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Abstract: Inflammatory bowel disease is a heterogeneous group of chronic disorders that result 

from the interaction of the intestinal immune system with the gut microbiome. Until recently, 

most investigative efforts and therapeutic breakthroughs were centered on understanding and 

manipulating the altered mucosal immune response that characterizes these diseases. However, 

more recent studies have highlighted the important role of environmental factors, and in particular 

the microbiota, in disease onset and disease exacerbation. Advances in genomic sequencing 

technology and bioinformatics have facilitated an explosion of investigative inquiries into the 

composition and function of the intestinal microbiome in health and disease and have advanced 

our understanding of the interplay between the gut microbiota and the host immune system. The 

gut microbiome is dynamic and changes with age and in response to diet, antibiotics and other 

environmental factors, and these alterations in the microbiome contribute to disease onset and 

exacerbation. Strategies to manipulate the microbiome through diet, probiotics, antibiotics or 

fecal microbiota transplantation may potentially be used therapeutically to influence modulate 

disease activity. This review will characterize the factors involved in the development of the 

intestinal microbiome and will describe the typical alterations in the microbiota that are char-

acteristic of inflammatory bowel disease. Additionally, this manuscript will summarize the early 

but promising literature on the role of the gut microbiota in the pathogenesis of inflammatory 

bowel disease with implications for utilizing this data for diagnostic or therapeutic application 

in the clinical management of patients with these diseases.

Keywords: Crohn’s disease, ulcerative colitis, microbiome, fecal microbiota transplantation, 
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Introduction
Inflammatory bowel disease (IBD) represents a heterogeneous group of chronic 

immune-mediated inflammatory diseases affecting the gastrointestinal tract. There 

are two primary phenotypes of IBD, ulcerative colitis (UC) and Crohn’s disease (CD). 

UC is characterized by chronic contiguous and circumferential mucosal inflammation 

extending proximally from the rectum, but is isolated to the colon. In comparison, 

the stereotypical inflammation seen in CD is patchy and transmural, and may affect 

any part of the gastrointestinal tract. Although the etiology of IBD is incompletely 

understood, recent studies support the hypothesis that IBD results from a complex 

interplay of genetics, immune dysregulation and environmental triggers that may exert 

their effect through alterations of the intestinal microbiota.

Currently, IBD affects an estimated 1.4 million individuals in the USA, with a 

significant increase in incidence over the past decades. This has spurred the hypothesis 
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that environmental factors play a critical role in the pathogen-

esis of IBD.1,2 Further evidence of environmental impact on 

disease development is seen in the discordant incidence of 

IBD in industrialized compared with non-industrialized coun-

tries, as well as the rising incidence of IBD in countries that 

are undergoing demographic and economic development.3,4 

Similarly, children emigrating from countries with low IBD 

prevalence to countries with high IBD prevalence assume the 

same risk of developing IBD as their peers residing in high 

IBD prevalence areas for many generations.5 While genes 

play a clear role in the pathogenesis of IBD, with over 200 

genes predisposing to IBD discovered so far, the critical role 

of environment is further highlighted by monozygotic twin 

studies, where concordance of IBD among monozygotic 

twin pairs is <50% as well as the fact that there is incomplete 

penetrance of gene abnormalities predisposing to IBD in the 

general population.6–8

Current theories of IBD pathogenesis postulate that 

pathologic alterations in the intestinal microbiome trigger 

an aberrant mucosal immune response in genetically pre-

disposed individuals, leading to the development of chronic 

intestinal inflammation. These pathologic alterations in gut 

microbial composition seen in IBD are referred to as intes-

tinal “dysbiosis.” Research suggests that perturbations in the 

gut microbiome are an essential factor triggering inflamma-

tion in IBD rather than merely a consequence of the chronic 

inflammation.9 Abundant evidence supports the integral role 

the intestinal microbiome plays in the pathogenesis of IBD, 

including: 1) a characteristic dysbiosis is often observed in 

individuals with CD, UC and pouchitis,10–16 2) fecal stream 

diversion improves disease activity in CD, whereas reinfu-

sion of fecal contents results in recurrent inflammation,17 

3) the majority of IBD susceptibility genetic polymorphisms 

are associated with host mucosal barrier function and are 

involved in host–microbiome interactions,18–23 4) antibiotics 

and probiotics have been shown to be effective for induc-

tion or maintenance of remission in IBD,24–26 5) depletion of 

commensal microbes can result in impaired mucosal healing, 

chronic mucosal inflammation and colitis,27 and 6) germ-free 

animals do not develop colitis without introduction of fecal 

bacteria to induce inflammation.28

While advances in bioinformatics, genomics and experi-

mental models of IBD have identified how environmental 

factors such as age, diet and antibiotic exposure contribute to 

the development of dysbiosis and aberrant gut microbial–host 

immunologic interactions, many questions remain. The fol-

lowing review aims to: 1) describe factors in the development 

of the intestinal microbiome, 2) define features of intestinal 

dysbiosis in IBD, and, 3) explore how current knowledge 

may lead to the development of therapeutic interventions by 

harnessing the microbiome in the treatment of IBD.

The microbiome in health: factors that 
influence development, alteration and 
maintenance of structure and function
The gut microbiota is the largest and most diverse com-

munity of microbes in the human body. The intestinal 

microbiota, or microorganism population of the intestine, 

constitutes only a fraction of the complexity of the intesti-

nal microbiome, which includes diverse array of microbial 

genes and gene products of the microbiota. During times of 

good health, the intestinal microbiome acts symbiotically to 

produce vitamins, repress expansion of pathologic organisms 

and facilitate digestion of dietary substrates, all the while in 

constant contact with the host immune system.29 Addition-

ally, the microbiome contributes to gut epithelial cell renewal 

and enteric immune system development. This diverse 

community of bacteria, fungi, bacteriophages, and archaea 

exist in colonies of varying density throughout the gastro-

intestinal tract, with the highest microbial density reaching 

1012 cells/g of luminal contents in the colon.30 Attempts have 

been made to delineate what constitutes a “healthy” micro-

bial composition of the intestinal microbiome, with varying 

and somewhat disparate results. The difficulty in defining 

a “healthy” microbiome is based upon the complexity and 

variations found in the fecal microbiome, with more than 

1000 potential bacterial species able to colonize the human 

intestines. Despite the large variation found in an individual’s 

microbiome, the majority of species (>90%) belong to the 

Bacteroidetes and Firmicutes phyla.31,32

The composition of the gut microbiota changes over time. 

An individual’s intestinal microbiome is more malleable in 

infancy and early childhood, assumes more stability and 

similarity to the general population in adulthood and sub-

sequently loses diversity in the elderly.12,33 During infancy, 

the gut microbiome is typically minimally complex and is 

influenced by birth route and diet.34–36 Method of delivery 

(cesarean section versus vaginal delivery) differentially 

affects the neonatal intestinal microbiota composition, with 

vaginal and fecal flora colonizing the newborn gut if born 

vaginally and typical skin flora if born via cesarean section.37 

A Danish cohort study of infants born between 1973 and 

2008 demonstrated that cesarean sections were associated 

with a moderately increased risk of IBD; however, this find-

ing was recently disputed by Bernstein et al, who observed 
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that patients with IBD were not more likely to have been 

born via cesarean section than controls or their siblings 

without IBD.38,39

Infant diet also impacts the composition of the intestinal 

microbiome. Exclusively breastfed infants have been found to 

have increased numbers of taxa from Actinobacteria whereas 

formula-fed infants have higher levels of γ-Proteobacteria.40,41 

Additionally, formula-fed infants demonstrate more “adult”-

like patterns of intestinal microbiota. Interestingly, intestinal 

microbiota of breast milk-fed infants are significantly less 

diverse than formula-fed infants, but their microbial genes 

demonstrated more robust interactions with host immune sys-

tem, metabolism and biosynthesis.42 There is a reduced risk 

of development of IBD among infants who were breastfed.43 

The cessation of breastfeeding and associated reduction in 

passage of maternal IgA induces changes in the microbiome 

characteristic of an adult microbiome, including increased 

prominence of Firmicutes and Bateriodetes; however, peak 

microbial diversity and microbiome stability is often not 

reached until adulthood.44–46

During childhood and adulthood, diet appears to have 

a major influence on microbial composition and func-

tion.47 A controlled study examining the effects of diet on 

the microbiome demonstrated that the composition of gut 

microbiota is changed dramatically by increases in dietary 

fat and decreases in dietary fiber compared with low-fat/high-

fiber diets.48 African children on high-fiber vegetarian diets 

demonstrate different gut microbiomes than their European 

peers, whose diets are typified by high sugar, fat and animal 

protein.49 Diets rich in animal fats have also been shown to 

favor increased density of bile-tolerant organisms, including 

Bilophila wadsworthia.47 Interleukin (IL)-10 knockout mice 

fed diets rich in milk-derived saturated fat favored coloni-

zation with Proteobacteria (specifically B. wadsworthia), 

compared with diets high in polyunsaturated fat. Interest-

ingly, these IL-10 knockout mice fed diets high in saturated 

milk fat demonstrated increased incidence and severity of 

spontaneous colitis, providing a potential mechanistic link 

between the observed association between the proliferation of 

Westernized diets and increased incidence of IBD globally.50

Similarly, low vitamin D has been identified as a potential 

risk factor for the development of IBD.51 Vitamin D defi-

ciency may contribute to intestinal inflammation through 

multiple effects and alters the gut microbiome.52 Alterna-

tively, supplementation with vitamin D has been shown to 

alter the intestinal microbiome by increasing alpha diversity 

(species richness).53 While abundant data support dietary 

influences as having a dramatic, either pro-inflammatory or 

anti-inflammatory effect on the intestinal microbiome, further 

research is required to delineate the mechanism by which 

specific dietary alterations are useful in the treatment of IBD.

Alterations in intestinal microbiome 
implicated in the development of IBD
While IBD is clearly associated with intestinal dysbiosis, no 

single microbe or microbial milieu has been proven causal. 

Intestinal dysbiosis may contribute to the pathogenesis 

of IBD by loss of “health-promoting” or potential gain of 

“pathobionts.” Pathobionts are distinguishable from bacte-

rial pathogens in that they only become pathologic in the 

setting of a specific environmental stimulus in genetically 

susceptible individuals. With recent advances in genetic 

sequencing and functional microbial analysis, many studies 

have been able to identify intestinal dysbioses that are pres-

ent in patients with IBD. While there are somewhat disparate 

results, common themes among studies support the finding 

of a generalized reduction in biodiversity (alpha diversity) 

as well as decreased representation of several specific taxa, 

including Firmicutes and Bacteroidetes, among individuals 

with IBD.10–16 Additionally, specific taxonomic shifts have 

been associated with IBD, including a relative increase in the 

abundance of Enterobacteriaceae, including Escherichia coli 

and Fusobacterium.54–56 Newly diagnosed, treatment-naïve 

patients provide an ideal human study population in which 

to observe the potentially pathologic intestinal dysbioses 

that occur in IBD. Interestingly, in a large cohort of newly 

diagnosed, treatment-naïve children with CD, ileal and rectal 

biopsy samples demonstrated an increased abundance of 

Enterobacteriaceae, Pasteurellaceae, Veillonellaceae, and 

Fusobacteriaceae and decreased abundance of Bacteroi-

dales and Clostridia.13 Fite et al demonstrated that not only 

do mucosa-associated microbes differ between those with 

active colonic inflammation (UC) and those with normal 

mucosa, there appears to be longitudinal variation in mucosal 

bacterial populations in UC that is associated with disease 

severity.57 Moreover, fecal microbiota composition in active 

UC is consistent across geographic location, age and gender, 

and IBD-associated microbiota appears to be stable during 

remission among those with UC.58

Although fewer studies have examined the role of fungi 

specifically in the propagation of inflammation in IBD, fungi 

are a ubiquitous component of the intestinal microbiome. In 

CD, intestinal fungal communities have increased diversity in 

colonic and ileal biopsy samples compared with healthy con-

trols.59,60 In pediatric patients with CD, five fungal taxa were 

found to be associated with CD, including: Saccharomyces 

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Journal of Inflammation Research 2017:10submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

66

Lane et al

cerevisiae, Calvispora lusitaniae, Cyberlindnera jadinii, 

Candida albicans, and Kluyveromyces marxianus.61 In addi-

tion, fungal microbial components are utilized in the diag-

nosis and prognosis of CD; specifically anti-saccharomyces 

cerevisiae antibodies (ASCA), which react with a yeast cell 

wall polysaccharide, serve as a serological marker for ileal 

CD.1 A recent study demonstrated increased abundance of 

Candida tropicalis in CD patients compared with their unaf-

fected relatives, and this correlated with ASCA titers and 

abundance of Serratia marcescens and E. coli in biofilms.62 

Like fungi, bacteriophages are an understudied population of 

the intestinal microbiome. Colonic mucosal biopsy samples 

from patients with CD had significantly more bacteriophage 

than healthy controls.63,64 However, given the relative paucity 

of data examining the functional role of fungi, viruses and 

archaea in the intestinal microbiome, further studies are 

required to develop a deeper understanding of how changes 

in these populations may result in IBD.

Interestingly, studies have demonstrated a reduced 

diversity of intestinal microbiota in inflamed versus normal 

intestinal mucosa within the same patient, suggesting that 

host immune factors play a role in maintaining or reacting 

to mucosal inflammation.65 It has long been suspected that 

an individual’s genotype contributes to overall susceptibil-

ity in developing IBD. Studies evaluating specific genetic 

variants have highlighted the interplay between the gut 

immune system and intestinal microbiota. The first gene 

identified to confer susceptibility in developing CD was 

nucleotide-binding oligomerization domain containing 2 

(NOD2).66 Under normal circumstances, NOD2 is primarily 

expressed in Paneth cells, the role of which in the intestinal 

mucosa is to produce antimicrobial defensins. The product 

of NOD2 stimulates host immune response upon recogni-

tion of microbial cell wall components. Patients with NOD2 

mutations have been found to have decreased IL-10, an 

important anti-inflammatory cytokine. Additionally, those 

with NOD2 mutations have been found to harbor increased 

intestinal mucosal adherent bacteria.10,67 In mice, intestinal 

microbiota affects expression of NOD2.68 NOD2-deficient 

mice demonstrate significant increases in Bacteroides, Fir-

micutes, and Bacilli in their terminal ileum, and decreased 

ability to clear pathogenic Helicobacter hepaticus.68 Patients 

with NOD2 risk alleles have decreased clostridium groups 

XIVa and IV and increased Actinobacteria, Proteobacteria 

and Enterobacteriaceae.10 Since the initial identification of 

NOD2 and associated risk alleles, over 160 genetic loci have 

been identified to modulate the risk of IBD.6,19,69 Furthermore, 

genetic analyses have linked specific loci associated with 

a dysregulated intestinal immune response to commensal 

microbes with the development of IBD.6

Analogous to the dynamic relationship between mucosal 

bacterial milieu and the host immune system, fungal micro-

biome communities interact with host immune cells via the 

innate immune receptor, Dectin-1.70 Dectin-1 recognizes 

fungal cell wall glucans and activates intracellular signals 

through the CARD9 receptor, leading to production of 

inflammatory cytokines and subsequent induction of Th17 

responses.70 Variants in CARD9 and Decin-1 are associ-

ated with CD and UC, specifically, mutations in Dectin-1 

(CLEC7A) are associated with medically refractory UC.69,70

Environmental factors affecting 
the intestinal microbiome and the 
development of IBD
While antibiotics may have a therapeutic role in established 

IBD, several studies have shown that antibiotic exposure 

prior to the development of IBD is associated with incident 

IBD. In a retrospective cohort of Danish children, a greater 

relative risk of developing IBD was observed among children 

exposed to antibiotics.71 Likewise, a Finnish study demon-

strated the risk of pediatric-onset CD increased with the 

number of purchased courses of antibiotics from birth.72 A 

large retrospective cohort study from the UK demonstrated 

that exposure to antibiotics, particularly anaerobic antibiot-

ics, during childhood was associated with a relative rate of 

increase in the development of IBD by 84%.73 In a recent 

meta-analysis, exposure to antibiotics during childhood 

was shown to be associated with increased risk of CD but 

not UC.74 Together, these findings suggest that early life and 

repeated exposures of antibiotics may result in sustained, 

potentially detrimental effects on the intestinal microbiome 

and could contribute to the pathogenesis of IBD.

As previously mentioned, diet has a significant effect on 

the fecal microbiome. With this in mind, several large lon-

gitudinal studies have demonstrated an association between 

reduced risk of IBD and a diet high in fruits and vegetables, 

and an elevated risk of IBD in those who consumed diets 

rich in animal fats and refined sugars.4 In addition, Western 

diets high in fat have been demonstrated to increase risk of 

IBD; specifically, consumption of a high ratio of omega-6 

fatty acids (pro-inflammatory) to omega-3 fatty acids (anti-

inflammatory) has been associated with an increased inci-

dence of UC.75,76 In mice, a diet high in n-6 polyunsaturated 

fatty acids exacerbated colitis and resulted in enrichment of 

the intestinal microbiome with pro-inflammatory Enterobac-

teriaceae and Clostridia spp.77
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The intestinal microbiome as a diagnostic 
and therapeutic tool
While earlier studies focused on species characterization 

of the intestinal microbiome in health versus disease, 

advances in metagenomics and metabolomics have intro-

duced the importance of understanding the functional 

properties of the intestinal microbiome in IBD. Specifi-

cally, such functional studies have highlighted differences 

in: carbohydrate and lipid transport/metabolism, cell wall 

degradation, formation of exotoxins, and microbial adher-

ence and invasion in IBD versus in health.1 In defining 

the functional role of the intestinal microbial community 

in disease and health, there is a directive to harness this 

knowledge to restore health to a diseased microbiome 

through diet, prebiotics, probiotics, antibiotics and/or fecal 

microbiota transplantation (FMT).

Diet has an immense impact on gut microbiome develop-

ment and diversity, and has been well studied as a potential 

therapy for IBD. Perhaps the largest body of literature on 

use of diet as a targeted IBD therapy evaluates the efficacy 

and microbial changes associated with exclusive enteral 

nutrition (EEN). EEN is a complete exclusion diet, where 

patients receive 100% of their daily calorie intake from for-

mula rather than table foods. EEN may be completed with 

intact protein formula, semi-elemental or elemental formula. 

Studies employing metagenomics have demonstrated altera-

tions in the intestinal microbiome before and after treatment 

with EEN.61 EEN has been shown to induce alterations in 

the microbiome as early as 1 week after initiation. Interest-

ingly, the intestinal microbiome in these individuals did not 

resemble that of healthy individuals. Similar results were 

demonstrated by Gerasimidis et al in a prospective, case–

control study evaluating changes in fecal microbial diversity 

and metabolic activity of 15 children with CD treated with 

EEN.78 Soon after initiation, and throughout treatment with 

EEN, fecal microbiota diversity decreased, as did concentra-

tions of previously identified commensal microbes. These 

observations correlated with an improvement in clinical 

disease activity and reduction in inflammatory markers.78,79 

Interestingly, these differences in microbiome were more pro-

nounced in study subjects who responded to EEN compared 

with those who did not, potentially identifying biomarkers of 

disease phenotype and aiding future selection of individual 

patients who are more likely to respond to particular thera-

pies. Analogous changes to the structure of the intestinal 

microbiome were not demonstrated in children on partial 

enteral nutrition (PEN; a diet composed of partial formula 

and table foods) despite receiving a similar volume of enteral 

formula, suggesting that the changes to the microbiome seen 

with EEN may stem from exclusion of table foods.80

EEN in CD has been shown to improve clinical symp-

toms, mucosal healing and nutritional status in children, 

with clinical remission rates equivalent to systemic corti-

costeroids.81 In a randomized controlled trial evaluating the 

efficacy of steroids versus EEN for treatment of CD, both 

treatments equally improved clinical symptoms as well as 

serum inflammatory markers, but EEN resulted in signifi-

cantly better mucosal healing.81 Similar clinical results have 

not been reproduced in adults, as EEN resulted in lower rates 

of clinical response than steroids, although this may be a 

question of compliance versus efficacy.80

While EEN for induction of remission is clearly beneficial 

for children with CD, it is often less feasible for long-term 

maintenance of remission. When combined with a regular 

diet, even 50% of calories from EEN reduce the rate of CD 

relapse by 50%.82 However, effectiveness at clinical and 

mucosal remission is greatest when 100% EEN is employed, 

rather than PEN.83,84 Given that many patients feel EEN to be 

prohibitively restrictive, there have been efforts to identify 

whole food diets that may confer similar therapeutic benefit.

The specific carbohydrate diet (SCD) is one such exclu-

sion diet that appears to have a positive effect in IBD. The 

SCD diet was developed by Dr Sydney Haas, a pediatrician 

in the 1930s who developed the diet as a treatment for celiac 

disease. This diet removes all grains, including gluten. It 

was the primary treatment for celiac disease prior to the 

discovery of gluten as the offending antigen. The SCD diet 

was then popularized by Elaine Gottschall as treatment for 

IBD after her daughter’s UC was successfully treated with 

the diet. The diet also removes sweeteners except for honey, 

most processed foods and all milk products, except for hard 

cheeses and yogurt fermented >24 hours. In an online survey 

of 417 IBD patients (47% CD and 43% UC) who used the 

SCD as treatment, 33% reported remission at 2 months after 

initiation of the SCD, and 42% at both 6 and 12 months. 

For those reporting clinical remission, 13% reported time 

to achieve remission of <2 weeks, 17% reported 2 weeks 

to a month, 36% reported 1–3 months, and 34% reported 

>3 months. For individuals who reported reaching remis-

sion, 47% of individuals reported associated improvement in 

abnormal laboratory values.85 Suskind et al reported clinical 

remission in seven children with active CD after initiation 

of the SCD diet without use of concomitant treatment.86 In 

addition to clinical remission, these children demonstrated 

normalization/improvement inflammatory markers, including 

fecal calprotectin. Cohen et al reported clinical and mucosal 
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improvements, as documented with capsule endoscopy in 

seven children with CD who used SCD for 52 weeks.87 In 

addition to the aforementioned studies, case series including 

over 75 patients have shown clinical and laboratory improve-

ment in both CD and UC patients on SCD.88,89

In a recent prospective multicenter study of SCD in pedi-

atric patients with mild-to-moderate CD or UC, 12 pediatric 

patients (aged 10–17 years) were followed for 12 weeks. 

Dietary therapy was associated with clinical remission in 

eight patients and was ineffective for two patients, while two 

individuals were unable to maintain the diet. At 12 weeks, 

the mean C-reactive protein decreased from 24.1±22.3 mg/L 

to 7.1±0.4 mg/L in the Seattle cohort (nL<8.0 mg/L) and 

from 20.7±10.9 mg/L to 4.8±4.5 mg/L in the Atlanta cohort 

(nL<4.9 mg/L). Concomitant with clinical and laboratory 

improvements, significant changes in microbial composition 

occurred with the dietary change.90

Other exclusion diets have been used for reduction of 

inflammation and symptom improvement in IBD. The Crohn’s 

Disease Exclusion Diet (CDED), designed and evaluated by 

Dr Arie Levine, is based on the hypothesis that the efficacy 

of EEN is dependent on exclusion of dietary components that 

may potentially influence intestinal permeability or promo-

tion of a pro-inflammatory microbiome. Foods specifically 

excluded from the diet include: gluten, dairy, gluten-free 

baked goods, animal fat, processed meats, products containing 

emulsifiers and all canned or processed foods. In a prospective 

cohort of pediatric and adult patients with mild-to-moderate 

CD treated with 50% PEN and the CDED, Sigall-Boneh et 

al, showed this exclusion diet was successful in achieving 

induction of clinical remission, including a reduction in 

inflammatory markers.91 Additionally, a small subgroup of 

seven patients treated with the CDED alone also achieved 

clinical remission.91 Similarly, Riordan et al demonstrated 

that in adults with active CD, after induction of elemental 

diet, those who excluded trigger foods had prolonged clinical 

remission and improvement in serum inflammatory markers 

compared with those who consumed a regular diet.92 Foods 

most frequently excluded owing to “intolerances” included: 

cereals, dairy products and yeast. Similarly, Rajendran et al 

found that IgG4-targeted exclusion diets for adults with active 

CD resulted in symptomatic improvement and reduction in 

serum inflammatory markers.93 In a small, prospective con-

trolled study of adults with CD in clinical remission, Chiba 

et al demonstrated that a lacto-ovo-vegetarian diet resulted in 

reduction in relapse and prolongation of time to relapse versus 

a standard omnivorous diet.94 While these exclusion diets hold 

promise for induction or maintenance of remission in CD, 

further research is necessary to characterize their effects on 

mucosal healing and alterations in microbiome.

Other diets have not been as well studied in IBD; however, 

low-lactose diets have been shown to reduce clinical symp-

toms of IBD. Similarly, patients with IBD report symptom 

improvement on low FODMAP (Low Fermentable oligosac-

charides, disaccharides, monosaccharides, and polyols) diet, 

but there is paucity of data that supports a reduction in intes-

tinal mucosal inflammation.95,96 Low FODMAP diets have 

been found to reduce potentially favorable bacterial species 

within the colon, particularly Faecalibacterium prausnitzii 

and reduced production of butyrate.97 However, these altera-

tions in the microbiome have unclear clinical consequences. 

Other restriction diets such as the vegan and vegetarian diets 

are popular among some patient populations. Zimmer et al 

demonstrated alterations in the ratios of Bacteroides spp., 

Bifidobacterium supp., and Enterobacteriaceae in patients 

adherent to vegan and vegetarian diets.98 Further studies are 

required before these restriction diets can be recommended 

for the treatment of IBD.

The mechanism of action in reduction of clinical symp-

toms and intestinal inflammation with EEN and exclusion-

ary diets remains unclear. Restriction diets may act through 

exclusion of certain substrates that modulate the intestinal 

microbiome, or may be related to the exclusion of food 

additives, including emulsifiers that may modulate the 

intestinal microbiome and/or directly affect the immune 

system through alterations in the mucus barrier as well 

as the epithelial lining.80 Murine models of colitis (IL-10 

knockout mice) fed common commercial food emulsifiers, 

carboxymethylcellulose and polysorbate-80 demonstrated 

thinning of the colonic mucosal layer, invasion of bacteria 

into the lamina propria, altered microbiome and worsening 

colitis.99 Nickerson et al has demonstrated parallels between 

the increasing dietary prevalence of maltodextrin (MDX), a 

common starch-based food additive, and rising incidence of 

CD. Through a series of experiments to uncover potential 

mechanisms, Nickerson et al demonstrated that exposure to 

MDX enhances mucosal adhesion and biofilm formation by 

E. coli, including adherent-invasive E, coli, and increases 

viability of intracellular Salmonella in mucosal macrophages 

and epithelial cells. Using this evidence, they hypothesize 

that MDX may contribute to the development of IBD by 

priming the intestinal mucosal to be more sensitive to epi-

thelial damage due to a reduction in epithelial antimicrobial 

defense mechanisms.100 In sum, while there are promising 

preliminary data supporting the use of exclusion diets in the 

treatment of IBD, additional studies are required to draw 
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definitive conclusions regarding how exclusion diets influ-

ence the intestinal microbiome composition and function 

and how these changes may result in long-term clinical and 

histopathological remission.

FMT is being actively explored as a means of altering 

the intestinal microbiome for therapeutic benefit in IBD. The 

rationale supporting FMT as a putative therapeutic modal-

ity includes the observation that active IBD is characterized 

by reduced colonic microbial diversity and the hypothesis 

that “healthy” donor microbiota may restore homeostasis to 

the aberrant microbiome and host immune response. Initial 

interest in utilizing FMT for IBD stemmed from the great suc-

cess of FMT in treating recurrent or refractory Clostridium 

difficile infections, another disorder characterized by loss 

of diversity in the microbiome.101 Unfortunately, results of 

clinical studies exploring FMT as a therapy for IBD have 

been less robust.69,102,103 Although some smaller studies have 

shown potential efficacy of FMT in UC, two larger random-

ized placebo control trials of FMT in UC demonstrated little 

to no efficacy.104–106 There are currently insufficient data to 

support the use of FMT for treatment of CD, but given the 

small number of studies and small patient sample sizes, 

additional studies are required to draw definitive conclu-

sions on the efficacy of FMT for induction or maintenance 

of remission in IBD.

Antibiotics have long been utilized to manage IBD. 

Primarily, antibiotics have been employed as an adjunctive 

treatment in specific clinical scenarios, such as perianal and 

intra-abdominal abscesses, fistula and toxic megacolon.24,26 

However, certain antibiotics such as ciprofloxacin, metro-

nidazole, and rifaximin with their broad-spectrum antimi-

crobial coverage have been explored as a primary therapy. 

In theory, antibiotics may alter the clinical course of IBD 

by several mechanisms, including: decreasing luminal bac-

teria concentrations, altering the microbial composition to 

potentially favor the establishment of beneficial bacteria, and 

decreasing bacterial tissue invasion.26 Clinically, treatment 

with enteral antibiotics has been shown to reduce intestinal 

inflammation and has been efficacious in treating mucosal 

inflammation in CD and pouchitis.24–26,107 However, their use 

as maintenance therapy in CD is less clear. In a randomized, 

placebo-controlled, blinded study of 213 adults with active 

CD, a combination of clarithromycin, rifabutin and clofazi-

mine resulted in short-term improvement in remission, but 

offered no benefit for prevention of long-term relapse.108 

A meta-analysis evaluating randomized controlled trials in 

which antibiotic therapy was compared with placebo for 

the treatment of IBD demonstrated some benefit of using 

antibiotics to treat IBD. A total of 10 studies were included in 

the evaluation of antibiotics in CD and found a pooled odds 

ratio (OR) for clinical improvement of 1.35 (95% confidence 

interval [CI], 1.16–1.58) for the use of antibiotic therapy 

compared with placebo. For patients with UC, a total of nine 

studies included in the analysis demonstrated a pooled OR 

of 2.17 (95% CI: 1.54–3.05) in favor of antibiotic therapy.109 

Despite mounting evidence, additional randomized controlled 

trials are required to guide decisions regarding the specific 

clinical roles of antibiotics in the treatment of IBD.

Several studies have evaluated probiotics, both in induc-

tion and maintenance of remission in IBD. Probiotics, as a 

whole, have not demonstrated efficacy in the treatment of 

CD; however, there may be some role for the use of specific 

probiotics in the management of mild-to-moderate active UC 

or recurrent pouchitis after ileoanal anastomosis.110 VSL#3 

is a highly-concentrated probiotic preparation that contains 

eight different types of bacteria within the Lactobacillus, 

Streptococcus and Bifidobacterium spp. In placebo-controlled 

trials, VSL#3 was shown to prevent recurrence of pouchi-

tis.111,112 While data exist to support the limited utility of 

certain probiotics in the treatment of IBD, further studies 

are required to delineate the anti-inflammatory mechanism 

of probiotics in IBD.113

Prebiotics are compounds that change the structure or 

metabolome of the intestinal microbiota. Inulin and oligo-

fructose are two prebiotics that have been shown to promote 

the growth of beneficial Bifidobacterium and Lactobacillus 

spp. both in humans and in rats.114,115 Additionally, cellobi-

ose and rice fiber are dietary-fiber sourced prebiotics that 

have been shown to reduce pro-infammatory cytokines in 

experimental models of colitis.116 Few studies have examined 

the beneficial clinical effects of prebiotics in active IBD. 

Benjamin et al in a randomized placebo-controlled study of 

adults with active CD evaluated changes in disease activity 

index after administration of fructo-oligosaccharides (FOS). 

Despite some changes to immunoloregulation of dendritic 

cells observed in those receiving FOS, no significant clinical 

improvements were seen, nor were there significant changes 

to the fecal microbiome between the groups at baseline or 

after the 4-week intervention.117

Fermentable fiber, another form of prebiotic, is metabo-

lized by colonic bacteria to short chain fatty acids (SCFA),that 

is, acetate, propionate and butyrate, which are known to mod-

ulate cell proliferation, histone acetylation, gene expression 

and immune response.118 SCFA-producing bacterial strains in 

Clostridia clusters IV, XIVa and XVII from healthy individu-

als induce colonic regulatory T cells (Tregs) differentiation, 
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expansion and function.119 SCFA produced by Clostridia spp 

have been found to induce CD4+ T regulatory cells (Treg) 

and reduce colitis in mouse models.69,120 In adults with IBD, 

fecal samples demonstrated reduced concentrations of butyr-

ate and acetate compared with healthy controls, suggesting 

that SCFA may play some protective role in the prevention 

of intestinal inflammation.121 In animal models of IBD, 

supplementation with soluble fiber has been shown to reduce 

intestinal inflammation by increasing the production of SCFA 

and altering the intestinal microbiome.122,123 In humans, 

dietary fiber may reduce the risk of flare in patients with CD, 

although additional studies are required to recommend fiber 

supplementation as an anti-inflammatory therapy in IBD.124

Future studies
Defining the characteristics of “disease” and “health” in 

intestinal microbiota is only the first step in ascertaining the 

pathogenesis of IBD. To date, specific profiles of intestinal 

microbiota have not been beneficial as a diagnostic test 

or biomarker for IBD; and further studies are required to 

identify whether aspects of the microbiome may be useful 

in identifying disease phenotype or predicting response to 

therapy.11,13,14,69 Many earlier studies have been wrought with 

several challenges in delineating causality when reporting 

microbial changes associated with IBD. Additionally, robust 

meta-analysis to draw conclusions have been challenging, 

given the diversity of microbial sampling and important 

clinical aspects of disease, including disease phenotype, 

location of disease, and prior pharmacologic exposures.1 

Fortunately, with evolving experimental technologies to assist 

in the functional characterization of the microbiome, there is 

promise to move beyond defining the phenotypic footprint 

of the microbiome in IBD to identify how the microbiome 

contributes to: 1) the onset and propagation of disease, and 

potentially more significantly, 2) how we may manipulate the 

microbiome as a future treatment of IBD.
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