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Abstract: This paper describes the evolution of our understanding of the biological role played 

by synthetic and natural antimicrobial cationic peptides and by the highly basic nuclear histones 

as modulators of infection, postinfectious sequelae, trauma, and coagulation phenomena. The 

authors discuss the effects of the synthetic polymers of basic poly α amino acids, poly l-lysine, 

and poly l-arginine on blood coagulation, fibrinolysis, bacterial killing, and blood vessels; the 

properties of natural and synthetic antimicrobial cationic peptides as potential replacements 

or adjuncts to antibiotics; polycations as opsonizing agents promoting endocytosis/phagocyto-

sis; polycations and muramidases as activators of autolytic wall enzymes in bacteria, causing 

bacteriolysis and tissue damage; and polycations and nuclear histones as potential virulence 

factors and as markers of sepsis, septic shock, disseminated intravasclar coagulopathy, acute 

lung injury, pancreatitis, trauma, and other additional clinical disorders
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Introduction
The pioneering work of Anton van Leeuwenhoek, Edward Jenner, Ignaz Semmelweiss, 

Louis Pasteur, Robert Koch, Elia Metchnikoff, and many others linked microbes with 

infectious diseases and helped establish the germ theory of disease.1 Robert Koch’s 

postulates and Metchnikoff’s phagocytosis theory described various functions of mac-

rophages and their ability to kill microorganisms. This formed the basis for numerous 

studies on the biochemical properties and role in infection and immunity of phago-

cytic cells such as neutrophils and macrophages. These phagocytic cells are rich in 

antimicrobial peptides, lysosomal hydrolases, and oxidants. These early theories also 

lead to the discovery of proinflammatory cytokines and their role in microbial infec-

tions. However, the early discovery of lysozyme in 1923, and the further discovery of 

penicillin by Fleming, Florey, and Chane in 1928, was a major step in attempting to 

control severe microbial infections that may result in septic shock and organ failure; 

these conditions have a very high mortality even today. The recent concern regarding 

acquisition of antibiotic resistance by the microbe and the ongoing risk to life of the 

postinfectious sequelae prompted a very intense search for alternative antimicrobial 

cationic peptides to hopefully cope with severe microbial infections and their aftermath.

The basic concepts of microbial virulence were skillfully reviewed by Casadevall 

and Pirofski.2 They stated that “while the importance of a host’s susceptibility for 
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a microbe’s virulence was often recognized, the existing 

definitions did not account for the contributions of both 

pathogen and host.” As we know today, sepsis is indeed the 

host response (organ dysfunction) to invasion by pathogenic 

microorganisms (infection), while septic shock is the more 

extreme form of this host reaction where vasodilation and 

translocation of fluid from the vascular space to the interstitial 

space causes hypotension and other cellular and metabolic 

abnormalities. Casadevall and Pirofski2 reviewed historical 

concepts of microbial pathogenicity and virulence, proposed 

new definitions, and suggested a classification system for 

microbial pathogens based on their ability to cause damage 

as a function of the host’s immune response. One typical 

example is septic shock (see section on “Can histone released 

from neutrophils” section).

This review will address the nature and role of histones as 

well as other modulators of infection and the host response to 

infection. Histones may be defined as highly basic proteins 

around which DNA coils to form chromatin. Their role in 

infection is described further.

The effect of the synthetic polymers 
of basic of poly a amino acids poly 
l-lysine and poly l-arginine on blood 
coagulation, fibrinolysis, bacterial 
killing, and blood vessels
Even as early as 1952–1956, teams of investigators at the 

Weitzman Institute of Science in Rehovot, Israel, headed by 

Ephraim Katchalski, were the first to synthesize and investi-

gate the role of the linear polymers of basic amino acids such 

as poly l-lysine, poly l-arginine, and poly l-ornithine in the 

retardation of blood coagulation and fibrinolysis, killing of 

bacteria and mammalian cells, promotion of phagocytosis, 

and toxicity to blood vessels.3–9 It is of note that synthetic 

cationic polymers are actually histone mimics, sharing a high 

cationic charge capable of interaction with anionic agents. 

The researchers at Weizmann Institute also successfully 

explored the use of such poly amino acids as protein models 

and studied many of their physical, chemical, and biological 

properties. In all cases, the effects of the cationic polymers 

were abrogated by poly anions such as poly l-aspartic acid, 

poly l-glutamic acid, and the highly sulfated compound 

heparin.3–9 Unfortunately, these pioneering “ancient” studies 

are hardly ever cited in the modern literature and may be lost 

to the clinicians forever.

The retardation of clot lysis by basic poly cations was 

reconfirmed in 2015.10,11 In sepsis, both coagulation (activa-

tion of the coagulation cascade) as well as fibrinolysis are 

enhanced. Therapeutic strategies (eg, activated protein C) 

have previously been directed at reducing clot formation in 

the microcirculation to reduce organ dysfunction in septic 

patients. The authors showed that histone mimics(poly 

l-lysine and poly l-arginine) and neutrophil extracellular 

traps exerted antifibrinolytic effects in a plasma environ-

ment and that the combination of histones and DNA also 

significantly prolonged clot lysis by forming thicker fibers 

accompanied by improved stability and rigidity.10–12

The properties of natural and 
synthetic antimicrobial cationic 
peptides  designed to replace 
antibiotics
In 1956 and later on in 1958 and in 1960, poly l-lysine was 

shown to possess potent bactericidal effects against a vari-

ety of microorganisms and also against certain viruses, all 

abrogated by poly-anions such as heparin poly-glutamic and 

poly-aspartic acids.9,13,14 However, being toxic to mammalian 

cells, their clinical use should be considered with caution.15

Antimicrobial peptides (AMP) are mainly small peptides 

(12–50 amino acids) containing a positive charge and an 

amphipathic structure. The AMPs, which are rich in proline, 

tryptophan, arginine, lysine, or histidine, are actually mim-

ics of nuclear cationic histones (see section on “Can histone 

released from neutrophils”) and are able to interact with 

negatively charged microbial and mammalian membranes 

to disrupt the bilayer curvature, beyond a threshold con-

centration of membrane-bound peptide. In bacteria, AMPs 

rapidly interact with surface lipopolysaccharide (LPS) of 

Gram-negative organisms and with the membrane-associated 

lipoteichoic acid (LTA) in Gram-positive organisms, and they 

also demonstrate toxicity to a variety of mammalian cells. 

AMPs may also induce bacteriolysis.

Since 1956, an overabundance of publications focused on 

the chemistry, physics, biology, and bactericidal effects of a 

large variety of linear and nonlinear cationic AMPs.16–22 These 

cationic agents may be considered evolutionarily ancient 

weapons against microbial infections. They may also play 

a pivotal role in innate immunity and as agents for specific 

uses because of their natural antimicrobial properties and a 

low propensity for the development of bacterial resistance. 

Hopefully, one day, AMPs may provide an alternative to 

conventional antibiotics (discussed later).

Readers who require further background on this topic 

would be well-served spending time reading the works of 

and paying tribute to the pioneers: M Zasloff, R Hancock, 

K Brogden, Y Shai, T Ganz, A Peschel, P Elsbach, Robert I 
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Lehrer, JK Spitznagel, and many others, who were the ones to 

delve into the complicated chemistry, physics, and biological 

effects and possible future medical uses of AMPs.

Polycations as opsonizing agents 
promoting endocytosis/phagocytosis
In general, polycationic agents can interact via electrostatic 

forces with negatively charged sites, mainly on the surfaces of 

microbial and mammalian cells. Such interactions may perturb 

the membrane, induce cell agglutination, and also cause perme-

ability changes that may lead to cell lysis.23 The attachment of 

cationic agents to surfaces of negatively charged particles is 

called opsonization and is similar to the effect of antibodies. 

Both facilitate the internalization (phagocytosis) of cationic 

particles by the professional phagocytic cells, neutrophils 

(PMNs), and macrophages, but surprisingly, also by nonprofes-

sional phagocytes and by certain tumor cells. Although we will 

not fully cover the topic, it is worth mentioning that a variety of 

positively charged agents have also been shown to act as trans-

fecting agents and as agents promoting the delivery of drugs 

as conjugates and as “decorators” of drug-loaded carriers.24

It is important to note that nonspecific plasma globulins 

and IgGs are positively charged macromolecules. However, 

nonspecific cationic globulins, which can bind to cell surfaces 

by electrostatic forces, might interfere with the binding of 

specific antibodies. Indeed, a thermostable cytotoxic factor, 

globulin, in normal human plasma inhibited the action of 

heterologous antibodies on HeLa cells.25

In 1986, it was shown that Entamoeba histolytica and 

Acanthamoeba palestinensis, two distinct classical phago-

cytic cells (possibly evolutional forefathers of neutrophils and 

macrophages), which stubbornly refused to internalize/engulf 

Candida albicans, nevertheless did so very avidly if pre-

coated by arginine-rich polycations.26 These studies resulted 

in later experiments that showed phagocytosis–endocytosis 

of Candida albicans and of Group A Streptococci by mouse 

fibroblasts and by epithelial cells in culture.27 In this study, the 

most potent opsonins for Group A Streptococci were specific 

antibodies supplemented with complement, nuclear histone, 

poly lysine, poly arginine, ribonuclease, leukocyte lysates, 

leukocyte cationic proteins, and, to a lesser extent, cationic 

lysozyme and myeloperoxidase.

Highly cationic histone, RNAse, leukocyte extracts, and 

platelet extracts also functioned as opsonins for phagocytosis 

of streptococci in the peritoneal cavity.27 However, the phago-

cytic capabilities of mouse fibroblast poly karyons (cells with 

multiple nuclei) were much higher than those of ordinary 

spindle-shaped fibroblasts, probably due to their very large 

cytoplasmic area. Calf thymus histone also functioned as 

a good opsonic agent for the uptake of Candida by human 

fibroblasts, HeLa cells, epithelial cells, monkey kidney cells, 

and rat heart cells in culture.27 Phagocytosis of Streptococci 

and Candida by macrophages and the uptake of Candida by 

fibroblasts were both strongly inhibited by the polyanions 

hyaluronic acid, DNA, and dextran sulfate. The paucity of 

nonprofessional phagocytes of hydrolases capable of break-

ing down microbial cell wall components may contribute to 

the persistence of nonbiodegradable components of bacteria 

in tissues and lead to the perpetuation of chronic inflamma-

tory sequelae such as granulomatosis.28

Two excellent, but concerning, examples of phagocytosis 

of microbes in vivo showed that Staphylococcus aureus, by 

forming microcolonies, could survive unharmed within skin 

keratinocytes, waiting for the opportunity to attack patients 

with low immunity. The mechanism of cell uptake was not 

disclosed.29,30

It was also demonstrated that nonbiodegradable cell 

wall components could persist for long periods within 

macrophages in arthritic granulomas. Another example is 

the chronicity of lesions in tuberculosis.31–33 Furthermore, 

macrophages and neutrophils loaded with opsonized strepto-

coccal cell walls can be translocated to remote sites to induce 

chronic inflammation.34–36

Polycations and lysozyme as 
activators of autolytic wall enzymes 
(muramidases) in bacteria, causing 
bacteriolysis and tissue damage
The discovery of the bacteriolysis phenomenon dates back to 

189332,37 when Buchner37 reported that fresh serum was able 

to kill certain bacteria, an effect which was lost upon heat-

ing to 55°C. He attributed the bactericidal action of serum 

to a heat-labile constituent that he called “alexine” (from 

Greek “to ward off ”). One year later, Pfeiffer described the 

dissolution of Vibrio cholera by fresh serum of guinea pigs 

immunized with heated vaccine, which could be correlated 

with protection against infection in both passively and 

actively immunized animals.32

However, the significance of the biochemical degrada-

tion of microbes as related to tissue injury in inflammation, 

infection, and postinfectious sequelae has emerged mainly 

from a large series of investigations32,38,39 that focused on:

1.	 The structure and function of the bacterial cell walls

2.	 The role of muramidases (autolytic wall enzymes) in 

normal bacterial multiplication
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3.	 The role played by lysozyme, leukocyte-derived poly-

cations, cationic enzymes, and antibiotics (mostly 

β-lactams) in bacteriolysis

4.	 The role of muramidase-deficient strains in pathology

5.	 Antibiotic resistance

6.	 Microbial killing and degradation:

	   The role of the cell wall components: LPS, LTA, and 

peptidoglycan (PPG) in the activation of leukocytes and 

in the generation of oxidants, proteinases, and cytotoxic 

cytokines.

7.	 The role of microbial cell wall components in the patho-

genesis of granulomatous inflammation and in the poten-

tiation of innate immunity to infections and of tumor-cell 

proliferation

Morphologically, two main patterns of bacterial cell 

degradation under various physiological and pathological 

conditions have been defined:

1.	 The term plasmolysis was proposed when a significant 

degradation of cytoplasmic constituents occurred, leaving 

apparently intact cell walls

2.	 The term bacteriolysis was proposed when a significant 

breakdown and degradation of the rigid cell walls, pre-

sumably due to the uncontrolled activation of autolytic 

wall enzymes (muramidases), occurred.

Bacteriolysis can be defined as an event that may occur 

when normal microbial multiplication is altered due to an 

uncontrolled activation of a series of autolytic cell-wall 

breaking enzymes (muramidases). It may happen follow-

ing treatment of bacteria by β-lactam antibiotics or also by 

a large variety of bacteriolysis-inducing cationic peptides 

such as histones, elastase and cathepsin G, lysozyme, and 

PLA
2
. When bacteriolysis occurs in vivo, cell wall- and 

membrane-associated LPS (endotoxin) from Gram-negative 

organisms and LTA and PPG from Gram-positive organ-

isms are released. These highly phlogistic agents can act on 

macrophages to induce the generation and release of reactive 

oxygen and nitrogen species, cytotoxic cytokines, hydrolases, 

proteinases, and also activate the coagulation and comple-

ment cascades.40

Peptidoglycan hydrolysis can result in the rupture of 

the murein sacculus due to its high osmotic pressure, lead-

ing to the release of cytoplasmic constituents and cell wall 

fragments.32 A possible explanation for the long persistence 

of highly phlogistic nonbiodegradable microbial cell wall 

remnants within professional phagocytic cells was offered 

in 1989.41

It was proposed that following phagocytosis either by 

PMNs or by macrophages, the engulfed microorganisms are 

exposed intraphagosomally to the respiratory burst generat-

ing oxidants, LL-37, lysosomal cationic proteinases, and 

also numerous hydrolases, which inactivate the autolytic 

wall enzymes thus allowing the survival of highly phlogistic 

microbial cell wall component.

It was also shown that neutrophil-mediated myeloper-

oxidase, H
2
O

2
, and HOCl production inactivated a class of 

cytoplasmic membrane enzymes (penicillin-binding proteins 

[PBP’s]) in Escherichia coli, Staphylococcus aureus, and 

Pseudomonas aeruginosa. These PBP’s covalently bind 

β-lactam antibiotics to their active sites. This contributed 

to the persistence of nondegraded microbial components, 

leading to unbalanced bacterial growth and cell death.42,43

Degradation of Staphylococcus aureus by β-lactams was 

markedly inhibited by the polyanions suramine and Evans 

blue, suggesting that accumulation of polyanions and sulfated 

polysaccharides in inflammatory sites might also interfere 

with bacteriolysis.44,45

Clindamycin treatment of Staphylococcus aureus 

caused a remarkable thickening of the bacterial cell wall 

due to increased numbers of O-acetyl groups in the murein, 

which made the bacterial wall much more resistant to lytic 

enzymes within bone marrow-derived macrophages, and 

this was revealed by electron microscopy and radiolabeling 

experiments. This reduced wall degradation might increase 

the survival of highly phlogistic walls in inflammatory 

sites. Furthermore, such clindamycin-treated bacteria were 

ingested by adherent bone marrow-derived macrophages at 

a higher rate than untreated bacteria.46 The involvement of 

bacteriolysis in sepsis was also reported.47

The lysozyme riddle: is this enzyme a 
genuine and an effective bacteriolytic 
enzyme?
In 1922, Alexander Fleming discovered the enzyme lyso-

zyme (N-acetylmuramide glycanhydrolase).48 Lysozyme 

is a 139-amino acid cationic protein found in neutrophils, 

macrophages, saliva, mucous, egg white, milk, and additional 

body fluids. Patients with myeloid leukemia can be diag-

nosed by measuring lysozyme in urine by a simple method 

using suspensions of Micrococcus lysodeikticus as a highly 

sensitive substrate (Ginsburg, unpublished data). Lysozyme 

was anticipated to kill, lyse, and biodegrade pathogenic 

microorganisms.

Lysozymecan very rapidly (within 1–2 minutes) lyse 

certain nonpathogenic Gram-positive cocci (eg, Micrococcus 
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lysodeikticus and also spore-bearing aerobic bacilli) pos-

sessing a “simple” PPG. However lysis of Staphylococcus 

aureus, which possesses a more complex PPG, can take up to 

6–12 hours. It is of clinical significance that lysozyme rarely 

induces lysis either of hemolytic Streptococci, Streptococ-

cus viridans, Listeriae, Mycobacteria, or Candida species, 

and it lyses enteric bacteria Staphylococcus aureus slowly. 

It could, however be partially lysed by a synergism between 

lysozyme, lysolecithin and phospholipase C.32 Also, hemo-

lytic streptococci cultivated in the presence of subinhibitory 

concentrations of penicillin lost their membrane-associated 

phospholipids to a large extent following treatment with small 

concentrations of lysothelin and lysozyme.32

The main reason for the relative resistance to lyso-

zyme action of Staphylococcus aureus and perhaps also 

of the majority of pathogenic microorganisms, may be 

ascribed to the presence in their peptidoglycans of O-acetyl 

groups, which hinder the interaction of lysozyme with the 

N-acetylglucosamine-N-acetyl muramic acid linkages in the 

PPG.32,49,50 However, mild alkaline solutions rendered such 

cell walls digestible by egg-white lysozyme.51

The lack of deacetylating enzymes in phagocytes may 

explain why apparently intact Staphylococcal, Streptococcal, 

and Mycobacterial cell walls may persist for long periods 

either within phagolysosomes of macrophages in culture or 

also in vivo. However, lysozyme does not seem to function 

as a muramidase but rather as a cationic peptide that activates 

the microbial autolytic wall enzymes in certain bacteria.32 

Usually, this process takes hours and is therefore missed 

when the bactericidal effects of AMP are tested for very short 

periods and expressed as colony forming units.49–52

Lysis of bacteria by antibiotics in vivo may also be 

involved in sepsis and septic shock (see section on “Can 

histone released from neutrophils”47).

Synergistic effects among cationic 
peptides
It was also demonstrated that mammalian cationic peptides 

from different structural classes (eg, α-helical cationic pep-

tides such as lactoferrin and most amphipathic membrane-

active AMPs) frequently show synergy with each other and 

also with lysozyme. It is assumed that this reflects the coop-

erative interactions of the peptides with the outer membranes 

of Gram-negative bacteria and/or cooperative interaction with 

lipid bilayers in general. It was concluded that, given the 

substantial diversity of peptides in any given location in the 

host, synergistic interactions are an important determinants of 

the overall effectiveness of the peptides.52 Cationic peptides 

and cationic proteins can also act in synergy with reactive 

oxygen species to injure mammalian cells.53–56

Can histone released from 
neutrophil nets function as a major 
virulence factor involved in the 
pathophysiology of septic shock 
trauma and also in many additional 
clinical disorders?
It is alarming that today clinicians are still limited when try-

ing to treat the life-threatening sequelae of severe microbial 

infections, which very often lead to sepsis and septic shock, 

both of which have a high mortality.57,58

The annual incidence of sepsis in the USA has been 

estimated to affect as many as 750,000 hospitalized patients 

with mortality reaching about 40%.57,58 Worldwide, sepsis is 

one of the commonest, deadliest disease entities, and globally, 

20 to 30 million patients are estimated to be afflicted every 

year with what is one of the least well-understood disorders.

Screening the voluminous literature on sepsis treatments 

reveals the repeated unsuccessful efforts to save patients’ lives 

by administering antibiotics, sometimes combined with only 

singly-selected antagonists. The numbers of unsuccessful 

antisepsis agents that have been tested in clinical trials in the 

last 30 years is phenomenal, and today, even the most prom-

ising agent, activated protein C, has been recently removed 

from use. Today, there is no specific effective treatment for 

sepsis and septic shock.57,58

The pioneering studies on poly alpha cationic amino 

acids3–9 and their role as bactericidal agents, as opsonins, and 

as bacteriolysis-inducing agents, (see the earlier sections) 

raised interest regarding the possible role of histones and 

modified histones, actually lysine and arginine-rich peptides, 

in the pathophysiology of a variety of clinical disorders.

This “new field” of research emerged in 2009 from two 

“breakthrough” articles by Xu et al59 and Chaput et al60 in 

Nature Medicine. These authors had proposed that nuclear 

histones released from PMN nets may be the main cause of 

death in sepsis and that this is due to the toxicity of the highly 

cationic protein to endothelial cells (ECs).

Histones comprise five groups of nuclear proteins rich in 

the highly basic amino acids l-lysine and l-arginine, which 

are bound to chromatin in the cell nucleus. Extracellular 

histones are highly toxic to bacteria and to mammalian cells 

and can increase plasma thrombin generation by impairing 

endothelial thrombomodulin-dependent protein C activa-

tion, which is responsible for disseminated intravascular 
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coagulopathy (DIC). Dysregulation of ECs by the released 

histones leads to a severe immune cytokine storm and 

coagulation cascade. The toxic effects of histones could 

be abrogated or slowed down by antibodies to histone-

activated protein C (a protease which cleaves histone) and 

also by heparin. Extracellular histones are also elevated in 

response to traumatic injury, and this elevation correlates 

with fibrinolysis6,10–12 and activation of anticoagulants. In 

trauma patients, an increase in histone levels between the 

time of admission and 6 hours is predictive of mortality. This 

suggests a possible role for activated protein C in mitigating 

the sterile inflammatory response after trauma through the 

proteolysis of circulating histones. However, the question of 

whether histones alone are the real culprits or just markers 

of cell damage is still unsettled.

Septic shock was recently redefined as a multifactorial 

synergistic phenomenon/disorder. While no distinct virulence 

factor (alarmin) has been identified, if successfully neutral-

ized, the devastating immune responses can be slowed down 

or even stopped, which will hopefully reduce mortality.61,62

The possible role of histones in additional 
clinical disorders
The interesting publications regarding the possible patho-

genetic properties of histones in sepsis has resulted in a 

plethora of studies, also suggesting that these circulating 

polycations may be involved in the pathogenesis of DIC, 

acute lung injury, trauma, pancreatitis, liver, renal and 

myocardial disorders, trauma, heat stroke, and many other 

clinical disorders.63–79 Analyzing these articles, one wonders 

if the presence of histones in the circulation indicates that 

these are innate virulence/toxic agents or just an additional 

marker of tissue damage.

Can histones function alone in vivo as 
absolute virulence factors?
It was previously demonstrated that the toxicity of histone to 

ECs and to epithelial cells in culture was markedly further 

enhanced (in a synergistic manner) in combination with 

oxidants, proteinases, and additional proinflammatory agents 

generated by activated neutrophils.54,55,62,80,81 Such synergistic 

phenomenon might actually be a general mechanism of cell 

injury mediated by activated phagocytes recruited to infec-

tious and inflammatory sites.

The following scenario might be depicted: following 

adherence to ECs, PMNs undergo NETosis, and the released 

DNA combined with histones is accompanied by activation of 

NADPH oxidase and generation of reactive oxygen species. 

This happens concomitantly with activation of a large array 

of proinflammatory agents.

Dysregulation of ECs leads to platelets activation and 

the generation of cytokine storms and coagulation cascades.

However, it is highly plausible that in vivo, histones and 

additional toxic polycations (eg, LL-37, elastase) most prob-

ably never act on their own but always in synergism with 

many additional proinflammatory agents.54,55,81

Since histones’ action could be abrogated either by anti-

bodies to histone, activated protein C, anionic heparin, and 

also additional polysulfates, it is reasonable to assume that 

these inhibitors actually affect not only histones action alone 

but also the synergism among the various agents. Therefore, if 

these inhibitors are administered early enough, they could still 

manage to neutralize the toxic effects to prevent the ongoing 

deleterious immune and coagulation responses.

Perhaps we could also use antioxidants,82 since NETos 

and the release of histones (from activated PMNs adhering 

to endothelial cells) are accompanied by the activation of the 

respiratory burst in PMNs.82

Years ago it was suggested that a multi-faceted approach 

to sepsis was required and not treatment based on a single 

antagonist, this paper was largely ignored.83

Why is the mortality from sepsis still 
so high?
Current clinical management of sepsis
Currently, most efforts in the clinical management of septic 

patients are directed at early recognition and diagnosis, 

prompt commencement of treatment, source control of sepsis, 

and early antibiotic therapy. Following this initial therapy, 

the rest of the therapeutic armamentarium is based on sup-

portive treatment such as optimal fluid therapy, vasopressor 

and inotropic therapy, and organ support (eg, mechanical 

ventilation and renal replacement therapy). In light of our 

growing understanding of the underlying mechanisms of 

sepsis and the host response to sepsis, these treatments are 

directed at “downstream” processes that occur long after the 

initial injury.

Usually, in clinical practice, sepsis patients showing 

the main symptoms of tachypnea, tachycardia, confusion, 

high lactate and procalcitonin levels, leukocytosis or leu-

copenia arrive in the intensive care unit (ICU) many hours 

or even days, after developing symptoms. Therefore, even 

the “miracle” novel nonanticoagulant heparin81,84 combined 

with antibiotics might already be ineffective since by that 

time all the pathological biochemical processes are already 

well established. As for the nature of additional sepsis 
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markers, which may be helpful in the early diagnosis of 

sepsis, the reader is directed to excellent review articles on 

the subject.61,82,85–89

Finally, taken together, it is not understood why the lat-

est consensus definition of clinical of sepsis 201690 has not 

considered and discussed either the possible involvement in 

sepsis of histones and additional cationic peptides, the use 

of nonanticoagulant heparin,84 oor the role of bacteriolysis 

in pathogenicity.

It seems that antihistone measures as a plausible and 

accepted therapy (see section on “Can histone released from 

neutrophils”) have not yet matured sufficiently to reach 

practicing clinicians.

It is hoped that further studies on the pathophysiology 

of sepsis might shed more light on the possible validity of 

combinations of nonanticoagulant heparin, anti-inflammatory 

cocktails, anti-cytokines, antioxidants, and anti-bacteriolysis 

agents in the treatment of sepsis. To do so effectively, we 

have to define and employ very early markers of sepsis.81–85

Looking to the future
Consider a still hypothetical idea that every office of a pub-

lic/private practitioner (a house doctor) may have available 

a simple, inexpensive kit to detect early sepsis makers to 

identify abnormal levels of biochemical, blood, and leuko-

cyte parameters in urine, blood, or other biological fluid. 

These will replace the more cumbersome and expensive 

ELISA kits that, today, are usually available in research 

laboratories but not in the ICU. Thus, sepsis diagnosis will 

be much faster and more responsive to adequate effective 

treatment.

Summary
Taken together, our understanding of the possible role of 

highly charged polymers of basic amino acid in the patho-

physiology of infection, in postinfectious and inflammatory 

sequelae, and following trauma and inflammation has evolved 

over more than 60 years and is still going on. Septic shock 

and posttrauma syndromes are considered synergistic mul-

tifactorial disorders where not a single virulence factor had 

been identified, which, if successfully inhibited, might delay 

or stop the immunological and coagulation cascades leading 

to a patient’s demise. Circulating histones are also tied up with 

the pathogenesis of pulmonary, renal, cardiac, pancreatic, and 

liver disorders, as well as in other disorders. Today, we still 

do not fully know whether histones and additional cationic 

peptides released into the circulation are major virulence 

factors or just biomarkers of tissue damage.

Whatever the reasons are for the pathogenicity of poly-

cations, the newly described nonanticoagulant heparin, if 

combined in time with antibodies to histones, activated pro-

tein C (a protease, which cleaves histones), nonbacteriolytic 

antibiotics, antioxidants, steroids, and cocktails of additional 

antagonists, may be justified for use as a therapeutic regimen. 

This may finally bring to an end the numerous unsuccessful 

trials of sepsis conducted, by the administration of single 

antagonists, over so many years in an attempt to cope with the 

patient’s morbidity and unfortunate mortality.79 However, we 

should also consider the fact that since patients suspected of 

developing septic shock may usually arrive at the ICU hours 

or days after the appearance of symptoms, even antihistone 

strategies may not be fully protective by that time. Therefore, 

efforts should be made to identify novel, very early markers 

of tissue damage to allow early treatment.

The complexity of the sepsis syndrome, which involves 

multiple interactions among biochemical, immunological, 

and coagulation cascades, and the difficulty in identifying 

the disorders early enough are still the main stumbling blocks 

to achieve a consensus of how to prevent and treat the post 

infectious sequelae of sepsis and posttrauma syndromes.
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