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Abstract: The discovery of clinically relevant inhibitors of mammalian target of rapamycin 

(mTOR) for anticancer therapy has proved to be a challenging task. The quantitative structure–

activity relationship (QSAR) approach is a very useful and widespread technique for ligand-based 

drug design, which can be used to identify novel and potent mTOR inhibitors. In this study, we 

performed two-dimensional QSAR tests, and molecular docking validation tests of a series of mTOR 

ATP-competitive inhibitors to elucidate their structural properties associated with their activity. 

The QSAR tests were performed using partial least square method with a correlation coefficient of 

r2=0.799 and a cross-validation of q2=0.714. The chemical library screening was done by associating 

ligand-based to structure-based approach using the three-dimensional structure of mTOR developed 

by homology modeling. We were able to select 22 compounds from two databases as inhibitors of 

the mTOR kinase active site. We believe that the method and applications highlighted in this study 

will help future efforts toward the design of selective ATP-competitive inhibitors.

Keywords: mTOR inhibitors, quantitative structure–activity relationship, PLS, partial least 

square, docking

Background
Mammalian target of rapamycin (mTOR) is a member of a family of serine/threonine 

kinases involved in the regulation of cell functions, including growth, proliferation, 

apoptosis, and autophagy,1 and is an attractive target for the development of anticancer 

therapeutics.2,3

Recently, several structural classes of compounds have been synthesized as 

mTOR inhibitors, including different scaffolds such as methylpyrido pyrimidinones,4 

imidazopyridine and imidazopyridazine,5 quinazoline motif,6 imidazolopyrimidine,7 

and sulfonyl-morpholino-pyrimidine.8 Though these mTOR inhibitors bear a certain 

amount of inhibitory activities, it is still difficult for these agents to obtain desirable 

characteristics to overcome cancer diseases. As such, developing the potential and 

selective mTOR inhibitors is still a point of concern as the comprehension of the 

underlying relationships between the structural variations in the inhibitors and their 

inhibition capacity of mTOR kinase is a crucial step to identify or to optimize their 

potency and hence to develop potential drug candidates.

Computational methods (in silico) have been used more and more in the new drug 

development process, to reduce time and cost by increasing the number of analyzed 

molecules. This approach finds its place in the early development phases before the 

preclinical stage, especially in the investigation of physicochemical, pharmacodynamic, 
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and pharmacokinetic properties. Computational methods are 

diverse with some dynamic approaches, such as molecular 

dynamic simulation, which is used to predict the macromol-

ecules interactions, especially protein–protein interactions, 

and for the prediction of the genotype-based phenotype.9–12

The quantitative structure–activity relationship (QSAR) 

approach establishes a quantitative relationship between 

chemical structures and their properties.13 In theory, QSAR 

models can be used to predict the properties of chemical 

structures provided their structural information is avail-

able. In recent years, there had been a growing awareness 

about QSARs and their applications, especially their use 

for regulatory purposes. A new European legislation on 

chemicals – REACH (Registration, Evaluation, Authoriza-

tion, and restriction of Chemicals) came into force in 2007, 

allows and encourages the use of QSAR model predictions 

when the experimental data available are not sufficient.14

QSAR approach which is based on the assumption that 

the variations in the properties of the compounds can be 

correlated with changes in their molecular features,15 has 

become a very useful and largely widespread tool for the 

prediction of biological activities, particularly in the field 

of drug design.

In this study, we used the QSAR approach combined with 

molecular docking studies to determine physicochemical struc-

tural properties required for the mTOR inhibition to obtain 

predictive QSAR models. Our previously three-dimensional 

(3D) mTOR kinase structure obtained by homology modeling 

approach16 was used to study the binding mode of the most 

active compounds by structure-based drug design docking 

(SBDD) approach. The combined finding from QSAR and 

SBDD was used to rationalize the inhibition of mTOR kinase 

and provide guidance to medicinal chemists to identify or 

optimize new and potent mTOR kinase inhibitors.

Materials and methods
study design
The flowchart in Figure 1 describes the methodology used 

in this study.

Data set and Qsar study
A QSAR analysis was performed on a data set of 364 mole-

cules with inhibitory activity against mTOR in competition 

with ATP. Initially known structures of ATP competitive 

mTOR inhibitors have been selected from the PubChem 

compound and PubChem BioAssay DataBases on the basis 

of their IC
50

 and molecular weight. The QSAR approach was 

used after calculating descriptors of all molecules.

The data set was randomly divided into training set 

(70% of the data) and prediction set (30% of the data). 

The training set was initially used for the predictive model 

building step, and the prediction set was used to evaluate 

Figure 1 Flowchart for the computational drug design used in this study.
Abbreviations: Pls, partial least square; Qsar, quantitative structure–activity relationship; 2D, two-dimensional; 3D, three-dimensional; mTOr, mammalian target of 
rapamycin; FDa, Us Food and Drug administration.
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the prediction and the extrapolation capacity of the obtained 

model. The training set was subjected to the partial least 

square (PLS) to build different models, and the best model 

was used in the prediction step (prediction set).

Data preparation and descriptor 
selection
The mTOR inhibition was expressed by the IC

50
 (molecule 

concentration leading to 50% inhibition), which was trans-

formed to the logarithmic scale (pC50) to avoid the influence 

of the dynamic value range on the linear algebra [pC50=-log 

(IC
50

×10-6)].

The descriptors calculation step concerned the use of two-

dimensional (2D) descriptors only and over 184 descriptors 

contained within molecular operating environment (MOE)17 

were calculated for each molecule in the series. The calcu-

lated descriptors were initially screened for invariant nature, 

insignificance using QuaSAR-Contingency module of MOE 

which is a statistical application designed to assist in the selec-

tion of descriptors for QSAR. Furthermore, intercorrelation 

between the pairs of descriptors was performed to limit the 

number of descriptors considered for the study. A final set 

of 66 molecular descriptors identified by the aforementioned 

screening procedures was used in the construction step of 

QSAR models.

generation of Qsar models
During the model construction step, we used the PLS as 

statistical analysis method to derive predictive models, which 

were established on a training set of 253 molecules and tested 

on a set of 112 molecules.

The module QuaSAR-Model in MOE (Figure 2) was used 

to generate the PLS QSAR model17 and its building step was 

performed in a step-by-step manner as follows: 1) assemble 

a database of experimental results and molecular structures; 

2) calculate molecular descriptors for each molecule in the 

training set and the prediction set; 3) estimate the parameters 

of a numerical model in the training set (correlation coef-

ficient [R2] and root mean square error [RMSE], Figure 2); 

4) remove outliers from the training set; and 5) assess the 

predictiveness of the model (cross-validated correlation 

coefficient [q2]), and if the model is not satisfactory, adjust 

by returning to step 3 to increase the cited coefficients values 

in the best model.

At the end, the report of calculation was obtained and 

the model was saved as a (.FIT) file and was used to predict 

the activities of the candidates in the test data set in the 

external validation.

Model validation
Each obtained model was validated in two steps. A first 

internal validation is obtained using the cross-validation 

leave-one-out (LOO) leading to the calculation of cross-

validated correlation coefficient (q2). The internal valida-

tion procedure that evaluates the predicted activities and 

the residuals for the molecules in the training set is shown 

in Figure 3. The second validation was external by estimat-

ing the activities of the prediction set using the model and 

calculating the numerical model parameters.

Virtual screening
A chemical library was built from:

1. 1,965 compounds extracted from drug-like Zinc database, 

a free database of commercially available compounds for 

virtual screening.18

2. 1,491 compounds extracted from e-LEA3D: ChemInfor-

matic Tools and Databases.19 This group represents the 

Figure 2 Fitting the experimental data in the training set to generate the quantitative 
structure–activity relationship model in the MOe module Quasar-Model.
Abbreviations: Pls, partial least square; MOe, molecular operating environment.

Figure 3 The QuaSAR fit validation panel.
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US Food and Drug Administration (FDA) fragments con-

sisting of the commercial fragments extracted from the 

FDA approved drugs (04-02-2014: 1491 molecules).

Before predicting the activities of these compounds by 

the developed QSAR model, a compound filtering step was 

conducted using the ChemBioServer platform.20 ChemBio-

server hosts a group of tools and web services developed 

in the Biomedical Research Foundation of the Academy of 

Athens. Its main aim is to facilitate computational compound 

screening and analysis. We performed the filtering using the 

Lipinski’s Rule-of-Five and then the toxicity filtering which 

is allowed to search for the toxic moieties and display them in 

red based on a list of 25 known organic toxic compounds.

The filtered compounds were screened using the final 

QSAR model in order to select molecules with predicted 

activity exceeding a set threshold described later.

Docking studies
All predicted molecules with pC50 more than 6 were studied 

using docking tools. The docking files (ligand + protein active 

site) were prepared with Autodock Vina software,21 by using 

AutoDock Tools (v1.5.6).22,23 The following parameters were 

adjusted in this preparation step: 1) the Gasteiger charges 

and polar hydrogens were added; 2) the grid-box dimensions 

were set at 23.54 Å (X), 63.13 Å (Y), and 21.02 Å (Z); and 

3) the center of the box was positioned at the midpoint of 

the active site, and the box volume covered the entire active 

site area plus a significant portion of the protein’s solvent-

exposed surface.

The following docking parameters were used in Aut-

odock Vina: 1) all bonds in the inhibitor structures were 

allowed to rotate freely, except for the multiple bonds and 

the bonds in aromatic entities; 2) the kinase 3D structures 

were considered to be rigid; 3) a Lamarckian genetic algo-

rithm was used for searching the conformational space in 

the active site; 4) the default grid spacing was set at 1 Å; 

5) 100 different conformations were assessed, and the nine 

highest scoring binding modes were maintained for visual 

inspection; 6) the maximum energy difference between the 

best and the worst binding modes was set at 3 kcal/mol; 

7) the scoring function was a stochastic global optimization 

method inspired chiefly by X-score;24 and 8) visual inspection 

of the docking results and image building was done using 

PyMOL software.

software and packages
The MOE (2008.10) modules used included QuaSAR 

Descriptor module, QuaSAR-Contingency module, QuaSAR-

Model module, and QuaSAR Model-evaluate module.17

The MGL Tools 1.5.6 package of programs from Scripps 

Research Institute,22,23 with AutoGrid4 and AutoDock vina 

(Scripps), were used for docking studies.21

The PyMol (DeLano Scientific; www.pymol.org/funding.

html) was used for molecular visualization, for production of 

most figures, and for preset analyses of ligand sites.25

Results
Data set preparation and descriptors 
calculation
For the QSAR study, 364 structures were collected from 

PubChem. The descriptors calculation is shown as addi-

tional data 1 in Table S1 with the chemical structures of 

the 364 compound mTOR inhibitors and the experimental 

activities – presented in pC50 – used in this study. The table 

also contains the values for several molecular descriptors 

calculated for the structures using MOE software.

Several types of descriptors, including electrotopologi-

cal and structural ones, were used to derive a quantitative 

relationship between catalytic blocking activity and structural 

properties.26–28 The linear regression methods using PLS29 

were used to generate the 2D-QSAR models.

One hundred eighty-four 2D descriptors were done by 

MOE, and 66 molecular descriptors were selected among 

them after analysis of the training set (254 compounds) by 

the QuaSAR-Contingency module (Figure 4). Fundamen-

tally, QSAR-Contingency permits a bivariate contingency 

analysis for each descriptor and the activity or property value. 

It produces a table of coefficients that users can then use to 

select “important” descriptors.

2D-Qsar analysis
QSAR models were constructed based on the 66 molecu-

lar descriptors as independent variables and the biologic 

activity (mTOR inhibition parameters) as a dependent 

variable using forward stepwise regression analysis using 

the QuaSAR-Model module in MOE. The regression 

analysis of QuaSAR-Model was used to build the QSAR 

model using PLS for the training set (254 compounds) 

with a correlation coefficient (R2) of 0.79928 and a RMSE 

of 0.56071 (Figure 5A). For QSAR validation, several 

parameters such as R2, q2, standard error of training and 

prediction sets, Y-scrambling analyses, and confidence 

interval estimators were used to discriminate between the 

QSAR Models.30–32 and the best one was evaluated and 

tested using a LOO method (LOO cross-validation). The 

predictive performance on cross-validation was represented 

by cross-validated RMSE of 0.67248 and cross-validated 

R2 of 0.71440 (Figure 5B).
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Figure 4 Quasar-contingency report and descriptors selection in the training set.
Notes: The first arrow indicates the sample size of 254 compounds of train set; the second arrow indicates database to fit QuaSAR (train set).
Abbreviation: Qsar, quantitative structure–activity relationship.

Figure 5 (A) Quantitative structure–activity relationship report using 66 selected descriptors. (B) report of the cross-validation of the model generated by molecular 
operating environment.
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chemical library screening
The developed and validated QSAR model was used to screen 

two chemical structure sets. The first set was extracted from 

drug-like Zinc database (1,965 compounds)18,33 and the second 

one with 1,491 compounds from e-LEA3D: ChemInformatic 

Tools and Databases web site.19 To reduce the number of 

tested compounds, “ChemBioServer platform”20 was used in 

two steps. The first filtering using the Lipinski’s Rule-of-Five 

reduced the number of compounds to 1,929 for drug-like Zinc 

database and to 1,199 compounds for FDA fragment database. 

The second filtering was done by toxicity test and we were able 

to reduce the number to 1,865 compounds for the drug-like 

Zinc database and 1,122 compounds for the FDA fragments.

After calculating the predicted activity of the selected 

compounds (2,987), the pC50 threshold of 6 was used to 

discriminate between them. Seven hundred fifty compounds 

from the drug-like Zink database and 235 compounds from 

the FDA fragments went into molecular docking using the 

mTOR 3D structure developed by homology modeling.

Molecular docking studies
Our mTOR 3D model, developed by homology modeling,16 

was used to dock the selected compounds with the catalytic 

site of mTOR using the MGL tools 1.5.6 with Auto Grid4 

and AutoDock vina (Scripps).21 The compounds with the best 

docking scores were analyzed to evaluate the interaction with 

the mTOR kinase active site. The docking scores (affinity) 

were set between -7.9 and -3.4 kcal/mol for the drug-like 

Zink database and between -8.1 and -3.4 kcal/mol for FDA 

fragments, leading to the selection of 12 compounds from 

Zinc database (affinity between -7.9 and -7.1 kcal/mol) 

and 10 compounds from FDA fragments database (affinity 

between -8.1 and -7.5 kcal/mol).

Discussion
In this paper, we described the 2D-QSAR studies and the 

molecular docking using online and open-source compu-

tational tools to elucidate the structural properties required 

for the inhibition of mTOR activity. The PLS29 was used to 

generate the 2D-QSAR models structures collected from 

PubChem and selected 22 compounds after virtual screening 

as potential inhibitors of the mTOR kinase active site.

Recent studies have evaluated the relationship between 

the structure and activity of mTOR inhibitors applying the 

3D-QSAR and using other computational tools.34,35 In this 

study, we analyzed a larger number of molecules (364) 

using 2D molecular descriptors calculated by MOE. These 

descriptors were defined to be numerical properties that can 

be calculated from the connection table representation of a 

molecule (eg, elements, formal charges, and bonds, but not 

atomic coordinates). The 2D descriptors are, therefore, not 

dependent on the conformation of a molecule and are most 

suitable for large data sets. It is sometimes necessary to prune 

a set of descriptors in order to select the optimum set for the 

molecules under consideration. QuaSAR-Contigency module 

which is a statistical application in MOE designed to assist 

users in the selection of descriptors for QSAR or QSPR pro-

poses a set of descriptors that best describe the molecules in 

the training set. The regression analysis of QuaSAR-Model 

was used to build the QSAR model through the PLS of the 

training set (254 compounds) with correlation coefficient (R2) 

of 0.79928 and RMSE of 0.56071. For QSAR validation, sev-

eral parameters such as R2, q2, standard error of training and 

prediction sets, Y-scrambling analyses, and confidence inter-

val estimators were used to judge the QSAR models.30–32,36 In 

our study, the model was evaluated and tested using the LOO 

and predictive performance on cross-validation.

The Z-score method in this study was adopted for the 

detection of outliers and can be defined as absolute differ-

ence between the value of the model and the activity field, 

divided by the square root of the mean square error of the 

data set. Any compound with a Z-score value higher than 2.5 

was considered as an outlier.37 In our case, six compounds 

(2.36% in training set) were defined as outliers.

In our study, we took in consideration the r2 and the 

interval of confidence to judge the QSAR models. Many 

studies uses only the r2 to do so with the risk of QSAR over-

fitting or over-estimation leading if their values are high;30,38 

however, Thai et al and Liao et al show that the QSAR model 

with high r2 value does not necessarily correlate with a good 

predictive model,39,40 and for classic QSAR studies, 95% 

confidence interval is commonly used for models validation. 

In our study, the 2D-QSAR model was determined as having 

a good ability to predict accurately based on an interval of 

confidence of 95% (blue dots for training set and red dots 

for prediction set in Figure 6).

The chemical library screening was done on two sets. 

Thousand nine hundred and sixty-five compounds from drug-

like Zinc database and 1,491 compounds from e-LEA3D: 

ChemInformatic Tools and Databases. Both sets were filtered 

by ChemBioServer platform20 to remove compounds with a 

high level of potential toxicity effect and compounds that do not 

meet the Lipinski’s Rule-of-Five.41 A total of 2,987 compounds 

have passed both filters and were used to predict the activities 
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Figure 7 (A) compound no 745 makes two hydrogen bonds with the hinge and connected to the helix. (B) compound no 209 making an interaction with the internal pocket 
of the catalytic site of mTOr. Blue areas mean nitrogen atom, red areas mean oxygen atom, and green areas mean other. numbers represent the size of the hydrogen bonds 
established between the ligand and the receptor. The bonds are represented by the dotted yellow line.
Abbreviation: mTOr, mammalian target of rapamycin.

Figure 6 relationship between observed and predicted data from Qsar model 
and the mammalian target of rapamycin inhibitors from two-dimensional Qsar 
(95% confidence interval).
Notes: compound of training set are in blue dots and prediction set in red dots. 
Red dotted lines indicate limit of 95% confidence interval.
Abbreviations: Qsar, quantitative structure–activity relationship; Pred, predicted.

by the developed QSAR model. After calculating the predicted 

activity, we selected compounds with pC50 $6. This approach 

resulted in selecting 750 compounds for drug-like Zink database 

and 235 compounds for FDA fragments for molecular docking 

into mTOR 3D structure developed by homology modeling.16

After the docking, compounds of drug-like Zink data-

base scores (affinity) were between -7.9 and -3.4 kcal/mol 

and the FDA fragments ones showed scores between -8.1 

and -3.4 kcal/mol. Compounds with the best score were taken 

to analyze the mode of interaction with mTOR catalytic site. 

As 12 compounds were selected from Zinc database ( affinity 

between -7.9 and -7.1 kcal/mol), 10 compounds were 

selected from FDA fragments database (affinity between -8.1 

and -7.5 kcal/mol). The complex modeling with compounds 

in Zinc database indicated that the different compounds fit 

the ATP-binding site forming one or two hydrogen bonds 

with the backbone groups of Gly2097 and W2098, which 

are considered to be the hinge residues of mTOR. Two 

compounds were interesting as they interact with the binding 

site. The compound no 745 (Figure 7A) mimicks the binding 

mode of the purine ring in ATP. However, the compound no 

209 does not interact with the hinge, but it makes interac-

tions with Y2085 residue, suggesting an interaction with the 

internal hydrophobic pocket (Figure 7B). This compound 

may be optimized to enhance the binding to the hinge while 

interacting with the internal pocket.

On the basis of these findings, four of these compounds 

were selected to go through rounds of in vitro and in vivo 

testing as lead compounds.

Conclusion
The aim of our study was to build a 2D-QSAR model to 

characterize the interactions of mTOR ATP-competitive 

inhibitors with the mTOR catalytic site.

With its high accuracy and fast prediction, our QSAR 

model was applied to screen chemical libraries to look for 

compounds that can be a starting point for new classes of 

selective mTOR inhibitors and design new analogs with 

higher antitumor activity. Promising results were obtained 

and the method and applications highlighted in this study will 

help us to design more selective ATP-competitive inhibitors 

with better structural characteristics and improved selective 

antikinase activity of mTOR.
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