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Abstract: Bone strength – and, hence, fracture risk – reflects the structural and material 

properties of the skeleton, which changes with bone turnover during aging and following effective 

pharmacotherapy. A variety of powerful new techniques (quantitative computed tomography, 

as well as peripheral quantitative computed tomography and high-resolution peripheral quan-

titative computed tomography) provide precise images of bone structure and can be used to 

model the response of specific bones to different types of mechanical load. This review explores 

the various components of bone strength and the clinical significance of measures, such as bone 

mineral density, bone turnover markers, and modern imaging data, with regard to fracture risk 

in women with postmenopausal osteoporosis, before and after initiating antiresorptive therapy. 

These imaging and related techniques offer an ever-clearer picture of the changes in bone 

structure and bone mineral metabolism during normal aging and in osteoporosis, as well as in 

response to treatment. However, because the newer techniques are not yet available in routine 

practice, validated tools for absolute fracture risk assessment remain essential for clinical 

decision making. These tools, which are tailored to patient risk data in individual countries, 

are based on bone mineral density and other readily available clinical data. In addition, bone 

turnover marker measurements can be useful in assessing risk and guiding treatment decisions 

for women with postmenopausal osteoporosis. Such tests may be used before starting a patient 

on antiresorptive therapy and for ongoing monitoring of treatment effectiveness.

Keywords: bone strength, antiresorptive, postmenopausal osteoporosis, bisphosphonate, 

denosumab, fracture risk

Introduction
The human skeleton is well designed to resist physical insults, but bone, like other 

materials, will break under a sufficiently great load. Bone strength is therefore defined 

as resistance to fracture, and fracture provides the most clinically meaningful indicator 

of bone strength in primary care. Fragility fractures – those that occur with minimal 

trauma, such as in falls from standing height – clearly demonstrate decreased bone 

strength. Indeed, a history of fragility fractures in peri- and postmenopausal women 

is strongly associated with a risk of future fractures.1

What is bone strength?
Bones are hard because they consist of hydroxyapatite crystals, set in a matrix of col-

lagen and other connective tissue. They owe their strength not just to their composi-

tion (bone mineral density [BMD]), but also to their structure – their overall size and 

shape, along with their microarchitecture.2 Viewed up close, every bone has a complex 
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microarchitecture, with pores and channels running through 

the apparently solid cortex (Figure 1). Inside the cortex is the 

medullary cavity, where bone tissue is not solid, but spongy 

in appearance, consisting of an extensive cross-linked mesh-

work of projections (trabeculae).

The distribution of trabecular and cortical tissue varies 

across anatomical sites, with the vertebrae containing .75% 

trabecular bone and long bones, such as the femur, contain-

ing .75% cortical bone.3 At the microarchitectural level, 

features also differ. Trabecular tissue varies with regard to 

the number of trabeculae, as well as their length, thickness, 

and degree of cross-linking. Cortical bone is of variable 

thickness and porosity (the number and size of pores). Both 

trabecular and cortical bone may also show microcracks as 

a result of mechanical loading.

These features, which greatly influence the overall 

mechanical strength of the bone, are all in a state of flux: 

bone is constantly being turned over and replaced by resident 

osteoclasts and osteoblasts.2,4 Because loss of bone strength 

leads to increased risk of fracture, antiresorptive agents and 

other interventions that reduce bone turnover can improve 

bone strength and reduce fracture risk in women with post-

menopausal osteoporosis (PMO).5,6

Patterns of age-related bone loss
Women commonly experience some degree of bone loss as 

they age, particularly as their estrogen levels decline dur-

ing and after menopause.7 Along with this loss of BMD, 

bone microarchitecture changes in several ways, including: 

loss and thinning of trabeculae, which reduce cross-linking 

between neighboring trabeculae; expansion of the medul-

lary cavity (cortical thinning) as the inner endosteal surface 

is eroded by an imbalance in bone turnover;8 and increased 

porosity within the cortex itself.9 Each of these changes 

will ultimately lead to loss of bone strength and increased 

fracture risk.

The timing of increased fracture risk varies among differ-

ent women, reflecting both the peak bone mass they reached 

in their youth and the rate at which they lose BMD during the 

years around menopause.10 In addition, the relative timing of 

mineral loss from the cortical and trabecular compartments 

can vary among different bones, due to differences in bone 

architecture and load.11

In general, trabecular bone loss occurs first, largely affect-

ing the spine and resulting in compression fractures. Although 

often unnoticed clinically, these fractures can lead to height 

loss.12 Trabecular bone loss begins by age 40, when women 

still produce substantial levels of estrogen; approximately a 

third of a woman’s lifetime loss of trabecular bone occurs 

in the decades before menopause. Trabecular bone loss 

accelerates with estrogen deficiency for the first 4–8 years of 

menopause, after which it continues at a lower rate.13

Because the vertebrae contain a large proportion of 

trabecular bone, it is expected that vertebral fracture risk 

begins to rise relatively early in life, as trabecular BMD 

declines.14 However, the large majority (80%) of osteo-

porotic fractures are nonvertebral, occurring in bones, such 

as the wrist and the hip, where cortical thickness is a key 

predictor of bone strength and stiffness.15 In Canada and 

the US, the majority of these nonvertebral fractures occur 

in the wrist.16,17

As postmenopausal women age, BMD loss moves from 

trabecular bone to the inner cortex, where loss of mechanical 

strength appears to drive the growing risk of nonvertebral 

fractures.14,18,19 Changes in the cortex occur by cortical thin-

ning and increased cortical porosity – that is, erosion of the 

bone tissue on the inner (endosteal) surface and also within 

the cortical compartment. Endosteal resorption produces 

porous structures resembling trabeculae.7,18 This process is 

observed in the earlier years of menopause and accelerates 

after age 65,18 and continues at a lower rate even into extreme 

old age.18,20 Likewise, cortical porosity appears to increase 

in a woman during her 40s to 50s in different bones and 

continues indefinitely (Figure 2A).9,19 Cortical bone loss is 

strongly related to estrogen deficiency7 and accelerates after 

menopause,18 playing a major role in nonvertebral fractures 

later in a woman’s life.

Aging is also associated with an adaptative expansion 

of the outer diameter of bones (periosteal apposition),20–22 

which occurs throughout adult life. As a result of appositional 

growth on the outer (periosteal) surface, along with erosion 

on the inner (endosteal) surface, the cortex is gradually Figure 1 Structure of trabecular (spongy) and cortical (compact) bone tissue.
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displaced outward. At the same time, the cortex thins, 

because periosteal growth does not keep up with endosteal 

resorption (Figure 2B). Following menopause, cortical loss 

accelerates and periosteal appositional growth declines.  

In long bones, these changes lead to substantial loss of 

 bending strength.13,23

Measures of bone strength
Bone strength assessment in clinical practice generally relies 

on standard radiological (eg, dual-energy X-ray absorptiom-

etry [DXA]) and laboratory tests (eg, serum bone turnover 

markers [BTMs]). Validated prognostic tools incorporate 

patient history and clinical observations, along with DXA 

findings, to estimate an individual’s absolute risk of fracture 

over the following 10 years (eg, the Canadian Association of 

Radiologists and Osteoporosis Canada Tool [CAROC] and 

the WHO Fracture Risk Assessment Tool [FRAX]). How-

ever, some newer mechanical modeling approaches that use 

high-resolution imaging data have had impressive success 

predicting whether and how a bone will fracture in a fall. 

Insights from these studies are important for primary care 

and fracture prevention, because they confirm that available 

treatments improve bone strength and reduce fracture risk by 

reversing some of the microarchitectural changes associated 

with aging bone.

Here, we discuss a variety of tools and measurements 

used to assess bone strength and fracture risk. We consider 

how these tools demonstrate different components of bone 

strength and the effects of pharmacotherapy on fracture risk 

in women with PMO.

Measuring bone strength: tools of 
the trade and what they tell us
Clinical measures of bone strength provide clues to a patient’s 

risk of suffering a fracture. As shown in Table 1, not all of 

these tools are widely used in clinical practice. However, all 

offer insights into the loss of BMD with aging, as well as the 

material and structural changes to the bone that occur during 

effective pharmacotherapy.

DXA
DXA is used to assess the “areal” BMD, meaning the mass of 

bone mineral per unit area when this mass is projected onto a 

2D surface, as in an X-ray image. By definition, a reduction 

in BMD indicates the extent of mineral loss from the bone, 

but it measures the mineral mass of cortical and trabecular 

bone collectively and does not identify the compartment 

where mineral is lost.

Figure 2 Postmenopausal changes in bone architecture.
Notes: (A) Micrographs of femur sections from two women, aged 78 and 90 years. 
The inner surface of the 78-year old’s femur shows ongoing erosion (“endocortical 
trabecularization”) and also increasing porosity within the cortex. In the 90-year 
old’s femur, cortical porosity is extensive and the inner compartment has expanded, 
leaving a thin cortex. Reprinted from Lancet, 375/9727, Zebaze RM, Ghasem-Zadeh 
A, Bohte A, et al, Intracortical remodelling and porosity in the distal radius and post-
mortem femurs of women: a cross-sectional study, 1729–1736,18 copyright 2015, 
with permission from elsevier. (B) Progressive expansion of the medullary space 
(dotted arrows) occurring during and after menopause is accompanied and partially 
offset by deposition of new mineralized tissue on the outer surface of the periosteal 
apposition (solid arrows). Bar charts show the effects of endocortical resorption and 
periosteal apposition before (Pre), during (Peri) and after (Post) menopause. Because 
appositional growth slows over time, while endocortical resorption accelerates, 
there is a progressive thinning of the cortex, decreasing bone strength. Reproduced 
from Szulc P, Seeman e, Duboeuf F, Sornay-Rendu e, Delmas PD. Bone fragility: 
failure of periosteal apposition to compensate for increased endocortical resorption 
in postmenopausal women. J Bone Miner Res. 2006;21(12):1856–1863.23 Copyright 
©2006, with permission from John Wiley and Sons.
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Uses and limitations of DXA
While DXA correlates with incident fracture rate, in the 

postmenopausal years 60% of nonvertebral fractures occur 

in women who have nonosteoporotic BMD,24 highlighting 

a limitation of using this measure on its own as an indicator 

of fracture risk.2 DXA scans can also be used to calculate a 

Trabecular Bone Score (TBS). This approach, which uses 

grayscale variations in the scanning data to quantify trabe-

cular bone density, is broadly predictive of incident fractures 

in postmenopausal women. In some at-risk populations, such 

as individuals with diabetes or primary hyperparathyroidism 

or those receiving long-term glucocorticoid therapy, it has 

been suggested that the TBS can improve fracture predic-

tion, relative to DXA alone. Conversely, in postmenopausal 

women, TBS so far has not proved superior to standard DXA 

measurements of the hip (reviewed in Bousson et al25).

For practical purposes, estimates of 10-year absolute 

fracture risk (AFR) overcome some of the limitations of DXA 

by incorporating other patient data, including age, medical 

history, and prior fracture.26,27 Comorbidities that affect bone 

strength without necessarily changing BMD in a predictable 

way, such as glucocorticoid-induced osteoporosis,28,29 are 

included in these AFR tools. Canadian guidelines recom-

mend AFR estimated by the Canadian FRAX30 or CAROC 

tools (which are ~90% concordant) be used in preference to 

DXA alone to identify patients who will most benefit from 

pharmacotherapy.26,31 Recent updates of the FRAX tool for 

some jurisdictions now allow the user to include the TBS, if 

available, as a component of AFR evaluation.32

Use of BMD in treatment monitoring
At the population level, antiresorptive treatment clearly 

reduces vertebral and nonvertebral fracture risk in PMO.5,6  

To monitor the effectiveness of therapy, DXA scans are 

usually repeated every 1–3 years, with a decrease in testing 

once the patient appears to have responded.26,31

In clinical practice, maintenance or increase in BMD is 

traditionally taken as evidence of decreased fracture risk in 

patients treated with antiresorptives, such as oral bisphospho-

nates. However, the optimal frequency of testing and the most 

Table 1 Clinical and experimental evaluation of bone strength: some common approaches

Technique Outcome Used in clinical 
practice?

Advantages Limitations

Imaging
DXA Areal (2D) BMD Yes, widely 

accessible
validated in peri- and postmenopausal 
population; used in conjunction with 
medical history and clinical findings to 
estimate absolute 10-year fracture risk

Low precision, hence 
provides no insight into bone 
microarchitecture; trabecular and 
cortical BMD viewed collectively

QCT Low-resolution (~500 μm) 
volumetric (3D) BMD (vBMD), 
which can be further analyzed 
by mathematical modeling

No; typically 
used in a 
research setting

Resolves trabecular and cortical 
compartment BMD in hip and spine

No insight into 
microarchitecture; not 
validated as a prognostic tool in 
osteoporosis

pQCT Low-resolution (300–500 μm) 
vBMD, which can be further 
analyzed by mathematical 
modeling

No; typically 
used in a 
research setting

Resolves trabecular and cortical 
compartment BMD in tibia and radius

Not validated as a prognostic 
tool in osteoporosis; not used 
for imaging vertebral bone

HR-pQCT High-resolution (~60–82 μm) 
vBMD, which can be further 
analyzed by mathematical 
modeling

No; research 
tool only

Detailed microarchitecture of peripheral 
bones, particularly radius and tibia. Low 
radiation dose per exposure (0.003 mSv vs 
0.13 mSv for standard HR-pQCT use)43,79

Not validated as a prognostic 
tool in osteoporosis; not used 
for imaging vertebral or hip bone

Mathematical modeling
FeA estimate of whole bone 

strength
No; typically 
used in a 
research setting

Allows modeling of outcomes following 
falls or other specific types of mechanical 
load

Not validated as a prognostic 
tool

Polar moment 
of inertia 

Bone’s ability to resist torsion No

Biochemistry
Bone turnover 
markers

Analysis of blood or urine to 
identify products of osteoclast 
(resorption) or osteoblast 
(formation) activity

Yes Inexpensive, safe, and noninvasive; rapid 
response following treatment; changes 
may be maintained during treatment

Not standardized
Not validated as prognostic tools

Abbreviations: BMD, bone mineral density; vBMD, volumetric bone mineral density; DXA, dual-energy X-ray absorptiometry; FEA, finite element analysis; mSv, milliSievert; 
pQCT, peripheral quantitative computed tomography; QCT, quantitative computed tomography; HR-pQCT, High Resolution-peripheral quantitative computed tomography.
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useful target BMD have not been established.33–35 Moreover, it 

is common in many areas to restrict follow-up DXA to a single 

scan unless the patient’s risk factors for fracture change.

Ongoing DXA monitoring would be justified by clear 

evidence showing that BMD predicts incident fracture in 

women on therapy, as it does in treatment-naïve women. 

Indeed, one study of women on antiresorptives showed 

that a DXA T-score that remains in the osteoporotic range 

(#-2.5) predicts continued high risk of incident fracture.36  

In addition, prospective, placebo-controlled trials using 

potent antiresorptive agents have shown good correlations 

between BMD change and incident fracture rate.5,6

The clearest evidence of such link in women with PMO 

comes from a study of denosumab, an inhibitor of the receptor 

activator of nuclear factor kappa B ligand, which is essen-

tial for the formation, function, and survival of osteoclasts. 

Austin et al reported strong correlations between changes 

in total hip BMD and the incidences of vertebral and non-

vertebral fracture over 3 years.37 As shown in Figure 3, total 

hip BMD increased in most subjects on denosumab, while 

declining or remaining unchanged in most placebo-treated 

subjects. For every 1% increase in total hip BMD, there was 

a 3% decrease in nonvertebral fractures (Figure 3A) and a 

4.9% decrease in new vertebral fractures (Figure 3B). This 

relationship between the increase in total hip BMD and 

reduced fractures persists out to 6 years of treatment.38

Another study, which followed women on zoledronic 

acid in a prospective manner over 3 years, found a similar 

relationship between change in BMD and fracture risk.39 

Based on these two studies, it appears that BMD increase 

can serve as a surrogate for improved bone strength in the 

treatment setting, at least in patients receiving relatively 

potent antiresorptive drugs. Thus, ongoing monitoring with 

DXA may provide helpful guidance in deciding whether to 

maintain or switch therapy.

QCT, pQCT, and HR-pQCT
Quantitative computed tomography (QCT) and related tech-

niques use X-ray tomography to generate an average BMD 

for a whole bone or a specified volume within the bone.40,41 

This volumetric BMD measurement differs from the standard 

(areal) BMD reported by DXA scanning, because it calculates 

the mass of mineral within a volume of the bone tissue, rather 

than a 2D projection of the bone.

Structural changes affecting bone strength can be seen 

using each of these imaging technologies.40,42–44 QCT and 

peripheral QCT (pQCT) can show internal bone structure 

with a resolution of 300–500 μm.40,41 These techniques 

separate a bone’s trabecular and cortical compartments, 

allowing the average BMD to be determined separately for 

each compartment. With high-resolution pQCT (HR-pQCT), 

the resolution is generally ~60–82 μm.45,46 Thus, while pQCT 

is generally not able to resolve internal structures within the 

compartments,47 HR-pQCT shows this structure with con-

siderable detail.48 Using HR-pQCT, researchers can observe 

and quantify specific microarchitecture changes, such as 

Figure 3 Improvement in total hip BMD with 3 years of denosumab treatment predicts incident of nonvertebral (A) and vertebral (B) fractures in women. 
Note: Reprinted from Austin M, Yang YC, vittinghoff e, et al. Relationship between bone mineral density changes with denosumab treatment and risk reduction for vertebral 
and nonvertebral fractures. J Bone Miner Res. 2012;27(3):687–693,37 with permission from John Wiley and Sons.
Abbreviation: BMD, bone mineral density.
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thinning of the bone cortex and the specific location (eg, the 

inner cortex), an increase in the size or number of cortical 

pores, or the loss of trabecular cross-links.43

Uses and limitations of QCT, pQCT, and HR-pQCT
As shown in Figure 4, different classes of bone mineral loss 

(endosteal cortical thinning, increased cortical porosity, and 

loss of trabeculae) may have essentially identical effects 

on BMD but different effects on bone strength.40,49,50 Using 

HR-pQCT imaging, it is possible to improve estimates of 

fracture risk, particularly in women who are not in the 

“osteoporotic” range by DXA but have low BMD (T-scores 

between -1 and -2.5).51

Complementing the material and structural data from  

HR-pQCT and pQCT measurements are several mathemati-

cal models for estimating bone strength. These analytic tools, 

such as finite element analysis (FEA, which models bone 

strength and the bone’s ability to resist fracture under dif-

ferent kinds of mechanical load) and polar moment of inertia 

(PMI, reflecting the bone’s ability to resist torsion), are 

adapted from engineering, where they are used to analyze 

the mechanical strength of various structures.

FEA has been used successfully even with low-resolution 

structural data from DXA scans, leading to improved prediction 

of hip fractures, relative to DXA alone.49 However, FEA and 

PMI are most powerful when applied to data from higher-

resolution QCT and related methods that capture cortical and 

trabecular structure.40,41,43,52 Using FEA to model the strength 

of the imaged bone, researchers can model the outcomes of 

specific kinds of impact, such as a femoral neck fracture result-

ing from an unprotected sideways fall, and the changes in these 

parameters when patients are treated for osteoporosis.52–54

In a study of older adults (average age 75 years), femoral 

neck BMD proved to be a good surrogate for hip strength 

measured by QCT FEA. This finding is significant for clini-

cal practice because it helps confirm the value in fracture 

risk assessment of the femoral neck BMD T-score, which is 

central to the CAROC and FRAX tools.55

Limitations of HR-pQCT and pQCT include motion 

artifacts (particularly for the distal forearm with HR-pQCT), 

and the inability to image clinically important sites, such as 

spine and hip. HR-pQCT is generally used for just two sites 

in the peripheral skeleton, the distal tibia and distal radius43 

while pQCT can image mid-shaft tibia and occasionally 

mid-femur. Conversely, QCT can be used for imaging central 

skeletal sites, such as the spine and hip, although with its 

limited resolution, it provides less precise information about 

changes in bone microarchitecture. Another limitation is that 

• 

• 

• 

• 

• 

Figure 4 Identical T-scores in bones with different structural features.
Notes: All four images are of the distal radius. Despite having the same BMD, the microarchitecture and biomechanical properties of the bone vary substantially. The images 
on the right show loss in the trabecular compartment; those on the right have lower cortical vBMD and greater cortical porosity. Reproduced from J Biomech, 44/2, Kazakia 
GJ, Burghardt AJ, Link TM, Majumdar S, variations in morphological and biomechanical indices at the distal radius in subjects with identical BMD, 257–266,50 copyright 2015, 
with permission from elsevier.
Abbreviations: BMD, bone mineral density; vBMD, volumetric bone mineral density; aBMD, areal bone mineral density.
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these techniques cannot inform us regarding the nonmineral 

aspects of the bone matrix, such as cells and collagen, which 

provide toughness to the bone. Turnover of these nonmineral 

components is not evaluated by imaging in the clinical setting 

but may be assessed biochemically.

BTMs
Complementing the insights of medical imaging, BTMs are 

biochemical markers that can be assayed in the serum or 

urine to follow changes in bone remodeling. BTMs measure 

either bone resorption by osteoclasts (eg, the cross-linked 

collagen telopeptides CTX and NTX) or bone formation 

by osteoblasts (eg, serum procollagen type 1 N-terminal 

propeptide; bone-specific alkaline phosphatase; and serum 

osteocalcin).

Markers of bone resorption and formation tend to rise or 

fall together; most commonly, both are high, as in PMO; more 

rarely, both are low in certain “low-turnover” states, such as 

adynamic bone disease.56,57 This is because bone resorption 

and bone formation are tightly coupled, with osteoclasts and 

osteoblasts acting together on the bone surface.58 However, 

coupling does not mean that resorption and formation always 

remain in balance. On the contrary, in postmenopausal 

women, increased bone remodeling is associated with excess 

bone resorption, and high BTM levels (resorption or forma-

tion markers) correlate loosely with lower BMD and reduced 

bone strength.5,59

Uses and limitations of BTMs
BTMs offer a rapid and inexpensive test for changes in bone 

remodeling, commonly responding within days to weeks of 

the initial treatment with an osteoporosis agent,35,58,60–62 much 

sooner than BMD changes can be measured. For this reason, 

they offer an early indication that the patient is responding 

to therapy as expected.35

This reassurance may be helpful for managing patients 

with high AFR and high BTMs at baseline. For instance, 

one study followed outcomes in high-risk women on bis-

phosphonates (alendronate or risedronate) and found that 

about a fourth experienced an inadequate treatment response, 

defined as multiple incident fractures and/or significant BMD 

loss over 3 years. This outcome was significantly associated 

with elevated levels of the BTM bone-specific alkaline phos-

phatase, both at baseline and the end of the study period.63

BTM responses seem to be maintained over the course of 

treatment, at least in clinical trials. At the population level, 

elevated BTMs are associated with increased fracture rates, 

an effect that seems to be independent of BMD in older 

women.14,35,58,62 In principle, these findings suggest that 

BTM testing could be incorporated into routine fracture risk 

assessment. However, validated risk assessment tools, such 

as FRAX, so far have not included BTMs. This is due in part 

to a lack of standardization of BTM assays, and in part to the 

substantial intra- and inter-individual variability seen with 

these markers, including dietary and circadian effects.35,58,62

BTMs in treatment monitoring
BTM changes associated with treatment vary among dif-

ferent antiresorptive therapies, due to differences in their 

mechanisms and duration of action and potency.26,64,65  

No standardized set of BTM tests has been validated in 

women undergoing treatment for PMO.33,58,66 Thus, it has 

been suggested that the primary benefit of BTM monitoring 

is to encourage treatment adherence.59

For physicians wishing to use BTMs to monitor response 

to therapy, Canadian guidance suggests that serum CTX be 

examined before and 3–6 months after the onset of antire-

sorptive treatment; patients who show a ,35% decrease in 

serum CTX should be asked about their adherence and any 

side effects that might be limiting their use of the therapeutic 

agent. Conversely, those who respond may be maintained 

on therapy, with regular but infrequent monitoring of serum 

CTX to detect changes in bone remodeling.66

Impact of antiresorptive therapy 
on bone strength
Although both denosumab and bisphosphonates are antire-

sorptive medications, they differ with regard to compartmen-

tal access in the bone. Bisphosphonates are preferentially 

adsorbed into trabecular bone, which has a high surface 

area per volume. Once incorporated into the bone mineral 

matrix exposed during the initial phase of the resorption 

lacunae, bisphosphonates are taken up by osteoclasts, caus-

ing apoptosis and, subsequently, reduced bone resorption. 

In contrast, because denosumab acts in the extracellular 

milieu to inhibit osteoclast formation, function, and survival, 

it inhibits resorption in both trabecular and cortical bone 

(Figure 5).67 The Osteoporosis Canada Clinical Practice 

Guidelines recommend denosumab and bisphosphonates 

(alendronate, risedronate, and zoledronic acid) as first-line 

antiresorptive therapies to significantly decrease vertebral, 

hip, and nonvertebral fracture risk.26

Head-to-head fracture trials comparing fracture out-

comes of these agents have not been conducted. However, 

there have been several head-to-head studies investigating 

the impact of denosumab compared to bisphosphonates on 

indices of bone strength.60,68–71 Denosumab significantly 

increased BMD (by DXA) at all cortical and trabecular sites 
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measured, relative to bisphosphonates, in subjects who were 

either treatment-naïve60 or transitioning from a prior bis-

phosphonate treatment.68,69 At the distal 1/3 radius (a highly 

cortical site),72,73 a novel analysis of images obtained after 

in an HR-pQCT study showed that 1 year of denosumab 

treatment resulted in a more rapid and profound reduction in 

bone resorption, as well as a 1.5–2.0-fold greater reduction in 

cortical porosity, relative to alendronate (Figure 6).71 These 

findings complement data from the original 1-year study, 

which showed that denosumab significantly increased corti-

cal volumetric BMD and calculated bone strength or PMI in 

the distal radius and distal tibia compared to alendronate.70

Recent observational data suggest that continued use 

of denosumab beyond 3 years of treatment resulted in a 

further significant reduction in nonvertebral fracture risk,74 

presumably reflecting the decreased cortical porosity and 

the improvement in calculated bone strength associated with 

this treatment.

Conclusion: goals of therapy and 
implications for everyday practice
The goal of osteoporosis therapy is to decrease fracture 

risk by improving bone strength. The available clinical data 

confirm that bone strength can be improved with antiresorp-

tive treatment and that both trabecular and cortical BMD 

must be maintained and restored to prevent fracture in older 

women. Long-term studies of 7 to 10 years’ duration indicate 

that gains in BMD are either maintained75–77 or continue to 

increase78 at both cortical and trabecular sites with long-term 

antiresorptive treatment. Similarly, BTMs decline with the 

onset of treatment and generally remain suppressed over 

long-term treatment. As a consequence of improved bone 

strength, fracture incidence may be suppressed over the 

course of long-term therapy and may even continue to decline 

with time.74

The newer imaging technologies complement BMD 

and may give physicians confidence that their therapies 

are working as intended. While these technologies offer an 

extraordinary view of the changes occurring with aging, 

osteoporosis, and antiresorptive therapy, approaches in 

common use today (DXA, BTMs, and validated fracture 

risk assessment tools [ie, CAROC, FRAX]) still suffice for 

routine clinical decision making. Baseline and postinitiation 

DXA and BTM measurements may provide reassurance that 

the patient has responded to therapy and that she maintains 

reasonable adherence to the intended dosing.

Figure 5 In trabecular bone, osteoclasts engulf matrix containing alendronate, whereas denosumab accesses osteoclasts via the extracellular fluid.
Notes: Because cortical bone has a low surface area/mineralized bone matrix volume, alendronate cannot be adsorbed as readily into the cortical compartment. In contrast, 
denosumab is not adsorbed onto mineralized bone matrix but circulates freely, thus inhibiting resorption of cortical and trabecular bone more equally.
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