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Abstract: Nanomedicine application in cancer immunotherapy is currently one of the most 

challenging areas in cancer therapeutic intervention. Innovative solutions have been provided 

by nanotechnology to deliver cytotoxic agents to the cancer cells partially affecting the 

healthy cells of the body during the process. Nanoparticle-based drug delivery is an emerging 

approach to stimulate the immune responses against cancer. The inhibition of indoleamine 

2,3-dioxygenase (IDO) is a pivotal area of research in cancer immunotherapy. IDO is a heme-

containing immunosuppressive enzyme, which is responsible for the degradation of tryptophan 

while increasing the concentration of kynurenine metabolites. Various preclinical studies 

showed that IDO inhibition in certain diseases may result in significant therapeutic effects. 

Here, we provide a review of the natural and synthetic inhibitors of IDO. These inhibitors 

are classified according to their source, inhibitory concentrations, the chemical structure, and 

the mechanism of action. Tumor-targeted chemotherapy is an advanced technique and has more 

advantages as compared to the conventional chemotherapy. Search for more efficient and less 

toxic nanoparticles in conjunction with compounds to inhibit IDO is still an area of interest for 

several research groups worldwide, especially revealing to be an extensive and a promising 

area in cancer therapeutic innovations.

Keywords: indoleamine 2,3-dioxygenase, natural inhibitors of IDO, synthetic inhibitors of 

IDO, nanomedicine, cancer therapeutics

Introduction
Medicine has evolved dramatically in recent years. New strategies have emerged 

for the diagnosis and treatment of various diseases, leading to a better prognosis 

and improved quality of life in patients. Within this new environment that combines 

technology and medicine, it seems that the next rung on the ladder of technological 

advances is primarily focused on nanomedicine, especially in the area of cancer biology. 

In conventional chemotherapy, drugs generally exhibit high toxicity for both cancer 

and healthy cells.1 Nanomedicine offers the possibility of a direct effect of drugs on 

diseased cells without harming the healthy cells in the body,2 preventing the high 

toxicity associated with chemotherapy. This leads to a therapeutic advantage that only 

affects the tumor and preserves the structure and function of the healthy tissue.

Nanoparticles are gradually being used as a carrier for delivering molecular 

drugs to the sites of tumor growth. Nanoparticles not only increase the circulation 

time of the molecular cargo but also protects it from biodegradation.3 Liposomes,4 

hydrogels,5 nanofibers,6 metallic nanoparticles7 and nanodiamonds8 are examples of 

nanomaterials that have been widely tested as transporters for specific drugs for the 

treatment of cancers. The first polymeric vector for small interfering RNA delivery 

entered a phase I trial in 2008. It was termed as CALAA-01 and was prepared using 
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cyclodextrin-polyethylene glycol-transferrin (cyclodextrin-

PEG-Tf) nanoparticle formulation.9 One method currently in 

use is conjugating an antibody with a radioactive isotope to 

permit imaging by the emission of photons or beta radiation 

preventing tumor metastasis.10 Another possible method for 

treatment using the noninvasive approach for tumor removal 

is nanoshell-assisted photothermal therapy.11 Nanoshells 

are nanoparticles comprising silica, coated with a thin layer 

of metal, usually gold. These nanoparticles have a sharp 

gel–liquid phase transition that is used for rapid drug release 

at hyperthermic temperatures.12 Conjugated PEGylated silica-

core gold nanoshells that precisely target the cancer cells in 

the peritoneal cavity.13

Tumor-targeted chemotherapy is an advanced technique 

and has more benefits as compared to the conventional 

chemotherapy.2,14 Advancement in the nanofabrication 

technologies now makes it possible to use the nanostructured 

materials in drug delivery.15 Polymeric micelles are used as 

transporters for delivery of drugs and nucleic acids.16 The 

biodistribution of nanoparticles is dependent on the size and 

surface properties. Therefore, the size of nanoparticles must 

be .7 nm but ,100 nm in order to protect their elimination 

from the body.3,16,17 These nanoparticles can be modified 

by different means to enhance their specificity for different 

types of tumors.

It has been shown that for unmodified nanoparticles, the 

dominant uptake pathway is macrophagocytosis, whereas for 

the nanoparticles conjugated with interleukin (IL)-13 peptide, 

the uptake is mediated by clathrin-dependent endocytosis.18 

In the mid-1990s Food and Drug Administration (FDA) 

adopted a liposomal formulation of doxorubicin, Doxil®; this 

formulation exhibited decreased cardiotoxicity compared with 

doxorubicin19 for the treatment of ovarian cancer. Another 

example is the drug Abraxane® approved by the FDA in 

2005, formulated with a nanoparticle containing albumin and 

paclitaxel indicated for the treatment of various cancers.20,21 

Nanoparticles have also been used to formulate vaccines 

showing promising potential in the cancer immunotherapy. 

It has been demonstrated that antigen-presenting cells 

actively take in antigen-loaded nanocarriers by initiating an 

immunostimulatory cascade, which can work against the 

cancer cell.22 Moreover, nanomaterials have been used as 

auxiliary agents for obtaining diagnostic images of better 

quality by making use of imaging methods, such as computed 

tomography or magnetic resonance imaging.22 This is 

achieved by encapsulating nanoparticles in contrast to media 

such as gadolinium or superparamagnetic iron oxide, so 

that the location of tumors or metastases can be determined 

more accurately, staging the disease and suggesting the most 

appropriate treatment plan.23 Recently, nanorobotics has 

been reconciled with nanomedicine by combining minimally 

invasive diagnosis with miniaturized robotics in conjunction 

with computer-assisted surgery. This approach has been used 

to target benign tumors in cancer surgery.24–26

Nanoparticles possess immunostimulatory effect27 as the 

biomolecules encapsulated within or attached to nanopar-

ticles are known to elicit enhanced T- and B-cell responses as 

compared to the biomolecules delivered in a soluble form.28 

Gold nanoparticles are used preferentially for drug deliver-

ing, diagnosis and treatment of cancer.29

The implementation of nanomedicine in the treatment 

and diagnosis of cancer has acquired great value and 

drugs combined with nanoparticles are already in various 

stages of preclinical and clinical trials for the treatment of 

breast, lung, melanoma, pancreatic and gastroesophageal 

cancers30 (Tables 1 and 2).

Novel therapies utilizing nanomedicine can result in 

superior treatments as compared to the current regimens. The 

goal to achieve increased efficacy and reduced toxicity has 

been achieved by overcoming the drug delivery challenges 

using nanomedicine to detect and treat pancreatic ductal 

adenocarcinoma,31 colorectal cancer (CRC),32 melanoma33 

and cervical cancer.34

The inhibition of indoleamine 2,3-dioxygenase (IDO) 

is a pivotal area of research in cancer immunotherapy. IDO 

is a heme-containing enzyme that catalyzes the oxidative 

cleavage of 2,3 double bond of indole ring.35 IDO has the 

ability to inhibit T-cell activation by tryptophan starvation, 

whereas T-cell survival and proliferation are regulated by O
2
 

free radicals and kynurenine derivatives.36 IDO plays a crucial 

role in autoimmunity,36,37 infections38 and malignancies.39 

Overexpression of IDO has been reported in breast,40–42 

thyroid,43 pancreatic,44,45 prostate,46,47 lung,48,49 cervical50 and 

ovarian51 cancers.

It has been reported that IDO expression can be modu-

lated by CD137/CD137L pathway against Ewing sarcoma 

cells; IL2 plays a role in IDO expression from tumor cells due 

to interferon gamma (IFN-γ) production by lymphocytes.52 

PI3K→AKT→nuclear factor kappa light chain enhancer 

of activated B-cell pathway is also involved with IDO 

expression through CD80/CD86 induction.53

It is known that there is a population of CD4+ T cells 

able to inhibit responses of cytotoxic T cells to specific 

antigens, which are referred to as T-regulatory cell (T-reg). 

The phenotype of this cell population is CD4+/CD25+/

CTLA4+/FoxP3.54 T-regs can be induced by immature 
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Table 1 Nanotechnological carrier systems used for cancer treatments

Indication Nanotechnological system Compounds (agents) Status

Leukemia Liposome Topotecan + amlodipine121 Preclinical
6-Mercaptopurine + daunorubicin122

Transferrin-conjugated PEGylated liposome Doxorubicin + verapamil123

Folate-G5 poly-propyleneimine dendrimer 
with ethylenediamine core

Methotrexate + all-trans-retinoic acid124

Breast cancer Liposome Gemcitabine + tamoxifen125

Ceramide + sorafenib126

HER2 conjugated-GMO-MNPs Paclitaxel + rapamycin127

Prostate cancer HPMA-Gem-Dox Gemcitabine + doxorubicin128

Aptamer-G4 PAMAM dendrimer conjugates Unmethylated CpG-ONTs + doxorubicin129

Glioblastoma G5 PAMAM dendrimer Antisense-miRNA21 + 5-fluorouracil130

RGDfK-G3 poly-lysine dendrimer Doxorubicin + siRNA131

Cervical cancer Liposome PD0325901 + siMcl1132

Lung cancer Liposome Doxorubicin + msurvivin T34A plasmid133

Brain cancer PEG-liposome Topotecan + vincristine134

Hepatocellular carcinoma PLGA Vincristine + verapamil135

Advanced colorectal 
cancer

Liposome (CPX-1) Irinotecan + floxuridine136 Phase II

Liposome (CPX-351) Cytarabine + daunorubicin137

Abbreviations: GMO, glycerol monooleate; HER2, human epidermal growth factor receptor 2; HPMA, N-(2-hydroxypropyl)methacrylamide; miRNA, microRNA; MNPs, 
magnetic nanoparticles; ONTs, oligonucleotides; PAMAM, polyamidoamine; PEG, polyethylene glycol; PLGA, poly lactic-co-glycolic acid; siRNA, small interfering RNA.

Table 2 US FDA approved nanomedicines used for cancer treatments

Drug Class Platform Drug carried 
ratio

Diameter 
(mm)

Dose 
(mg2/m)

References

Doxorubicin Liposome Doxil® 10,000–15,000 100 25–80 Gabizon et al16 and Hamilton et al138

Vincristine Liposome Marqibo ~10,000 100 2.0–2.25 Bedikian et al139 and Silverman and Deitcher140

Daunorubicin Liposome Daunoxome ~10,000 50 10–190 Gill et al141 and Bellott et al142

Mertansine Antibody–drug 
conjugates

Trastuzumab 
emtansine

#8 ~10 10–160 Lu et al143

Monomethyl auristan E Antibody–drug 
conjugates

Brentuximab 
vedotin

#8 ~10 90–110 Younes et al144 and Bradley et al145

Paclitaxel Protein carrier Abraxane® .10,000 130 150–300 Ando et al146

Abbreviation: FDA, Food and Drug Administration.

dendritic cell (DC) that accumulates at the tumor microen-

vironment. Ipilimumab, an anti-CTLA-4 antibody, has been 

approved for advanced melanoma patients.55 Two anti-PD-1 

antibodies, pembrolizumab and nivolumab, have also been 

approved for patients with metastatic lung, breast, bladder and 

renal cancers. PD-1 is a protein of immunoglobulin superfam-

ily that has a co-inhibition function for antigen presentation. It 

is expressed on the surface of T-lymphocytes activated, NKT 

cells, B-lymphocytes, monocytes and DCs.56 The interaction 

with their ligands PD-PD-L1 or L2 leads to the phosphoryla-

tion of PD-1 on tyrosine residues with the intracellular portion 

of the molecule, with subsequent recruitment of phosphatase 

SHP-2 and inhibition of signaling triggered by TCR. The 

increased expression of PD-L1 is common in the context of 

melanoma and appears to be induced by the neoplastic cells 

through unknown mechanisms.57

IDO inhibitors as adjuvant therapy
The mechanism of immune escape developed by a tumor 

cell may influence the success rate of a specific immuno-

therapeutic intervention.58 As IDO plays an important part 

in the immune escape scenario for a cancer cell,39 thus IDO 

inhibitors can act as an innovative and promising strategy for 

cancer therapy.59,60 To obtain better results, adjunct treatment 

is proposed in which the inhibitors should be administered 

concomitantly with cytotoxic chemotherapy agents.59–64 

Several research groups are working in the search of new 

and more potent IDO inhibitors whether they are synthetic 

or endogenous.65 Structural basis of IDO provides different 

binding sites for substrates and cofactors,66 which allows 

for the development of competitive and noncompetitive 

inhibitors,67 leading to an increased number of possible 

inhibitory molecules to be used for targeted intervention. 
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A clinical IDO inhibitor should ideally inhibit the local 

degradation of tryptophan in the tumor microenvironment 

and significantly in draining lymph nodes where the process 

of presentation of tumor antigens is most effective.66 It is 

most likely that novel potent IDO inhibitors will provide 

effective treatment when combined with other modalities 

of cancer therapy.

An enormous number of inhibitors have been tested 

for their pharmacologic activity against IDO68 (Figure 1). 

1-Methyl tryptophan (1-MT) is the most important competitive 

inhibitor of IDO.69 Since the discovery of 1-MT in 1991,69 

it has been widely studied because of its favorable 

pharmacokinetic activity, such as low protein binding, oral 

availability and low clearance.70 Currently, 1-MT is regarded 

as a classical IDO inhibitor in clinical research based on 

its exponential effectiveness in treating tumors.59 No case 

of toxicity has been reported against 1-MT till date except 

dehydration in a study carried out on mice model where this 

inhibitor was administered through drinking water.60 The 

efficacy of 1-MT is significantly enhanced when given in 

combination with powerful chemotherapeutic agents, such 

as paclitaxel, cisplatin, doxorubicin and cyclophosphamide.71 

There are two stereoisomers of 1-MT: the d-isomer and 

l-isomer.72 Through in vitro testing by using different cell 

lines or cell-free assays, it has been revealed that the l-isomer 

exhibits the highest degree of efficacy against IDO, whereas 

it does not promote high level of T-cell proliferation in vivo 

as compared to the d-isomer.73 Beta-carboline derivatives 

Figure 1 IDO pathway and inhibitors.
Notes: Tryptophan catabolism through the kynurenine pathway involves IDO an intracellular rate limiting enzyme and possible natural and synthetic inhibitors of this 
enzyme acting through various routes. IDO serves as an apoenzyme which is encoded by the Indo gene, this gene is upregulated by JAK/STAT signaling pathway induced by 
IFN-γ, cyclooxygenase-mediating prostaglandin E2, TNF-α and LPS regulated by NF-κB. In contrast, it is downregulated by BIN gene, IL-4, nitric oxide and TGF-β through 
mRNA degradation pathway. Apart from the natural and synthetic inhibitors certain tryptophan active products, such as tryptamine and DMT, also serve as modulators of 
this enzyme.
Abbreviations: COX-2, cyclooxygenase-2; DMT, N-dimethyltryptamine; IDO, indoleamine 2,3-dioxygenase; IFN-γ, interferon gamma; IL, interleukin; JAK, Janus kinase; 
LPS, lipopolysaccharides; mRNA, messenger RNA; NAD, aldehyde dehydrogenase; NF-κB, nuclear factor kappa light chain enhancer of activated B cells; PG, prostaglandin; 
PGE2, prostaglandin E2; STAT, signal transducers and activators of transcription; TGF-β, transforming growth factor β; TNF, tumor necrosis factor; T-reg, T-regulatory cells.
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comprise the class of noncompetitive inhibitors,48 which 

bind to the heme iron different to the active site where the 

substrate binds. A huge number of beta-carboline inhibi-

tors have been developed, but their development has been 

restricted by the fact that these inhibitors behave as benzodi-

azepine ligands.37 Whether the IDO inhibitors are competi-

tive or noncompetitive in nature; the basic mechanism of 

inhibition remains independent by the substitution of indole 

ring.62 However, now research is being carried out to find 

the potential inhibitors of IDO that use the mechanism of 

substitution of the indole ring.

Natural inhibitors
Recently, isolation of several natural products has revealed 

various potent IDO inhibitors.74,75 Chen et al investigated 

the relationship between anti-inflammatory properties of 

natural products and IDO activity. High concentration of 

numerous phytochemicals, possessing flavonoid chemical 

structure, has been reported in various medicinal plants, 

fruits and vegetables. For instance, curcumin, a natural IDO 

inhibitor, is an active ingredient of turmeric being used in 

treating cancer. Physiochemical properties and structures 

of natural inhibitors are described in Tables 2 and 3 and 

Figure 2.

Brassinin
Brassinin was first identified in the Chinese cabbage.76 It is a 

phytoalexin found in the cruciferous vegetables. The inhibi-

tion mechanism takes place when methyl dithiocarbamate 

chain, present in brassinin, substitutes the chain of amino 

acid in tryptophan. Thus, it presents a great potential to act 

as an anticancer agent.72 It is reported to be an active, moder-

ately competitive IDO inhibitor and has shown an inhibitory 

constant (Ki) value of 97.7 μM.75,77

Annulins and adociaquinones
Andersen et al94 demonstrated that a wide range of marine 

hydroids contain various natural products, which exhibit 

inhibitory activity (IC
50

) against IDO. These products act in 

a noncompetitive manner. Annulins A and B, the pyranon-

aphthoquinones, are naturally obtained from the extracts 

of Garveia annulata, a marine hydroid. The annulin B has 

shown a Ki of 0.12 μM78 and are reported to be more active 

than 1-MT, whereas Ki value for pyranonaphthoquinones 

is 0.07 μM.78 Crude extracts from Xestospongia sp. contain 

adociaquinones A and B, which exhibit activity as IDO 

inhibitors. Adociaquinone B has shown most potent activity 

among other compounds with a Ki of 25 nM.72

Exiguamine A
Another natural product exiguamine A has been revealed 

to cause the inhibition of IDO activity with a Ki value of 

0.04–0.21 μM. However, the cellular mechanisms are still 

unknown. Nevertheless, this compound might be used further 

to develop IDO inhibitors synthetically.75

Tryptamine (TRY)
Although the tryptophan metabolism is mainly degraded 

through kynurenine pathway, other tryptophan active products 

include TRY, melatonin, serotonin and N-dimethyltryptamine 

(DMT). Recently, a study determined IDO inhibitory activi-

ties of these compounds. Serotonin and melatonin were not 

shown to inhibit IDO even at high concentrations, whereas 

DMT and TRY inhibited IDO activity noncompetitively with 

Ki values of 506 and 160 μM, respectively.79

Epigallocatechin gallate
EGCG is a phytochemical and an active component of green 

tea that exerts chemoprotective role and exhibits anticancer 

Table 3 Physicochemical properties of selected natural inhibitors

Natural inhibitor Molecular 
weight (Da)

Polar surface 
area (Å2)

Molecular surface 
area (Å2)

Partition 
coefficient (log P)

Brassinin 236.35 27.82 310.98 3.28
Annulin A 360.35 110.13 501.95 3.20
Annulin B 386.39 106.97 547.34 4.13
Adociaquinone A 520.77 110.52 423.438 1.10
Adociaquinone B 423.43 110.52 520.92 1.10
Exiguamine A 492.50 146.03 647.56 -1.85
Tryptamine 160.21 41.81 252.62 1.49
Curcumin 368.37 93.06 509.73 4.12
Epigallocatechin gallate 458.37 197.37 556.67 3.08
Tryptanthrin 248.23 49.74 299.16 2.40
3,3′-Diindolylmethane 246.30 31.58 352.74 4.26
p-Coumaric acid 164.15 57.53 216.51 1.83
Thielavin 580.62 148.82 869.53 9.30

Note: Physicochemical properties of selected natural inhibitors retrieved from Watkins et al.147
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Figure 2 Natural inhibitors with structures.
Notes: (A) Brassinin,76 (B) annulin A,78 (C) annulin B,78 (D) adociaquinone A,72 (E) adociaquinone B,72 (F) exiguamine A,75 (G) tryptamine,79 (H) curcumin,83 (I) epigallocatechin 
gallate,80 (J) tryptanthrin,85 (K) 3,3′-diindolylmethane,75 (L) p-coumaric acid,88 and (M) thielavin.59
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effects in several organs. Recent studies revealed that the 

treatment of EGCG inhibits IDO enzyme activity in CRC 

cells through the inhibition of STAT1 activation.80

Crinum latifolium leaf extract
Genus Crinum (Amaryllidaceae) consists of plants comprising 

~130 species, widely present and frequently used in tradi-

tional medicine worldwide. A strong suppressive action of 

leaf extract of C. latifolium activity of IDO in prostate tumor 

cells has been demonstrated. This inhibitory action is specifi-

cally attributed to alkaloids present in C. latifolium.81

Carthamus tinctorius
C. tinctorius, the herbaceous plant also known as safflower, 

belongs to the family Asteraceae and traditionally used in 

Chinese medicine. In Mediterranean area, its role has been 

recently demonstrated as anticancer, antihelmintic and 

diuretic. Three lignans (a group of chemical compounds 

found in plants), namely trachelogenin, matairesinol and 

arctigenin, were isolated and investigated for their inhibitory 

capability for IDO. Subsequent experiments showed that 

trachelogenin and arctigenin prevent the mitogen-induced 

breakdown of tryptophan in a dose-dependent manner, and 

no negative influence of these compounds recorded on the 

viability of cells.82

Curcumin
Curcumin, a phenolic natural and active compound, obtained 

from Curcuma longa (turmeric) possesses anti-inflammatory, 

anticancer and antioxidant properties.83 Recently, it was 

revealed that curcumin-inhibited IFN-γ induced IDO activity 

both at protein and messenger RNA (mRNA) level through 

Janus kinase (JAK)1/2 and protein kinase C delta (PKCΔ) 

signaling pathways. Thus, this immunomodulatory effect 

of curcumin might be exploited therapeutically to treat and 

control various types of cancers.74

3,3′-Diindolylmethane (DIM)
The nutritional supplement, indole-3-carbinol and its metabo-

lites, DIM contain indole ring and are structurally similar 

to tryptophan. It has been reported that DIM competitively 

inhibit tryptophan degradation. It has a moderate activity 

which is an IDO-specific inhibitor.75

Tryptanthrin
A natural product tryptanthrin is found in Polygonum 

tinctorium and Isatis tinctoria. These two plants are 

frequently used in Chinese medicine. Tryptanthrin has 

revealed immunomodulatory76 and various inhibitory activi-

ties against microbes and parasites.84 Tryptanthrin has been 

identified as a potent novel IDO inhibitor, which has an IC
50

 

of 7.15 μM85 and reported to have Ki value of 4.8 μM.78

Neem (Azadirachta indica) leaf 
glycoprotein (NLGP)
Various immunotherapeutic strategies are used to treat cancer 

by downregulating IDO activity, possibly by using IDO 

inhibitors, and thus reducing T-regs. NLGP, the naturally 

occurring immune system modulator, has revealed various 

unique activities. Most significant of which are to inhibit 

T-regs and mature DCs. As IDO is induced by T-regs and 

their hyperactivity is the hallmark of cancer, thus it has been 

proposed that NLGP may inhibit IDO induction in DCs by 

suppressing T-regs.86

p-Coumaric acid
p-Coumaric acid exists abundantly in various plant products, 

fruits and vegetables, for example, potatoes, tea and beans, 

and has been anticipated to exhibit antioxidant activity.87 

Numerous antioxidants are suggested to suppress IDO activ-

ity through posttranscriptional and translational regulations. 

In addition, it has been demonstrated to inhibit prolactin 

secretion. Lymphoid organs and pituitary gland also secrete 

prolactin. Based on the fact that prolactin increases IDO 

activity induced by IFN-γ, researchers have proposed that 

p-coumaric acid and various other antioxidants suppress IDO 

activity in macrophages.88

Polyphenols
Numerous flavonoids have been reported to exhibit anti-

inflammatory and antioxidant activities.89 However, the 

chemical structure is the main determinant of their potency. 

Wogonin, baicalein, apigenin and chrysin have shown similar 

basic flavonone chemical structure. Despite possessing OH 

group in their structures, all these compounds inhibit the 

IDO-1 protein in a similar way.90

Benzomalvin
Jang et al isolated benzomalvin, a new benzodiazepine from 

the extracts of fungus during their search for IDO inhibi-

tors. During the screening process, one of the culture broths 

from soil fungus showed activity and was later identified as 

Penicillium sp. on the basis of having sequence homology 

with two species of Penicillium sp. The IC
50

 values for ben-

zomalvin were found to be 21.4±1.2 μM.78,91
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Thielavin
Jang et al have identified several IDO inhibitors from the 

microbial source, especially soil fungi during the past few 

years. Thielavin-Q a new benzoate trimer is one of the 

compounds identified by them, recently, from the broth of 

Coniochaeta sp. during the fermentation process. Thielavin-Q 

has shown an IC
50

 value for IDO92 of 15 μM.59

β-Lapachone
β-Lapachone occurs naturally and is derived from 1,2-

naphthoquinone. It is already well-known that it possesses 

anticancer properties and based on that it has been advanced 

into the clinical trials. Recently, Flick et al discovered that 

β-lapachone also possesses nanomolar IDO inhibitory enzy-

matic activity and shows Ki value of 0.10–0.45 μM.78,93

Naphthoquinones
After elucidating the crystal structure of IDO in 2006,35 it 

practically became possible to predict which other nuclei 

could become potential inhibitors. Simultaneously, other 

compounds such as the naphthoquinone were identified, 

which were extracted from marine invertebrates.94 These 

compounds presented Ki values in nanomoles; however, they 

were shown to be inactive in cellular assays, which suggested 

that they faced difficulties in crossing the cell membrane.95

Synthetic inhibitors
Physiochemical properties and structures of synthetic 

inhibitors are described in Table 4 and Figure 3.

Norharman (9H-pyrido [3,4-b]indole)
Norharman, also termed as β-carboline is a non-competitive 

inhibitor of IDO. Norharman (Ki of 176 μM) competes 

with molecular oxygen (O
2
), necessary for the activity of 

dioxygenase.96

4-Phenylimidazole (PIM)
PIM is another noncompetitive inhibitor discovered in 1989 

and has a different mechanism of action to that of Norharman. 

PIM (Ki of 8 μM) binds to the enzyme at the inactive ferric 

(Fe3+) form and prevents its reduction to the catalytically 

active ferrous form.97

Salicylates and glucocorticoids
A study involving prostaglandins revealed that enzymes 

phospholipase A2 and cyclooxygenase-2 (COX-2), which 

are essential for its synthesis, play a significant role in 

IDO induction through IFN-γ pathway.98 It was also assessed 

that these inhibitors are able to block this induction.99

Antioxidants
Antioxidants, such as ascorbic acid, tocopherols and tocot-

rienols, that inhibit reactive oxygen species also perform an 

important role in the IDO inhibition-mediated activity by 

IFN-γ in macrophages-derived monocytes.100

5-Bromo-brassinin
Another natural compound called brassinin was identified72,101 

from Chinese cabbage and broccoli with a Ki of 27.9 μM. 

Beside its synthetic derivative, 5-bromo-brassinin with a Ki 

of 24.5 μM presented chemoprotective activity in mammary 

cancer and melanomas in animal models.102,103

Nitric oxide
Nitric oxide (NO) negatively modulates the expression of 

IDO activity.104 The same happens with the production of 

Table 4 Physicochemical properties of selected synthetic inhibitors

Synthetic inhibitors Molecular 
weight (Da)

Polar surface 
area (Å2)

Molecular surface 
area (Å2)

Partition 
coefficient (log P)

Norharman (9H-pyrido [3,4-b]indole) 168.19 28.68 230.63 1.87
4-Phenylimidazole 144.17 28.68 211.56 1.89
Salicylic acid 138.12 57.53 183.54 1.98
Ascorbic acid 176.12 107.22 208.27 -1.91
Nitric oxide 30.00 34.14 48.22 -0.35
1-Methyl tryptophan 218.25 68.11 322.23 1.32
2-Mercapto-benzothiazole 167.25 12.89 191.43 2.89
2-Mercapto-4-phenylthiazole 193.28 12.89 236.29 3.44
Phenylthiazole 161.22 12.89 215.12 2.66
Imidodicarbonimidic diamide 101.11 111.77 130.40 -1.46
4-Amino-1,2,5-oxadiazole-3-carboximidamide 127.10 114.81 147.82 -1.37
Phenformin 205.25 102.78 302.68 0.34
Cinnabarinic acid 300.22 139.28 311.10 0.44
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inducible NO synthase,104 which directly interferes with 

IDO activity104,105 and eventually promotes degradation 

through proteolytic cleavage.106 This led to the belief that 

certain agonists exhibit the potential to reverse the state of 

immunosuppression caused by IDO in cases of cancer, thus 

contributing to anticancer therapy.

1-MT
For a long time, the best anti-IDO compound was derived 

from changes in the molecule tryptophan, including insert-

ing a methyl group in the nitrogen present in the indole ring, 

resulting in a synthetically active 1-MT with Ki of 34 μM. 

The catalytic activity of the enzyme was affected by replacing 

the nitrogen in the ring with an oxygen or sulfur,69 resulting 

in enhanced affinity to inhibit the enzyme in nanomolar 

quantities.62,107 So far 1-MT is the only compound that has 

been allowed to be passed into clinical trials based on its 

potency, efficacy and safety profile.59

2-Mercapto-benzothiazole, 2-mercapto- 
4-phenylthiazole and phenylthiazole
In 2010, a study was conducted based on the structure–

activity relationship between IDO and 55 possible syn-

thetic inhibitors,108 which were analyzed by docking. It was 

assessed that 2-mercaptobenzothiazole, 2-mercaptophe-

nylthiazole and phenylthiazole were characterized as the 

Figure 3 Synthetic inhibitors with structures.
Notes: (A) Norhaman,96 (B) 4-phenylimidazole,97 (C) 5-bromo-brassinin,102 (D) nitric oxide,104 (E) 1-methyl tryptophan,62 (F) 2-mercaptobenzothiazole,108 (G) 2-mercapto-
4-phenylthiazole,108 (H) methyl-thiohydantoin-l-tryptophan,108 (I) phenformin,73 (J) phenylthiazole,108 and (K) cinnabarinic acid.95
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most efficient. These compounds presented Ki of 7.4 and 

8.9 μM, respectively, and exhibited safety and efficacy both 

in the cellular and cell-free systems. In this study, Röhrig 

et al demonstrated that for an efficient inhibitory action, 

IDO inhibitors should contain: 1) a bicyclic fragment to fill 

the aromatic binding site, 2) an atom with pairs of free elec-

trons that can coordinate with the iron present on the heme 

molecule (such as sulfur, oxygen or nitrogen), 3) a group 

able to establish van der Walls connections and 4) a group 

able to establish hydrogen bonds with fragments of specific 

amino acid structures on IDO.

Ketoindoles
Recently, noncompetitive inhibitors of IDO have been 

discovered with a micromolar range of inhibitory potency. 

A screening strategy was used to discover these com-

pounds based on virtual tools, such as filters for exhibiting 

high throughput docking profiles. Calorimetric inhibition 

of in vitro assays revealed IC
50

 of 13 µM61 with a Ki of 

190 μM.109,110

Indol-2-yl ethanones
In an effort to investigate novel compounds for IDO inhibi-

tion, indol-2-yl ethanones were identified and in vivo and in 

vitro tests were conducted to access the inhibitory concentra-

tions.110 Results revealed that variations in inhibitory concen-

trations were obtained by altering the substituent at positions 

5 and 6 of the indole ring, leading to IC
50

 of 24–153 µM.

Aminophenoxazinones
Oxidative cyclo-oxidation of 2-aminophenols led to the for-

mation of a range of 2-aminophenoxazin-3-one compounds.111 

Naturally, this reaction is catalyzed by a copper-containing 

oxidase enzyme referred as phenoxazinone synthase. A 

series of results were obtained after certain experiments to 

evaluate the concentrations required to inhibit IDO. It was 

reported that cinnabarinic acid was the most potent inhibi-

tor out of the series of compounds with the IC
50

 of 0.46 μM 

with a Ki at 326 nM.

Methyl-thiohydantoin-l-tryptophan 
(MTH-Trp)
To find a structurally distinct inhibitor for IDO, several commer-

cially available compounds with indolamine, as the key compo-

nent, were identified and tested. After biochemical analysis, the 

results indicated that MTH-Trp acts as a competitive inhibitor 

of IDO with Ki of 12 μM. Interestingly, in a cell-based assay, 

MTH-Trp shows ~20-fold more potency than 1-MT.73

Imidodicarbonimidic diamide
A non-indolic IDO inhibitor was identified with an excellent 

potency against IDO. This compound which is classified as 

NSC 401366 has not been reported to have any other biologi-

cal targets except its activity against IDO. On the basis of 

the experimental data, it was assessed that it demonstrated 

a Ki of 1.5±2 μM.95

4-Amino-1,2,5-oxadiazole-3-
carboximidamide
During the high throughput screening of a collection (Incyte’s 

corporate) of compounds, a potent inhibitor of IDO was 

identified. This compound serves as a competitive inhibitor 

with a Ki of 1.5 and an IC
50

 of 1 µM when tested in HeLa 

cells. It has been confirmed by absorption spectroscopy that 

this compound binds to the active site of heme in the ferrous 

form of IDO.75

Conclusion
Targeted drug delivery to cancer cells has been achieved by 

nanomedicine. Nanotechnology is used to design specific 

drug delivery platforms that have the ability to carry anti-

cancerous compounds to the target cells ensuring safety and 

efficacy of the treatment.

Nanomedicine has taken a giant step into cancer therapeu-

tics, but researchers still face a number of challenges in this 

field. Most of the nanomedicines have been in the preclinical 

phase in the drug discovery pipeline and it will take years 

in order to lead them with confidence from laboratory to the 

bedside. Undoubtedly, nanomedicine has shown foreseeable 

progress in the last decade and is a leading determinant for 

personalized and targeted cancer treatment.

A nanotechnology-based device has been tested, which 

can detect the association of protein that interacts with 

thioredoxin and functions to distinguish between the pros-

tate cancer associated stroma from that of benign prostatic 

hyperplasia.112

In a preclinical study, oral presentation of a nanoparticle-

encapsulated active ingredient of green tea showed greater 

therapeutic benefits to combat xenografts of prostate cancer 

in mice presentation unencapsulated control.113

Encapsulation of lutelina, a compound naturally found 

in the green vegetables in a water-soluble polymer to form 

nanoparticles, improved the ability of the compound to inhibit 

the growth of human cells of lung cancer and head and neck 

in crops cellular and mice, suggesting that the administration 

of nanoparticles similar to natural nutritional supplements 

could be applied in chemoprevention.114
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A multifunctional nanomedicine platform created from 

a single polymer can increase the sensitivity of the images, 

convert efficiently light into heat within tumors (photother-

mal therapy) and effectively deliver drugs in tumors, dem-

onstrating the wide range of relevant clinical uses.115

IDO inhibition is a pivotal area of research in cancer 

immunotherapy. A constitutive IDO expression in most 

human tumors is demonstrated in 2003.116,117 Commercial 

scale production of IDO inhibitors in conjunction with nano-

medicine is, therefore, an important area of immunotherapy 

that should develop fairly soon. In conclusion, naturally 

occurring or synthetic IDO inhibitors have been shown to 

contain an antiproliferative function for cancer cells. These 

inhibitors are bound to find their way into the pharmaceutical 

industry to play a critical role in cancer immunotherapy,118–120 

organ transplantation and treatment of infectious and autoim-

mune diseases.
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