cell sensitivity (lower IC
50

) to ribavirin. That PDGF 

receptor is also a major driver of breast cancer132,133 and can 

cross cover for the ER134,135 forming one of the many escape 

paths from aromatase inhibitor suppression of breast cancer 

growth. This fact favors the possibility of this path contribut-

ing to ribavirin’s inhibitory effect in breast cancer as well.

Similar to the abovementioned data on breast cancer, 

targeting eIF4E using ribavirin to block migration and EMT 

in NSCLC has been highlighted.136 In this study, inhibition 

of eIF4E after ribavirin treatment led to decreased migra-

tion, differentiation, and expression of several EMT-related 

genes such as ERa, SMAD5, NF-kB, cyclin D1, c-MYC, or 

HIF‑1a.136 As we expect to do but using ribavirin, an engi-

neered short hairpin RNA interfering with eIF4E transcrip-

tion inhibited breast cancer cell migration, primary tumor 

growth, and metastasis establishment.137

TGF-beta-induced eIF4E phosphorylation enhanced 

metastases, invasion, and EMT in a mouse breast cancer model, 

all of which were inhibited when an un-phosphorylatable 

eIF4E was present.138

IMPDH is a pivotal enzyme for biosynthesis of GTP and 

is frequently increased in tumor cells.139 It has been shown 

that ribavirin via IMPDH inhibition was effective against 

chronic lymphocytic leukemia cells.140 Recently, Isakovic 

et al130 demonstrated in glioma cells that ribavirin inhibits 

IMPDH activity and induces autophagy inhibiting the activity 

of mTORC1 and the SRC/AKT pathway.

Of deep significance for understanding breast cancer 

growth and the ABC7 regimen to inhibit it, is the study by 

Decarlo et  al,141 where they demonstrated a feed-forward 

amplification loop between TGF-beta and eIF4E (that we 

intend to block with pirfenidone and ribavirin, respectively). 

In addition, TGF-beta agonism drives eIF4E activation138 

confirming pirfenidone as a good partner drug for ribavirin.

Ribavirin has also been shown to inhibit mTOR/eIF4E 

signaling increasing paclitaxel and imatinib activity in squa-

mous cell carcinoma142 and leukemic cells,124 respectively.

Discussion here of ribavirin strikes at the heart of why 

pharmaceutical mTOR inhibitors such as everolimus have 

not been as clinically useful as the biochemistry of cancer 

indicates it should be. The data in this section paint a con-

sistent picture of eIF4E as a central element in breast cancer 

malignancy degree and as such a worthwhile target to inhibit. 

Ribavirin can be expected to do this effectively but it will be 

the most difficult of the ABC7 drugs to tolerate. Ribavirin is 
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the problematic drug of ABC7. When used over months to 

treat hepatitis C, 1000 mg/day would have been a common 

dose. Depressed mood, anemia, weight loss, and a severe but 

ill-defined malaise were common side effects and not rarely 

required dose reduction or even stopping ribavirin entirely.143 

Given ribavirin’s propensity to give unpleasant side effects, 

it should be increased with caution from starting dose of 

100 mg once daily with frequent mood and CBC evaluations.

Rifabutin: 847 Da, 2-day half-life
Rifabutin is an old antibiotic closely related to the even 

older drug rifampin (same as rifampicin). Rifabutin is active 

against Mycobacterium tuberculosis, atypical mycobacteria, 

staphylococci, group A streptococci, Neisseria gonor-

rhoeae, Neisseria meningitidis, Haemophilus influenzae, 

Haemophilus ducreyi, Campylobacter spp., Helicobacter 

pylori, chlamydia, and Toxoplama gondii.144,145

In 2016, rifabutin was reported to have blunted the growth 

of a patient’s NSCLC, subsequently studied in vitro and 

found to be active in inhibiting lung cancer cell growth and 

suppressing Ki67 staining.146 Rifabutin suppressed eIF4E 

phosphorylation with consequent decreased beta-catenin 

phosphorylation and increased beta-catenin destruction 

consequent to that.146 Thus, rifabutin could coordinate to 

advantage with ribavirin to thoroughly block eIF4E.

Erlotinib inhibits epidermal growth factor receptors 

(HER1, EGFR) and is effective initially in stopping some 

lung cancers’ growth. As resistance to erlotinib develops, 

EGFR mutations resulting in EGFR affinity to beta-catenin, 

thereby shifting growth drive to beta-catenin system.147,148 

eIF4E–beta-catenin axis is inhibited by several of the ABC7 

drugs.

BCL6 is a 95 kDa protein transcription factor of selected 

genes, inhibiting expression of some and triggering transcrip-

tion of others’ in cancers generally149 and in breast cancer 

specifically.150–152 The result is a BCL-6-mediated anti-

apoptosis effect. Breast cancer cells’ survival is enhanced by 

BCL6.151 Rifabutin binds to BCL6, preventing its function 

in translation inhibition.153 This would be expected to be of 

benefit on multiple accounts during breast cancer treatment. 

Interestingly, miR-544 inhibition of BCL6 in TNBC cells 

inhibited proliferation, migration, and invasion in vitro.154 

BCL6 promoted invasion, migration, and EMT marker 

expression in breast cancer with indication that greater 

expression of BCL-6 correlates with shorter overall survival 

in breast cancer.150

Not all malignant cells within a strongly ER+ breast can-

cer will express ERs. The minority population not expressing 

ERs is relatively chemotherapy resistant with some of that 

extra chemotherapy resistance mediated by upregulated 

BCL-6 specifically in that subpopulation.155

Metformin: 129 Da, not metabolized, 
6-hour half-life
Metformin is the most prescribed initial drug treatment 

for type 2 diabetes worldwide. Despite 60  years of use, 

the mechanism of action in lowering average glucose is 

not entirely clear.156 Hepatic gluconeogenesis is decreased 

by metformin and insulin sensitivity is increased but how 

that occurs is uncertain. Metformin in vivo and in vitro 

increases AMPK, a major regulator of energy homeostasis, 

metabolism, and protein synthesis.156 Thus, activated AMPK 

results in inhibition of mTOR. Breast cancer cell expression 

of beta-catenin was decreased by metformin concomitantly 

and proportionately to AMPK phosphorylation.157

Decreased insulin/insulin-like growth factor-I signaling 

and inhibition of mitochondrial electron transport chain 

complex are other documented actions of metformin. Across 

many cancers, a large chart review has shown decreased mor-

tality in patients treated with metformin.158 Experimental data 

support the notions that increased lactate secretion, reduced 

oxygen consumption, and activated AMPK signaling are 

plausible mechanisms for metformin’s anticancer effects.159 

Metformin also decreased breast cancer cells’ intracellular 

adenosine triphosphate, viability, and anti-apoptotic protein 

BCL6 concomitant with increased intracellular ROS,160 the 

conclusion being that metformin acts primarily on mito-

chondria, other effects being secondary to that. That work 

confirmed a related earlier breast cancer study where the 

mode of viability loss mediated by metformin was found to 

be by oxidative stress increase and BCL-2 decrease.161

Silvestri et  al162 showed that metformin was indeed 

cytotoxic to breast cancer cells but 1) only in low glucose 

conditions – high glucose in vitro could subvert metformin’s 

growth inhibition and 2) although AMPK activation was a 

requirement for cytotoxicity, mTOR was not. However, Wu 

et  al163 showed that metformin both increased lifespan of 

the nematode Caenorhabditis elegans and showed growth 

inhibition of pancreatic cancer and melanoma cells by an 

AMPK-independent interference with mitochondrial respira-

tion mechanism. Likewise, Ben Sahra et al164 demonstrated 

that metformin cytotoxicity to androgen-sensitive human 

prostate adenocarcinoma cells was AMPK independent but 

mTOR inactivation dependent. Furthering complicating 

delineation of metformin’s mechanism of action in treating 

cancer, Gui et al165 showed that metformin’s anticancer effect 
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was by inhibiting mitochondrial regeneration of oxidized 

NAD+ regeneration and lowering aspartate levels.

Just in 2016, five extensive reviews appeared recounting 

evidence favoring the use of metformin as treatment adjunct 

in cancer generally.166–170

In a study particularly relevant to ABC7 regimen consid-

ering that capecitabine metabolizes into 5-FU within cancer 

cells, Qu et  al171 showed that breast cancer cells that had 

become resistant to 5-FU regained cytotoxic sensitivity to 

5-FU by simultaneous exposure with metformin. Metformin 

synergy with 5-FU could also be demonstrated to breast 

cancer cells in both the stem and non-stem subpopulations.172 

Of central importance to the ABC7 regimen, IC
50

 of 5-FU 

to esophageal cancer cells was lowered by metformin173 and 

correlated with increased AMPK activation and decreased 

mTOR function and lactate production. Metformin plus 

5-FU combination was also active in slowing esophageal 

cancer growth in a xenotransplant model more than either 

agent alone.174

YAP is a small protein transcription factor promoting the 

growth of many cancers. When phosphorylated, it is retained 

in cytoplasm and therefore nonfunctional in promoting 

growth or inhibiting apoptosis. Metformin treatment of hepa-

tocellular carcinoma patients increased YAP phosphorylation 

via AMPK phosphorylation and prolonged survival, half 

deceased at ~31 months without compared to ~44 months 

with metformin.175 Adding metformin to exemestane also 

increased survival in ER+ breast cancers that overexpressed 

IGF1R.176

An ongoing trial (ClinicalTrials.gov Identif ier 

NCT01589367) is studying potential survival benefits of 

adding metformin 2000  mg/day to standard antiestrogen 

aromatase inhibitor, letrozole 2.5  mg/day, in nondiabetic 

postmenopausal women with ER+ breast cancer.

Preoperative treatment of breast cancer patients with met-

formin has given mixed results. Some studies showed reduced 

mitotic rate after metformin 2000 mg/day177 and 1500 mg/

day,178 while others showed no reduction using 1500  mg/

day.179 A similarly designed study using 1700 mg/day found 

marginally lower Ki67 only in women with increased insulin 

resistance.180

A pivotal study supporting metformin use during the 

treatment of breast cancer was reported back in 2011. In 

women undergoing primary resection for breast cancer, 1 g 

twice daily metformin was given 14 days prior to surgery.177 

By immunohistochemistry, the diagnostic biopsy was com-

pared to resected tissue for p-AMPK, p-AKT, insulin recep-

tor, cleaved caspase-3, and Ki67. In metformin pretreated, 

increased p-AMPK and decreased p-AKT were seen com-

pared to those not treated with metformin in the interval 

between biopsy and surgery. Ki67 and cleaved caspase-3 

were diminished in metformin-treated women compared to 

those not so treated. These changes were not large but were 

statistically significant and large enough to expect some 

clinical benefit.177

Although metformin decreases breast cancer cell survival 

in vitro,160–162,181 the clinical benefit would seem small given 

the equivocal human trials and evidence that the small benefit 

seen tended to be restricted to diabetic/prediabetic people. 

However, small benefit is not no benefit.

Metformin despite being hydrophilic achieves approxi-

mately equal plasma and brain tissue levels. In rats, after 

single-dose oral metformin administration, 28 µmol/L plasma 

and 14 nmol/g brain tissue (14 µM) were seen.182 Average 

metformin plasma levels typically seen in asymptomatic 

diabetes patients were 2.7 ± 7.3 mg/L, ~3 µM. The unusu-

ally wide drug range seen, ± 7.3 mg/L (± 57 µM), reflects 

metformin’s safety.183 Metformin’s side effects are limited to 

diarrhea, nausea, and vomiting. Some cases of lactic acidosis 

could occur but at a low frequency and when metformin is 

implicated as the cause of lactic acidosis, metformin plasma 

levels greater than 5 µg/mL are generally found. Target dose 

of metformin is the standard dose used in past breast cancer 

studies of metformin – 1700–2000 mg/day.

Propranolol: 259 Da, cyp 1A2, 2D6, 
9-hour half-life
Propranolol was the first beta-blocker introduced to clinical 

practice. Introduced in the 1960s, it is still in wide use to 

treat hypertension, migraine, angina, selected arrhythmias, 

essential tremor, resolution of infantile hematomas, and 

in reducing the cardiac effects (tachycardia) due to acute 

anxiety. Propranolol’s general cancer process inhibiting 

attributes were recently reviewed.184 Below are selected data 

supporting propranolol’s use specifically as adjunct in breast 

cancer treatment.

A study of 404 breast cancer patients to compare the 

proliferation rates of breast cancers in women who had 

taken beta-blockers compared to those who had not found a 

clear reduction in Ki67 only in those with Stage 1 disease.185 

A single ER+, HER2− patient was treated with 25 days of 

propranolol 1.5 mg/kg per day after diagnostic biopsy but 

before resection. Resection of tumor tissue showed a 23% 

reduction in Ki67 staining compared to biopsy tissue 25 days 

earlier, before any propranolol.185 Of important note, beta-

1-selective beta-blockers did not work to reduce Ki67, only 
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nonselective beta-blockers did. However, a large European 

epidemiological study found no survival benefit from pro-

pranolol use after a breast cancer diagnosis.186

Of particular interest to ABC7 regimen, Rico et  al187 

examined the effects of metformin and propranolol singly 

and combined in several preclinical TNBC models, finding 

additive to synergistic growth-inhibiting effects.

In a cohort of 800 women with early TNBC, 9% used 

beta-blockers. The beta-blocker use and nonuse groups were 

well matched. At 5 years, 19% of the nonusers had died of 

breast cancer while 8% of beta-blocker users had died of 

breast cancer.188

In examining a cohort of 1971 multiple myeloma patients, 

those who took any beta-blocker, had a 24% disease-specific 

mortality at 5 years. Those who took a beta-blocker plus other 

cardiac drugs had 32% while those on no cardiac or blood 

pressure medicines had 41% myeloma-specific mortality at 

5 years.189

An interesting study from Choy et al190 showed that among 

1000 breast cancer patients those on a beta-blocker had a 

lower recurrence rate, and specifically TNBC expressed par-

ticularly high levels of beta-adrenergic receptors. Their brain 

metastases expressed more beta-adrenergic receptors per cell 

than did the primary tumors.190 This study also gave evidence 

of propranolol’s inhibition of proliferation and migration in 

breast cancer cells expressing the beta-adrenergic receptor.

In reviewing seven epidemiological studies prior to 

2015 on beta-blocker use in breast cancer, Childers et al191 

concluded that, although results were mixed between these 

studies, slightly lower risk of death was associated with beta-

blocker use. Beta-blocker use is associated with improved 

relapse-free survival (but not in overall survival) also in 

patients with TNBC.192

Bone is richly supplied with sympathetic nerve endings. 

When specifically osteoblasts’ beta-adrenergic receptor is 

stimulated by norepinephrine from these nerve endings, the 

osteoblasts secrete RANKL.193 Thus, propranolol should 

harmonize with quetiapine (vide supra) in treating and 

preventing bone metastases in breast cancer. CA125 is a 

high molecular weight mucin commonly elevated in ovarian 

cancer. Patients given perioperative propranolol showed an 

83% CA125 decrease on postoperative day 7 when those 

given placebo had a 72% decrease.194

Although the data were mixed, a review of 10 studies com-

pleted by 2015 of beta-blocker use in breast cancer concluded 

that specifically propranolol use was indeed associated with 

slightly reduced breast cancer-specific mortality.195

Propranolol-blocked beta-adrenergic agonist induced 

increased migration and decreased breast cancer cell-to-cell 

adhesion.196 Propranolol inhibited breast cancer cell migration 

in vitro.197 Breast cancer cells express beta-adrenergic receptors. 

Blocking these with propranolol lowers their glucose uptake.198

Campbell et  al199 demonstrated that beta-adrenergic 

stimulation of bone increased osteoblasts’ RANKL expres-

sion. That induced RANKL increased breast cancer establish-

ment of metastases in bone.199 Thus, the combination with 

quetiapine might be particularly beneficial.

Beta-adrenergic stimulation did not change the growth 

of an orthotopic murine breast cancer but did induce a 

remarkable 30-fold increase in metastases, an effect partially 

blocked by propranolol.200 Of clinical importance to ABC7, 

Shaashua et al201 showed that combining propranolol with 

a COX-2 inhibitor in perioperative breast cancer decreased 

EMT, serum IL-6, and C-reactive protein levels.

There is risk of symptomatic iatrogenic hypotension with 

propranolol. The propranolol dose must therefore be slowly 

uptitrated as tolerated, monitoring blood pressure.

Capecitabine: 359 Da, half-life <1 hour
Capecitabine is a 359 Da pro-drug giving rise to intracellular 

release of 130 Da 5-FU.202,203 5-FU inhibits thymidylate syn-

thase, which mediates the synthesis of thymidine monophos-

phate, the active form of thymidine required DNA synthesis.

Despite ~20 years of clinical use in treating breast cancer, 

there remains some unclarity on the ideal dosing schedule for 

capecitabine.204–206 A comparison of cycles of 1000 mg/m2  

twice daily for 14 days, 7 days off with 1250 mg/m2 twice 

daily for 14 days, and 7 days off indicated lower side effect 

burden with 1000 mg/m2 twice daily.207,208

Several reports indicate that dosing capecitabine at just 

high enough level to generate palmar–plantar erythrodyses-

thesia might be most effective dosing regimen.206,209 This 

would be analogous to erlotinib dosing where titrating to 

rash might be most effective.210

Capecitabine is best given with Coke™ or fresh squeezed 

lemon juice to assure low enough gastric pH for adequate and 

uniform absorption. This would be particularly important for 

those on proton pump inhibitors.

Principle toxicity is palmar–plantar erythrodysesthesia 

(synonyms hand-foot syndrome or chemotherapy induced 

acral erythema), diarrhea, and nausea, although cytopenias, 

fatigue, dyspnea, or cardiac abnormalities can be seen.211 The 

common dose for capecitabine in breast cancer is 1250 mg/m2 

orally twice daily for 14 days, none for 7 days, every 21 days.
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Agomelatine: 243 Da, 2-hour half-life
Agomelatine is a 243 Da pharmaceutical melatonergic ago-

nist at both melatonin’s receptors, M1 and M2.212 It has many 

advantages over the use of melatonin itself213,214 In short, 

these advantages are: 1) agomelatine is Health Canada and 

EMA approved and marketed as an antidepressant. As such, 

it is a well-standardized product, as opposed to over-the-

counter melatonin preparations which are exempt from the 

strict standards of approved medicines; 2) agomelatine has 

considerably tighter affinity to both M1 and M2 receptors 

than does the natural ligand (melatonin); 3) agomelatine has 

a much longer dwell time in the body than does melatonin, 

and; 4) absorption is more uniform and reliable than is 

absorption of melatonin.

Although agomelatine is available for import into the 

USA, it is not FDA approved. Ramelteon is an equally 

potent melatonergic agonist at M1 and M2 as is agomelatine. 

Ramelteon is FDA approved and marketed in the USA. It 

has similar actions and advantages over melatonin as does 

agomelatine213,215 and can be substituted for agomelatine in 

the ABC7 regimen.

Elevation of hepatic transaminases is of potential concern 

when using agomelatine. This requires regular monitoring. 

Elevation is dose dependent, occurring in ~3% of those 

receiving 50 mg once at bedtime.216 It is usually reversible.

Work pointing to diminished breast cancer cell malignant 

behavior during exposure to melatonin dates back at least 

3 decades.217 There are numerous studies about oncostatic 

effects of melatonin on several tumors as well as recent 

reviews summarizing the different mechanisms of cancer 

inhibition by melatonin.84,218–221 These include regulation of 

estrogen pathway, melatonin as SERM and SEEM, modula-

tion of the cell cycle, differentiation and the induction of 

apoptosis, inhibition of telomerase activity, inhibition of 

oxidative stress, inhibition of angiogenesis, regulation 

of circadian rhythms, avoidance of circadian disruption, 

inhibition of tumor metastasis, invasiveness and motility 

decline, and enhancement of immune system and epigenetic 

regulation.218,221

Briefly and empirically, melatonin has readily demonstrable 

growth-inhibiting effects in both in vivo animal models, with 

chemically induced mammary tumors in rodents, and in vitro 

assays in estrogen-positive human breast cancer cells.221–224 

Melatonin inhibits invasive and metastatic properties of human 

breast cancer cells in different xenograft models.225–228 Due to 

the broad spectrum of melatonin’s actions, the mechanisms 

through which it interferes with metastases are varied. These 

include modulation of cell–cell and cell–matrix interaction, 

extracellular matrix remodeling by matrix metalloproteinases, 

cytoskeleton reorganization, EMT, and angiogenesis.229

Melatonin shifts human breast cancer cells to a lower 

invasive status by upregulating E-cadherin and β1-integrin 

expression and decreasing OCT4, N-cadherin, and vimen-

tin.219,227,228,230 These findings suggest that melatonin modu-

lates both cell–cell and cell–matrix interactions in breast 

cancer and reduces the metastatic potential of the tumor. 

Melatonin also has regulatory actions on matrix metallopro-

teinases in breast cancer. It has been described that melatonin 

inhibits the induction, catalytic activity, and expression of 

MMP-9 and MMP-2.229,231 In addition to modulating the 

metalloproteinase activity, melatonin reduces cancer cell 

migration through the downregulation of ROCK-1 and 

MCLCK, two kinases that control the cytoskeletal rearrange-

ment associated with cell–cell and cell–matrix adhesion.229,232 

The attenuation of HER2-Rsk2 signaling by melatonin plays 

a main role in the melatonin-mediated suppression of EMT 

and late-staged metastasis in breast cancer cells.226,229

In tumor angiogenesis, there is a crosstalk between 

cancer cells and surrounding endothelial cells. Melatonin 

interferes in the paracrine interactions between malignant 

epithelial cells and proximal endothelial cells through a 

downregulatory action on VEGF expression in human breast 

cancer cells, which decrease the levels of VEGF around 

endothelial cells.230,231 In addition, melatonin directly exerts 

antiangiogenic actions by reducing endothelial cell prolif-

eration, invasion, migration, and tube formation, through 

a downregulation of VEGF expression.219,233–235 Melatonin 

also impedes the EMT process and cancer cell dissemination 

through downregulatory actions of the p38 pathway227 and 

interferences with NF-κB signaling in tumor cells.217,229,236

Recently, a review of the effects of melatonin and che-

motherapeutic agents in combination in cancer treatments 

has been published.237 Although the information available is 

limited, the results obtained suggest that melatonin sensitizes 

tumor cells to the cytotoxic effects of chemotherapeutic 

agents.

In addition, in a rat ER+ breast cancer model, melatonin 

reduced tumor weight, prolonged survival, and increased 

E-cadherin without giving apparent side effects.238 In this 

model, doxorubicin cytotoxicity to the breast cancers was 

augmented by giving simultaneous melatonin.238 Melatonin 

reduced in vitro migration and in vivo growth, proliferation 

index, and metastases in a murine xenograft model.232

Of particular relevance to ABC7, earlier in year 2017, 

melatonin was shown to increase 5-FU inhibition of colon 

cancer cell proliferation, in vitro colony formation, migration, 
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and invasion, showing a corresponding in vivo synergy with 

5-FU in colon cancer tumor growth inhibition in a xenograft 

model.239

Similarly, melatonin moderately enhanced cytotoxicity 

to cisplatin and doxorubicin, while slightly but significantly 

enhancing 5-FU cytotoxicity to HeLa cells.240 In an in 

vitro study, in rat pancreatic adenocarcinoma, melatonin 

augmented cytotoxicity of 5-FU, cisplatin, and doxorubi-

cin.241 Melatonin decreased pancreas cancers in hamsters 

given a carcinogen (N-nitrosobis (2-oxopropyl) amine), as 

did capecitabine. Giving both melatonin and capecitabine 

decreased this incidence further.242 Melatonin augmented 

doxorubicin cytotoxicity to lymphocytic leukemia cells 

without having cytotoxicity to normal lymphocytes.243

Melatonin sensitized human breast cancer cells to radiation 

via 1) reduction in estrogen-synthesizing proteins, and 2) induc-

tion of a twofold change in p53 expression, and 3) downregula-

tion of proteins involved in double-strand DNA break repair, 

such as RAD51 and DNA-PKcs.244 Melatonin enhanced cyto-

toxicity of 5-FU to esophageal squamous carcinoma cells both 

in vitro and in a xenograft model.245 These authors used 20 mg/

kg per day melatonin in the xenograft model, corresponding to 

a nominal 1400 mg/day for a 70 kg adult human. The common 

over-the-counter melatonin used is 3–20 mg once at bedtime. 

The tighter affinity to melatonin receptors and much longer 

half-life of agomelatine compared to melatonin would go some 

of the way toward generating a stronger agonist signal to M1 

and M2 than today’s commonly used melatonin doses. Another 

felicitous aspect of melatonergic agonism is a potential increase 

in NK cell numbers and function.246

A remarkable epidemiological study of cancer-free 

postmenopausal women showed that higher urinary mela-

tonin levels were associated with a slightly reduced risk of 

later developing breast cancer,247 although these data are not 

uncontested. A review of all studies on urinary melatonin 

would indicate that this matter remains unsettled.248

The suggested dose of agomelatine is 50 mg once at bed-

time, twice the EMA and Health Canada recommended dose 

for treating depression. If ramelteon is used instead 16 mg 

at bedtime, twice the FDA-approved dose is recommended.

Conclusion
Once breast cancer has metastasized to bone, liver, or lungs, 

the prognosis becomes poor. No current treatment has a reli-

able and robust disease control rate at that point.

Animal study of the complete ABC7 regimen would be 

advisable. Based on clinical experience with these drugs 

individually and in pairs in general medical practice, the 

predicted safety and tolerability of the ABC7 regimen should 

be safe. As a further safety measure, the ABC7 drugs should 

be added one at a time at weekly intervals, thereby catching 

any unwanted interactions early and the offending drug more 

easily identified.

In this article, we propose that seven common and already 

FDA-approved drugs, such as agomelatine (or ramelteon), 

metformin, pirfenidone, propranolol, quetiapine, ribavi-

rin, and rifabutin, can have the ability to reduce EMT and 

breast cancer cell tumorigenesis. These ancillary drugs have 

demonstrated that attributes that we have reason to believe 

will inhibit EMT and enhance capecitabine’s efficacy. The 

predicted safety and tolerability of the ABC7 regimen is 

good. A clinical trial is warranted given the fatal outcome 

of metastatic breast cancer as things now stand.
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