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Aim: To determine the effective dose of glibenclamide by quantifying the dose–response rela-

tionship in South African type 2 diabetic patients.

Patients and methods: A total of 24 type 2 diabetic patients participated in a glibenclamide 

dose-escalation study during which glibenclamide, glucose, and insulin concentrations were 

quantified, while the dose of glibenclamide was progressively increased. All except four subjects 

contributed data on all dose-escalation steps; however, data from all 24 patients were included in 

the model-based analysis. Pharmacokinetic/pharmacodynamic (PKPD) relationships were mod-

eled using the software Nonmem®. Six models were utilized to explore the effect of alternative 

glibenclamide dose and plasma concentration inputs on various metrics of glucose response.

Results: Six models adequately described the experimental data. The effective dose for a glucose-

lowering effect suggested by PKPD modeling is less than 5 mg/day. Doses beyond 5 mg/day do 

not meaningfully add to glibenclamide effects on blood-glucose response.

Conclusion: The effective dose of glibenclamide, suggested by PKPD modeling, is less than 

5 mg/day. Higher doses of glibenclamide, eg, 15 mg/day as originally recommended by the 

manufacturer, do not produce further decrease in the blood glucose level but may predispose 

the patients to adverse effects.

Keywords: type 2 diabetes, glibenclamide, pharmacokinetic/pharmacodynamic modeling, 

dose–response relationships, Nonmem

Introduction
Sulfonylureas (SUs) are oral antidiabetic agents used in clinical practice for decades.1 

Despite the growing armamentarium of antidiabetic agents, SUs remain the commonly 

used second-line agents, in many countries, largely because of their low cost. The 

dose–response relationship of SUs remains contentious with continued conjecture as 

to optimal dosing.2

Our study was initially motivated by an audit of the prescribing of glibenclamide 

at selected public health facilities in KwaZulu-Natal, South Africa, which revealed 

that doses of 20 mg/day were frequently being used and that this was higher than the 

manufacturer’s recommended maximum dose of 15 mg/day.3 A further motivation for 

this analysis was the more general observation that the doses of marketed drugs were 

frequently reduced after achieving marketing authorization, highlighting the challenges 

of characterizing and understanding the dose response.4

Pharmacokinetic/pharmacodynamic (PKPD) modeling assists in character-

izing and predicting the time course of drug effects (both intensity and duration) 
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in healthy and diseased subjects.5 The PKPD model helps 

with dose interpolation. For example, in a clinical trial 

that utilizes conventional methodologies, comment can 

only be made on the doses tested. It is not possible to 

consider doses other than those actually employed in the 

study. However, with PKPD modeling, it is possible to 

interpolate between doses, and thus assists in determin-

ing optimal dose. 

The aim of this study was to clarify the dose–response 

relationship of glibenclamide, a second-generation SU,6 by 

using PKPD modeling of data generated in a previously 

conducted clinical study.7

Patients and methods
Data for population PKPD modeling
A clinical study that has been previously published was con-

sidered in this study.7 Briefly, written informed consent was 

obtained from all the study participants, and the study was 

approved by The Biomedical Research Ethics Committee of 

the University of Durban- Westville. Twenty-four subjects with 

type 2 diabetes were entered into a dose-escalation study of 

increasing doses (0, 2.5, 5, 10, and 20 mg/day) of glibenclamide 

at 2-week intervals. Glibenclamide, glucose, and insulin levels 

were determined. All except two subjects contributed data on all 

dose-escalation steps. Subject 16 could not proceed to a dose 

escalation beyond 5 mg/day due to the presence of symptoms 

of hypoglycemia and subjects 20, 21, and 24 did not have 

complete data sets. However, within the modeling framework, 

all 24 study participants were included in the PKPD data set.

Bioanalytics
Glibenclamide levels were determined using rapid high-

performance liquid chromatography based on the procedure 

reported by Hamid-Abdel et al.8 Blood glucose level was 

measured using a glucometer (Accutrend Alpha®; Hoffman-

La Roche Ltd., Basel, Switzerland). 

Nonlinear mixed-effects modeling 
The population approach using nonlinear mixed-effects 

modeling as implemented in the software Nonmem® 

(Globomax LLC, Ellicott City, MD, USA and Nonmem 

Project Group, University of California, San Francisco, 

CA, USA) was used in this analysis. This model-based 

analysis was conducted to fully characterize the dose–

exposure–response relationship as a monotonic function 

and thereby facilitate interpolation and prediction of 

response for doses and exposures not formally studied 

or observed.

PKPD models
In modeling the PKPD relationships, two broad categories 

of models were examined – models with glibenclamide dose 

as the driving force for the pharmacodynamic (PD) response 

variable and models with steady-state glibenclamide concen-

tration (Cpss) as the driving force. In this manner, the role of 

pharmacokinetic (PK) variability on the overall variability 

in response was examined. The PD response metric that was 

tested included fasting blood glucose (FBG), mean glucose 

concentration, and the full glucose concentration profile. Thus, 

during PKPD modeling, the following six models were tested:

1.	 Dose as driving force on FBG

2.	 Cpss as driving force on FBG

3.	 Dose as driving force on mean glucose concentration

4.	 Cpss as driving force on mean glucose concentration

5.	 Dose as driving force on full glucose profile

6.	 Cpss as driving force on full glucose profile

Model 1: Dose as driving force on FBG 
concentration
Model description
The effect of glibenclamide on glucose response was mod-

eled with an inhibitory E
max

 model, as shown in Equation 1:

	 Effect = E
0
 × (1 – [Dose × E

max
]/[Dose + ED

50
])	 (1)

where E
0
 is the baseline glucose concentration, ED

50
 is the 

dose that leads to 50% inhibition of the glucose concentra-

tion, E
max

 is the maximum response to glibenclamide, and 

Effect is the FBG concentration.

This E
max

 model has properties that account for the hyper-

bolic shape of the dose–response relationship. The parameters 

are maximum response (E
max

) and potency (ED
50

). The model 

itself is limited in explaining differences between regimens 

(ie, different PK inputs) or understanding the sources of 

variability. Differences in ED
50

 could be due to differences 

in drug exposure (PK), and/or differences in PD sensitivity. 

Hence, to elucidate these questions regarding regimen and the 

underlying variability, PK and PD data need to be modeled.

Model 2: Cpss as driving force on FBG concentration
Model description
This E

max
 model (Equation 2) has properties that account for 

the hyperbolic shape of the concentration–response relation-

ships rather than the dose–response relationship. In contrast 

to the previous dose–response model, this model differenti-

ates between PK variability (in drug clearance [CL/f]) and 

PD variability:
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	 Effect = E
0
 × (1 – [Cpss × E

max
]/[Cpss + EC

50
])� (2)

where Cpss is the average steady-state plasma concentration 

and is calculated with Equation 3 using the CL/f estimated 

from a previously reported population PK model:9

	 Cpss = Dose/(CL/f × 24)	 (3)

Model 3: Dose as driving force on mean glucose 
concentration
Model description
The model is as described in Equation 1. However, Effect 

(response) is now the mean glucose concentration rather 

than FBG. The mean glucose concentration is calculated as 

the area under the glucose concentration versus time curve 

divided by the time over which the glucose concentrations 

were measured. The limitations of this model in account-

ing for PK variability are similar to those mentioned for 

Model 1.

Model 4: Cpss as driving force on mean glucose 
concentration
Model description
The model is as described in Equation 2. However, Effect 

(response) is now the mean glucose concentration calculated 

as the area under the glucose concentration versus time curve 

divided by the time over which the glucose concentrations 

were measured.

Models with full glucose profile as PD end point
Model description
Graphical exploration of the glucose time-course data during 

the placebo phase of the study revealed a consistent harmonic 

pattern. These data were modeled using a combination of sine 

and cosine functions, as shown in Equation 4. This placebo 

model was used to describe the full glucose versus time 

profile. The placebo model response was used to ensure that 

changes in glucose profiles were due to the drug and not to 

glucose homeostasis:

	 E
0
 = A

0
 + A

1
 × cos(2 × π × Time/Period) 

	 + B
1
 × sin(2 × π × Time/Period) 

	 + A
2
 × cos(4 × π × Time/Period) 

	 + B
2
 × sin(4 × π × Time/Period)� (4)

where A
0 
represents the baseline glucose concentration (mea-

surement at time 0), A
1
, A

2
, B

1
, and B

2
 are the coefficients for 

the harmonic function. Period was 8 hours, ie, the time during 

which glucose concentrations were measured.

Unexplained inter-subject variability in the baseline glu-

cose concentration (A
0
) was estimated using the following 

model (Equation 5) with the random effect h
j
:

	 A
0j
 = TVP × exp(h

j
)	 (5)

where TVP is the typical value of A
0
 in the population, A

0j
 

is the individual value for A
0
 in the jth individual, and h

j
 is 

a random variable with mean of zero and variance wA
0

2. 

This model assumes an exponential distribution for the A
0j
 

values so as to constrain the estimate of the baseline glucose 

concentration to positive values.

On the other hand, the coefficients of the harmonic func-

tion could take on both positive and negative values and 

were therefore modeled with an additive error distribution, 

as shown in Equation 6:

	 P
nj
 = TVP

n
+ h

j
	 (6)

where TVP
n
 is the typical value for the coefficient of inter-

est (A
1
, A

2
, B

1
, and B

2
) in the population, P

nj
 is the individual 

value for the relevant coefficient in the jth individual, and h
j
 is 

a random variable with mean of zero and variance wP
n
2. The 

omega matrix for all the coefficients was constrained to the 

same value, ie, the h values were drawn from the same distri-

bution. The glucose concentration data were log transformed 

prior to fitting. The residual error model of this log-transformed 

data comprised of an additive model, as shown in Equation 7: 

	 C
ij
 = C × ij (1 + e

ij
)	 (7)

where C
ij
 is the ith glucose concentration measured at time t

i
 

in the jth individual, C × ij is the respective model-predicted 

concentration, and e
ij
 is a normally distributed error term 

with mean of zero and variances s2. Examples of potential 

sources of residual variability include assay error, deviations 

from the model specification, and intra-subject variability.

Model 5: Dose as driving force on full glucose profile
Model description
The model is as described in Equation 1. However, Effect 

(response) is now the full glucose concentration versus time 

profile modeled using the placebo model, as described in 

Equations 4–7.

Model 6: Cpss as driving force on full glucose profile
Model description
The model is as described in Equation 2. However, response 

is now the full glucose concentration versus time profile mod-

eled using the placebo model as described in Equations 4–7.
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Results
In evaluating among the six alternative models presented in 

this study, various graphical and numerical model evaluation 

methods were used. For purposes of brevity and given their 

intuitive interpretation, only plots of observed glucose con-

centrations, population model predictions, and individual 

model predictions will be shown. 

Models 1 and 2: Dose or Cpss as driving 
force on fasting glucose
Figure 1 shows the individual plots of observed glucose 

concentrations (open circles), population model predictions 

(dotted line), and individual model predictions (solid line) 

from the dose–fasting glucose model. A good fit of the 

model to the data can be inferred when the observed glu-

cose concentrations (open circles) are close or directly on 

the model-predicted line. Examples where the observed and 

model prediction profiles are almost superimposable for the 

individual model predictions (solid line) include subjects 3 

and 15 in Figure 1. This suggests that the model is adequately 

describing the observed data. 

While this graphical representation suggests that Model 

1 is suitable in describing the effect of dose on fasting glu-

cose concentrations, it does neither consider the changing 

glucose profile throughout the 8-hour study period nor does 

it take into consideration the PKs of glibenclamide. 

In Figure 2, the observed versus model-predicted FBG 

concentrations are shown for the model that now includes PK 

variability. This model using Cpss as the driving force for the 

PD response incorporates the individual subject’s clearance 

in determining the FBG concentrations, ie, it accounts for 

the individual PK variation which might contribute to the 

overall PD response. 

There does not appear to be any striking differences in 

the observed versus predicted or individual subject fits of the 

model to the data when compared to the model with dose as 

driving force on FBG. 

The parameters from the dose and the Cpss models for 

FBG as the PD response are compared in Table 1. Comparing 

dose versus FBG or Cpss versus FBG as the driving force for 

the model, the parameters are estimated with better precision, 

ie, lower relative standard error (RSE 6.35% vs 6.04%) for the 

model with Cpss as the driving force. Apart from this, there is 

little difference in the estimated model parameters. There is 

a low variability in the estimate of potency for dose–fasting 

glucose model (ED
50

 =4.56 mg) as compared to Cpss–fasting 

glucose model (ED
50

 derived =4.41 mg).

The point estimates for the fixed-effects model parameters 

are essentially the same for the two models; however, the 

parameters are estimated with better precision, ie, lower RSE 

with the Cpss model. The estimates for between-subject vari-

ability (BSV) are different for all the parameters – essentially 

larger for the Cpss model. In addition, there is remarkably 

low variability in the estimate of potency with both models.

Models 3 and 4: Dose or Cpss as driving 
force on mean glucose concentration
There was minimal difference in the graphical outputs from 

Models 3 and 4: dose versus mean glucose concentration and 

the Cpss versus mean glucose concentration, and hence only 

plots of the latter (ie, Model 4) are shown in Figure 3. Inspec-

tion of Figure 3 shows that the model describes the individual 

observed glucose, individual- and population-predicted 

glucose concentrations for most subjects. It equally under-

estimates and overestimates the remaining subjects; however, 

the model adequately describes the observed mean glucose 

and individual-predicted mean glucose concentrations.

Table 2 shows virtually no difference in the fixed-effect 

parameter estimates from the dose or the Cpss model when 

mean glucose is the PD response. The random-effects param-

eters are also similar – with the exception of the estimate 

of potency where a decrease in BSV is noted, ie, inclusion 

of PK variability in the model by using Cpss as the driving 

force resulted in a decrease in the BSV from 120% CV for 

ED
50

 to 108% CV for EC
50

.

While this model provides a good description of the data 

and is considered adequate for the purpose of this analysis, 

one further attempt at building a model for the glucose-

lowering PD effect was considered, namely modeling the 

full glucose concentration versus time profile.

Model for full glucose profile (placebo 
response)
The fluctuations in glucose concentrations over the obser-

vation period were due primarily to the response to food 

(Figure 4, column 1 [zero dose]). In this study, subjects were 

given breakfast, followed by lunch ~4 hours later. The initial 

peak in glucose corresponds to ingestion of breakfast and the 

subsequent peak 4 hours later to lunch. Sampling to character-

ize these two events showed two blood glucose peaks at ~2 

and 6 hours, temporally related to the ingestion of food. The 

model selected to describe this data is empirical and has no 

physiological meaning – the data could also have been fit with 

a series of spline functions or a polynomial to the placebo data. 
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Figure 1 Plots of observed glucose concentrations (open circles), population model predictions (dotted line), and individual model predictions (solid line) from the dose–
fasting glucose concentration PKPD model for glucose response to glibenclamide. 
Notes: Each cell represents the data for an individual subject shown as a dose–response plot, ie, y-axis shows fasting glucose concentration in mmol/L and x-axis shows 
dose in mg. 
Abbreviation: PKPD, pharmacokinetic/pharmacodynamic.
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Figure 2 Plots of observed glucose concentrations (open circles), population model predictions (dotted line), and individual model predictions (solid line) for the steady state 
concentration (CPss) fasting glucose concentration PKPD model for glucose response to glibenclamide. 
Notes: Each cell represents the data for an individual subject shown as a dose–response plot, ie, y-axis shows fasting glucose concentration in mmol/L and x-axis shows 
dose in mg.
Abbreviation: PKPD, pharmacokinetic/pharmacodynamic.

0

5

10

15

20

25

30
1 2 3 4 5 6

7

0 5 10 15 20

0 5 10 15 20 0 5 10 15 20 0 5 10 15 20

0 5 10 15 20 0 5 10 15 20

0 5 10 15 20 0 5 10 15 20 0 5 10 15 20

8 9 10 11

0

5

10

15

20

25

30
12

Dose (mg)

O
bs

er
ve

d 
an

d 
pr

ed
ic

te
d 

fa
st

in
g 

gl
uc

os
e 

co
nc

 (m
m

ol
/L

)

0

5

10

15

20

25

30
13 14 15 16 17 18

19 20 21 22 23

0

5

10

15

20

25

30
24

Dose (mg)

O
bs

er
ve

d 
an

d 
pr

ed
ic

te
d 

fa
st

in
g 

gl
uc

os
e 

co
nc

 (m
m

ol
/L

)

0 5 10 15 20 0 5 10 15 20 0 5 10 15 20

Subjects 1–12

Subjects 13–24

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Clinical Pharmacology: Advances and Applications 2016:8 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

147

Dose response modeling of glibenclamide in Type 2 diabetic patients

Table 1 Population pharmacokinetic/pharmacodynamic parameters for Models 1 and 2: fasting blood glucose as the pharmacodynamic 
response

Dose–fasting glucose model Cpss–fasting glucose model

Parameter Estimate RSE (%) BSV (%CV) Estimate RSE (%) BSV (%CV)

E0 (mmol/L) 14.10 6.35 29.05 14.30 6.04 27.40
Emax 0.37 37.47 48.68 0.39 22.64 55.50
ED50 (mg) 4.56 77.19 0.01 Derived ED50 =4.41a

EC50 (mg/L) 85.20 26.29 0.04
Residual variability
Variance (%CV) 0.02 (15%) 0.02 (14%)

Note: aDerived ED50 = EC50 × Cl/f × 24, where EC50 =85.20 mg/L and drug clearance (CL/f)9 =2.16 L/h.
Abbreviations: E0, baseline glucose concentration; Emax,  maximum inhibition of glucose concentration; EC50,  glibenclamide concentration producing 50% inhibition of 
glucose concentration; ED50, glibenclamide dose producing 50% inhibition of glucose concentration; RSE, relative standard error of the estimate; BSV, between-subject 
variability; CV, coefficient of variation; Cpss, steady-state glibenclamide concentration.

The empirical placebo model was used to describe the 

time course of glucose concentration data over the 8-hour 

study observation period. It satisfactorily described the data 

save for a small number of subjects (Figure 4, column 1). In 

all other subjects, the observed, individual- and population-

predicted curves were all almost superimposable, strengthen-

ing the validity of the model. 

Models 5 and 6: Dose or Cpss as 
driving force on full glucose profile
As with Models 3 and 4, there was no noteworthy difference 

between the dose or Cpss as the driving force and hence only 

the individual subject fits for the Cpss–full glucose profile 

model are shown in Figure 4. In these plots, each row cor-

responds to the data for an individual subject, while each 

column shows a new dose level within an individual subject. 

The dose–response relationship is shown by the shift in the 

entire glucose concentration versus time profile downward as 

one progresses from left to right within a row, ie, from pla-

cebo on the left to the highest dose administered on the right.

The parameters from this complex full glucose profile 

model are shown in Table 3.The point estimates of the fixed-

effects PD model parameters – baseline glucose concentra-

tion (A
0
), potency (EC

50
 and ED

50
), and E

max
 – are essentially 

not different in the dose and the Cpss models. However, there 

is a difference in the random-effects parameters, in particu-

lar, the Fourier coefficients have higher variability while the 

primary PD model parameters have lower variability in the 

dose model compared to the Cpss model. A likely explanation 

for this is that PK variability is being confounded with PD 

variability – the dose model can only allocate the PK variabil-

ity into the Fourier coefficients. The variability in potency is 

also much larger in this model than that seen with the model 

where the PD response was the mean glucose concentration 

(221% CV vs 108% CV). 

Thus, despite the very good fit of the model to the data, 

this is likely to be due to the large amount of flexibility that 

is allowed by the large number of model parameters.

Consequently, the models where FBG and mean glucose 

concentrations are the PD responses were considered as being 

adequate for this data.

Discussion
While it is possible to mathematically describe the full gliben-

clamide–insulin–glucose system, the glibenclamide–glucose 

system was modeled in this analysis, in keeping with the 

work of other researchers.10,11 The clinical effectiveness of 

antidiabetic treatment, and hence decisions on management 

of diabetes, is determined by fasting and/or postprandial 

blood glucose levels. Hence, this study utilized the gliben-

clamide–glucose system for PKPD analysis.

In this dose-escalation study, a zero dose (absence of 

glibenclamide) was employed to characterize the insulin 

and glucose profiles. Since insulin and glucose are inter-

dependent, we selected the glucose response, and modeled 

this using a mathematical basis and an algorithm described 

by Krzyzanski et al12 for application of Fourier analysis to 

quantify variable, but biorhythmic, physiologic substances to 

generate input functions for use in PD response models. This 

method does not require trial and error nonlinear regression 

analysis to identify the optimal number of harmonics that 

describe the response pattern.12

Graphical exploration of the within-subject drug response 

data for glucose, insulin, and glibenclamide profiles with 

increasing doses of glibenclamide shows that there is no direct 

relationship between drug administration and glucose or insulin 

response, ie, there is no acute effect of drug on these parameters. 

The lack of acute antihyperglycemic effect may be due to the 

requirement for formation of active metabolites. Rydberg et al10 

observed that at a “given concentration of glibenclamide, a 
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Figure 3 Plots of observed glucose concentrations (open circles), population model predictions (dotted line), and individual model predictions (solid line) for the steady state 
concentration (Cpss) -mean glucose concentration PKPD model for glucose response to glibenclamide. 
Notes: Each cell represents the data for an individual subject shown as a dose–response plot, ie, y-axis shows fasting glucose concentration in mmol/L and x-axis shows 
dose in mg.
Abbreviation: PKPD, pharmacokinetic/pharmacodynamic.
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more intense effect is observed at the later sample time due to 

additional hypoglycemic effect of in vivo formed metabolites.” 

Consequently, we modeled dose or the average drug concentra-

tion (Cpss) as the driving force for the drug effect rather than 

a full glibenclamide plasma concentration versus time profile.

In comparing dose versus FBG or Cpss versus FBG as 

the driving force for the model, the parameters are estimated 

with better precision, ie, lower RSE (6.35% vs 6.04%) for the 

model with Cpss as the driving force. Apart from this, there is 

little difference in the estimated model parameters. There is 
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Table 2 Population pharmacokinetic/pharmacodynamic parameters for Models 3 and 4: mean blood glucose as the  pharmacodynamic 
response

Dose–mean glucose model Cpss–mean glucose model

Parameter Estimate RSE (%) BSV (%CV) Estimate RSE (%) BSV (%CV)

E0 (mmol/L) 16.70 5.74 27.07 16.70 5.74 26.94
Emax 0.34 14.32 50.99 0.34 14.49 50.89
ED50 (mg) 1.85 40.49 120.42 Derived ED50 = 1.87a

EC50 (mg/L) – – – 36.00 42.78 108.17
Residual variability – – – – – –
Variance (%CV) 0.008 (8.75%) – – 0.008 (8.92%) – –

Note: aDerived ED50 = EC50 × Cl/f × 24, where EC50 = 36.00 mg/L and drug clearance (CL/f)9 = 2.16 L/h.
Abbreviations: E0,  baseline glucose concentration; Emax, maximum inhibition of glucose concentration; EC50, glibenclamide concentration producing 50% inhibition of 
glucose concentration; ED50, glibenclamide dose producing 50% inhibition of glucose concentration; RSE, relative standard error of the estimate; BSV, between-subject 
variability; CV, coefficient of variation; Cpss, steady-state glibenclamide concentration.

a low variability in the estimate of potency for dose–fasting 

glucose model (ED
50

 =4.56 mg) as compared to Cpss–fasting 

glucose model (ED
50

 derived =4.41mg). 

There is no difference in the parameter estimates from 

the dose or the Cpss models, where the PD response is mean 

glucose concentration. As expected, there is a higher estimate 

for the modeled baseline glucose concentration for the dose 

versus mean glucose concentration model as compared to 

the  dose versus FBG model (16.70 vs 14.10 mmol/L). The 

ED
50

 (1.85 mg) and the derived ED
50

 (1.87 mg) for the dose 

versus mean glucose concentration model are almost identical 

with a BSV of 108 – 120%.

In addition, a much larger variability is noted in the 

potency parameters relative to the model where the PD 

response was FBG. By calculating a mean glucose concen-

tration, the variability in concentrations during the course 

of the observation period is being brought into the model. 

Intuitively, one would expect a fasting measurement, ie, one 

taken when the biological system is not being subjected to 

the known factors that can influence glucose response (eg, 

food), to be subject to lower variability. FBG is also the PD 

marker directly influenced by the SUs. This accounts for 

the differences in the estimates of random-effects parameter 

estimates. The maximum glucose-lowering effect seen with 

both groups of models is also very similar, ie, between 31% 

and 37% relative to baseline. 

The point estimates of the primary PD model parameters 

for the dose versus full glucose profile and the Cpss versus 

full glucose profile are not essentially different, ie, baseline 

glucose concentration, A
0 

(15.9 and 15.4, respectively), 

potency (ED
50

 =2.21 and ED
50

-derived =2.26, respectively), 

and E
max

 (0.34 and 0.31, respectively). However, there is a 

difference in the random elements, in particular, the Fourier 

coefficients have higher variability while the primary PD 

model parameters have lower variability in the dose model 

compared to the Cpss model. It seems therefore that the 

greater freedom allowed to the model with the large number 

of extra parameters results in “inappropriate” apportioning 

of relative contributions of variability. An attempt was made 

to resolve this by estimating the Fourier coefficients from 

the placebo data alone and then subsequently fixing these in 

the estimation step for the full data set. However, the model 

with the full data set failed to converge.

The E
max

 for the six models evaluated varies from 0.37 

for the dose versus FBG to 0.31 for the Cpss versus full 

glucose profile models. This means that the maximal benefit 

of glibeclamide therapy in this population lies in a decrease 

of 31%–37% from baseline. This translates to a reduction 

of the FBG from 15.4 to 10.6 mmol/L and 9.7 mmol/L, 

respectively.

The ED
50

 and the derived ED
50

 for the six models 

described are 4.56, 4.41, 1.85, 1.87, 2.21, and 2.26 mg, 

respectively.  When this low estimate of potency is assessed 

together with the maximum drug effect of under 37%, 5 mg 

brings only marginal benefit. In addition, an evaluation

of glycemic control in individual patients showed that only 

seven (30%) and four (17%) subjects achieved acceptable 

and optimal control, respectively, at doses greater than 5 mg/

day. Thus, both the observed and the modeled data suggest a 

maximal dose not exceeding 5 mg in the study population. 

This conclusion is supported by the findings of Rydberg 

et al10 and Groop et al13 that “the maximum effect of gliben-

clamide would be obtained by 5 mg or less.” Further increase 

in glibenclamide dose is not likely to produce significant 

reductions in blood glucose levels. High-dose glibenclamide 

is associated with various side effects,12 including hypogly-

cemia, increased cardiovascular risk, and masking of the 

severity of a myocardial infarction.14,15

Conclusion
The six PKPD models adequately described the dose–

response relationship of glibenclamide. The models are 
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Figure 4 (Continued)
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Figure 4 Plots of observed glucose concentrations (open circles), population model predictions (dotted line), and individual model predictions (solid line) for the Cpss–full 
glucose profile PKPD model. 
Notes: Each row represents the data for an individual subject and each column represents a different dose level, with placebo on the extreme left and increasing doses of 
2.5, 5, 10, and 20 mg in the subsequent columns.
Abbreviations: PKPD, pharmacokinetic/pharmacodynamic; Cpss, steady-state glibenclamide concentration.
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congruent in supporting a conclusion that doses of gliben-

clamide of less than 5 mg/day are effective in lowering blood 

glucose level with no appreciable increase in effect with 

higher doses. The higher doses of glibenclamide that have 

previously been used (up to 20 mg/day) should be avoided 

because they do not have greater glucose-lowering effect 

and exposure to high doses are likely to predispose patients 

to adverse events. 

Disclosure
G Pillai has stocks in Novartis. The other authors report no 

conflicts of interest in this work.
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Table 3 Population pharmacokinetic/pharmacodynamic parameters for the Models 5 and 6: full glucose profile as the pharmacodynamic response

Dose–full glucose profile model Cpss–full glucose profile model

Parameter Estimate RSE (%) BSV (%CV) Estimate RSE (%) BSV (%CV)

A0 (mmol/L) 15.90 4.71 28.71 15.40 5.40 32.71
A1 0.95 17.44 120.83 0.97 16.36 7.05
B1 1.45 36.34 120.83 1.45 34.21 7.05
A2 –1.95 –14.26 120.83 –1.86 –15.38 7.05
B2 2.63 8.75 120.83 2.57 8.05 7.05
Emax 0.34 14.97 5.75 0.31 9.20 45.39
ED50 (mg) 2.21 29.46 15.13 Derived ED50 =2.26a

EC50 (mg/L) – – – 43.60 21.06 220.91
Residual variability – – – – – –
Variance (%CV) 0.02 (13%) – – 0.02 (13%) – –

Note: aDerived ED50 = EC50 × Cl/f × 24 where EC50 = 43.60 mg/L and drug clearance (CL/f)9 =2.16 L/h.
Abbreviations: A0, baseline glucose concentration; A1, B1, A2, B2, coefficients of the harmonic function; Emax, maximum inhibition of glucose concentration; ED50, glibenclamide 
dose producing 50% inhibition of glucose concentration; EC50, glibenclamide concentration producing 50% inhibition of glucose concentration; RSE, relative standard error 
of the estimate; BSV, between-subject variability; CV, coefficient of variation; Cpss, steady-state glibenclamide concentration.
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