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Abstract: Zinc oxide (ZnO) is widely incorporated as a food additive in animal diets. In order 

to optimize the beneficial effects of ZnO and minimize any resultant environmental pollution, 

ZnO nanoparticles are often used for delivery of the zinc. However, the possible toxic effects 

of ZnO nanoparticles, including effects on cytochrome P450 (CYP450) enzymes, have not been 

evaluated. In this study, we investigated the effect of ZnO nanoparticles, in doses used in animal 

feeds, on CYP450 enzymes, liver and intestinal enzymes, liver and kidney histopathology,  

and hematologic indices in rats. We found that liver and kidney injury occurred when the con-

centrations of ZnO nanoparticles in feed were 300–600 mg/kg. Also, liver mRNA expression 

for constitutive androstane receptor was suppressed and mRNA expression for pregnane X 

receptor was induced when feed containing ZnO nanoparticles was given at a concentration of 

600 mg/kg. Although the expression of mRNA for CYP 2C11 and 3A2 enzymes was induced 

by ZnO nanoparticles, the activities of CYP 2C11 and 3A2 were suppressed. While liver CYP 

1A2 mRNA expression was suppressed, CYP 1A2 activity remained unchanged at all ZnO 

nanoparticle doses. Therefore, it has been concluded that ZnO nanoparticles, in the doses 

customarily added to animal feed, changed the indices of hematology and blood chemistry, 

altered the expression and activity of hepatic CYP enzymes, and induced pathological changes 

in liver and kidney tissues of rats. These findings suggest that greater attention needs to be paid 

to the toxic effects of ZnO nanoparticles in animal feed, with the possibility that the doses of 

ZnO should be reduced.

Keywords: ZnO nanoparticles, liver injury, CYP450 enzymes

Introduction
Zinc is a necessary trace element for humans, animals, plants, and microbes, and 

in recent decades it has been extensively studied to determine its physiological and 

biochemical functions. Additionally, zinc is a component of more than 300 different 

enzymes, transcription factors, and cell-signaling proteins that maintain the body’s 

normal immune functions, adjust its protein metabolism, maintain cell-membrane 

integrity, and help regulate cell proliferation and differentiation.1 The early weaning 

period (2–5 weeks) of piglets produces stress that leads to wean-stress syndrome, 

which is characterized by poor food consumption and growth, as well as increased 

rates of diarrhea. Although in 1998, the America National Research recommended that 

weaned pigs be fed a diet containing 100 mg of zinc per kilogram of feed, Heugten 

et al2 confirmed that a diet containing 80 mg of zinc per kilogram of feed could sat-

isfy the needs of weanling pigs. In contrast, several others3–6 have reported that diets 

containing zinc oxide (ZnO) at levels of 3,000–5,000 mg/kg increased food consump-

tion and growth, and also decreased the incidence of diarrhea among weanling pigs. 

The growth-promoting effects of ZnO in pigs appear to correlate with the presence 
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of anti-pathogenic microorganisms, anti-bacterial toxins, 

a strengthened immune response, and the promotion of intes-

tinal development and digestive enzyme activity.7–12 

However, supplementing a diet with ZnO causes con-

cern about environmental pollution, as dietary ZnO is 

poorly absorbed in the gut and, therefore, is excreted into 

the environment via feces.13,14 Because of these concerns, 

encapsulated formulations of ZnO and ZnO nanoparticles 

have been created to reduce the total amount of ZnO added 

to a diet.15 Although these special formulations increase 

costs to the feed manufacturing industry, ZnO nanopar-

ticles have been widely used in People’s Republic of China 

in order to reduce environmental pollution created by the 

manufacture and use of animal feeds. While greater atten-

tion should be given to environmental pollution caused by 

ZnO usage, the toxic effects of ZnO nanoparticles on ani-

mals and humans also remain unclear and should be more 

thoroughly investigated.

Studies have shown that ZnO nanoparticles produce cyto-

toxic effects in numerous kinds of cells, including osteoblast 

cancer cells, human bronchial epithelial cells, kidney cells, 

alveolar adenocarcinoma cells, hepatocytes, and embryonic 

kidney cells; furthermore, the nanoparticles’ effects may be 

related to particle size and dosage.16–21 While low doses of 

ZnO nanoparticles have not produced toxic effects in vivo, 

high concentrations can cause sudden death. Moreover, 

ZnO nanoparticles are one of the most toxic nanoparticles, 

with the lowest LD
50

 (median lethal dose) value, among 

the engineered metal oxide nanoparticles currently used in 

research.22–24 Studies have shown that the metal oxides display 

the following order of toxicity to catfish primary hepatocytes 

and human HepG2 cells: TiO
2
 , Co

3
O

4
 , ZnO , CuO.25 

When tested in zebra fish, the LC
50

 values for TiO
2
 and ZnO 

nanoparticles were 124.5 and 4.92 mg/L, respectively.26 

ZnO nanoparticles stimulate the formation of reactive 

oxygen species (ROS) that disrupt intracellular metabolic 

activities and the antioxidant system. These changes permit 

newly generated ROS to interact with and damage lipids, 

carbohydrates, proteins, and DNA.27,28 Similar to ROS, ZnO 

nanoparticles have antibacterial effects as a result of their 

oxidative properties.29,30 Furthermore, ZnO nanoparticles are 

highly soluble, which allows them to exist at concentrations 

high enough to produce cytotoxic effects, oxidative stress, 

and mitochondrial dysfunction.31,32 When administered as 

a single oral dose, ZnO nanoparticles are easily absorbed 

into the bloodstream via the gastrointestinal tract, and this 

property allows the liver, lung, and kidney to be target organs 

for their accumulation and toxic effects, which appear to 

be independent of particle size and animal gender.33,34 Oral 

administration of ZnO nanoparticles leads to the release of 

free Zn2+ ions in gastric acid; thus, Zn2+ is probably the main 

toxic material in vivo.

A previous study identified the liver as the main target 

organ of ZnO nanoparticles.35 Because the liver metabolizes 

drugs via its constitutive cytochrome P450 (CYP450) enzyme 

system, we speculated that a clinical dose of ZnO nanopar-

ticles might produce adverse effects, as Zn accumulates in the 

liver and decreases the elimination rate of other drugs, leading 

to their accumulation and associated toxic side effects. As 

zinc nanoparticles come in direct contact with the intestines, 

the effects of nanoparticles on intestinal CYP450 enzymes 

also should be evaluated. In this study, various doses of ZnO 

nanoparticles were orally administered to Sprague Dawley 

rats, and their effects on the mRNA and activity of CYP450 

enzymes were evaluated, with the aim of providing guid-

ance regarding the proper dose of nanoparticles to be used 

in animals. CYP450 enzyme activity was evaluated using 

the “cocktail” method.36

Materials and methods
Preparation of nanoparticle diets
ZnO nanoparticles were purchased from Shijiazhuang Lumen 

Chemical Technology Co., Ltd (Hebei, People’s Republic of 

China) and examined for size and morphology with a Hitachi 

H–600IV transmission electron microscope (Hitachi, Tokyo, 

Japan). The resultant images revealed that the ZnO nanopar-

ticles had sizes ranging from 10 to 100 nm (Figure 1).

The ZnO nanoparticles were diluted twofold with 

powdered rat feed. The feed containing ZnO nanoparticles 

was placed into a V-Mixer (Hunan Zhongcheng Pharmacy 

Machine Co., Ltd, Shanghai, People’ Republic of China) and 

mixed for 60 minutes to ensure the ZnO nanoparticles were 

well distributed. Next, the feed was moistened and prepared 

as pelleted formulations containing ZnO nanoparticles at 

concentrations of 100, 300, and 600, all of which are con-

ventional levels used in diets.

Animals
Male Sprague Dawley rats (aged 4 weeks; 100–120 g) were 

purchased from Chengdu Dossy Biological Technology Co., 

Ltd, Chengu, People’s Republic of China. The animals were 

housed in plastic laboratory animal cages in a ventilated room 

maintained at 25°C±2°C and 70%±10% relative humidity, 

and with a 12-hour light/dark cycle. Food containing ZnO 

nanoparticles, as well as water, was available ad libitum. 

The animals were assigned to four groups, with eight in 

each group: a group that received regular rat feed and three 

other groups that received rat feed supplemented with ZnO 
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nanoparticles at concentrations of 100, 300, and 600 mg/kg. 

The rats were allowed 7 days to adapt to their new environ-

ment prior to receiving an experimental feed; after that, they 

were fed the experimental feeds for 1 week. All animal-

handling procedures were performed according to the Guide 

for the Care and Use of Laboratory Animals of the Chinese 

Association for Laboratory Animal Sciences and followed 

the guidelines of the Animal Welfare Act. All animal experi-

ments were approved by the Experimental Animal Ethical 

Committee of Sichuan Agricultural University.

Sample collection
After an overnight 8-hour fasting period, all animals in the 

four groups were anesthetized with ether, and blood samples 

obtained by cardiac puncture were collected into heparin-

ized and non-heparinized bottles for use in hematologic and 

biochemical investigations, respectively. Blood samples 

collected in non-heparinized bottles were allowed to clot, 

then centrifuged, and the serum fractions were separated 

from the clots and stored in clean bottles for subsequent 

biochemical analyses. 

 Liver and intestinal microsomes were prepared by dif-

ferential centrifugation.37 Briefly, the liver and intestine of 

each rat were excised, rinsed with ice-cold saline (0.9% NaCl 

w/v), weighed, and homogenized in 0.05 mM Tris/KCl buffer 

(pH 7.4). The homogenate was centrifuged at 10,000× g at 

4°C for 30 minutes, after which, the resultant supernatant 

fraction was centrifuged at 105,000 g at 4°C for 60 min-

utes. The pellet was suspended in 0.05 mM Tris/KCl buffer 

(pH 7.4) and stored at -80°C until use. The liver microsome 

protein concentrations were determined by Bradford protein 

assay kit (Tiangen Biotech Co Ltd, Beijing, People’s Republic 

of China). The liver microsomes were used to analyze the 

activity of CYP450 enzymes, while additional 1 g samples of 

liver tissue were homogenized with 10 mL of ice-cold saline 

(0.9% NaCl w/v) for analyses of cytokines and antioxidant 

levels. Also, about 2 g samples of liver tissue were snap-

frozen in liquid nitrogen and stored at -80°C for later use in 

mRNA and gene expression analyses. The remaining samples 

of liver and kidney tissues were rinsed in physiological saline 

and fixed in 10% formalin for histologic examination.

Hematologic and biochemical analyses
White and red blood cell counts, mean cell volumes, mean 

corpuscular hemoglobin concentrations, and packed cell 

volumes were analyzed with an auto hematology analyzer 

(BC-2800; Shenzhen Mindray Bio-Medical Electronics 

Co., Ltd, Shenzhen, People’s Republic of China). Serum 

enzyme activities were measured by use of an automatic bio-

chemical analyzer (BS-180; Shenzhen Mindray Bio-Medical 

Electronics Co., Ltd).

Measurements of cytokines and 
antioxidant ability
The homogenized liver tissues were centrifuged at 8,000× g 

for 10 minutes. The concentrations of interleukin-6 (IL-6), 

interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α), and 

methane dicarboxylic aldehyde, and activity of superoxide dis-

mutase, total antioxidant capacity, and glutathione peroxidase 

in the supernatants were measured by kits (Nanjing Jiancheng 

Bioengineering Institute, Nanjing, People’s Republic of 

China), according to the manufacturer’s instructions. The 

data were recorded with a multifunctional microplate reader 

(Thermo Fisher Scientific Inc., Waltham, MA, USA).

RNA extraction and determination 
of gene expression in liver by real-time 
polymerase chain reaction
RNA extractions and analyses of liver tissue gene expression 

were performed as described.38 The quality and quantity of 

Figure 1 Transmission electron microscope images of ZnO nanoparticles (sized 10–100 nm).
Abbreviation: ZnO, zinc oxide.
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extracted mRNA were determined with UV spectroscopy 

(NanoDrop 2000 UV-Vis Spectrophotometer; Thermo 

Scientific). The following target  genes were analyzed for 

their expression: constitutive androstane receptor (CAR), 

pregnane X receptor (PXR), CYP450 1A2, CYP450 2C11, and 

CYP450 3A2. GAPDH was used as a housekeeping gene for 

data normalization (Table 1). The Ct values were normalized 

using the mean value of the housekeeping gene, and arbitrary 

values were calculated and used for statistical comparisons. 

Melting curves and polymerase chain reaction (PCR) effi-

ciency served as standard quality criteria for each reverse 

transcription-PCR run.

Measurements of CYP 1A2, 2C11,  
and 3A2 activity
CYP450 1A2, CYP450 2C11, and CYP450 3A2 activity were 

assessed as described.39–41 All microsomal incubations were 

conducted for 60 minutes at 37°C in a final volume of 500 μL. 

Each incubation mixture contained pooled microsomes 

(1.0 mg protein/mL) and an nicotinamide adenine dinucle-

otide phosphate-regenerating system consisting of MgCl
2
 

(10 mM), glucose 6-phosphate (10 mM), NADP+ (1.0 mM), 

and 6-phosphate dehydrogenase (2.0 U/mL). A 10 μL volume 

of acetonitrile stock solution was added to each microsomal 

incubation vessel, which contained three probe substrates for 

three specific CYP450 enzymes. The activities of the three 

different CYP450 enzymes were evaluated based on the 

reduction of the following three substrates: phenacetin for 

CYP450 1A2, tolbutamide for CYP450 2C11, and testos-

terone for CYP450 3A2. The concentrations of phenacetin, 

tolbutamide, and testosterone in the incubation mixtures 

were 100, 100, and 800 μg/mL, respectively. All incubations 

were terminated by adding 500 μL of ice-cold acetonitrile 

containing 20  ng/mL tinidazole (internal standard), after 

which, the solutions were thoroughly mixed and centrifuged 

(18,000× g at 4°C for 10 minutes) to obtain the supernatant 

fractions, of which 10 μL was used for the cocktail high-

performance liquid chromatographic (HPLC) analysis. 

Phenacetin, tolbutamide, testosterone, and tinidazole (IS) 

were analyzed by 1260 series HPLC instrument (Agilent 

Technologies, Santa Clara, CA, USA) capable of diode 

array detector at 230  nm. HPLC was performed at room 

temperature with an Agilent revere-phase C18 column 

(Zorbax SB-C18, 4.6×250 mm, 5 μm) equipped with a C18 

guard column. The mobile phase consisted of acetonitrile and 

water (0.01 M acetic acid) and the flow rate was 1.0 mL/min. 

Elutions occurred when the liquid phase consisted of 40% 

acetonitrile–60% water (0.01 M acetic acid), at which time, 

phenacetin, tolbutamide, testosterone, and tinidazole (IS) 

eluted at 6.11, 4.54, 16.35, and 4.25 minutes, respectively.

The regression equations and lower limit of quantitation 

concentrations for the analytes are shown in Table 2.

Analyses of histopathologic changes
The livers and kidneys removed from the experimental 

rats were fixed in 10% buffered formalin and processed for 

histological examination. Tissues embedded in paraffin wax 

were sectioned (5 mm thickness), stained with hematoxylin 

and eosin, mounted on glass slides, and examined under a 

standard light microscope. 

Statistical analysis
All statistical results were expressed as the mean ± standard 

deviation (n=8), and all experimental values were compared 

with their corresponding control values. Differences between 

mean values were analyzed with one-way ANOVA, and 

values with different superscripts are significantly different 

(P,0.05 or 0.01).

Table 1 PCR primers used for analysis of gene expression

Target Sequences of primers (5′ to 3′) Primer  
size (bp)

CYP450 1A2 GACACGGTGATTGGCAGAGAT 115
TGGTGAAGGGGACAAAGGAT

CYP450 2C11 AATCCGCAGTCTGAGTTTACCC 175
GGTTTCTGCCAATTACACGTTCT

CYP450 3A2 ATAAAGCCCTGTCTGATGTTGAA 194
CATCACAATATCGTAGGTAGGAGGT

CAR CCTTTTCCGTTCCCTGACCA 150
ACCGCATCTTCCATCTTGTAGC

PXR GCAGGGGCTGACAGAAGAAC 200
CACTGTCTTTCATGATTTGACTCCA

GAPDH CCTTCCGTGTTCCTACCCC 131
GCCCAGGATGCCCTTTAGTG

Abbreviations: PCR, polymerase chain reaction; CYP, cytochrome; CAR, constitutive 
androstane receptor; GAPDH, glyceraldehyde 3-phosphate dehydrogenase; PXR, 
pregnane X receptor.

Table 2 Regression equation, linear range, and LLOQ for the probe substrates used in incubations

Analytes Regression equation Correlation coefficient (R2) Linear range (ng/mL) LLOQ (ng/mL)

Phenacetin y =3.5473x +0.2513 0.9955 200–1,400 50
Tolbutamide y =0.0198x -1.0885 0.9956 200–1,400 50
Testosterone y =0.0129x -8.1329 0.9992 800–11,200 100

Abbreviation: LLOQ, lower limit of quantitation.
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Results
Hematology and blood chemistry
The effects of ZnO nanoparticles on hematologic param-

eters and blood chemistry are shown in Figure  2. The 

numbers of white blood cells were significantly increased 

(P,0.01), whereas the numbers and percentages of 

lymphocytes were significantly decreased (P,0.05 and 

P,0.05, respectively) in the high-dose group. The increase 

in white blood cells was mainly due to increased num-

bers of monocytes (P,0.01 or P,0.05) and granulocyte 

neutrophils (P,0.01). Hemoglobin levels were decreased 

(P,0.01) in rats fed with high dose of ZnO nanoparticles, 

and red blood cell counts were decreased (P,0.01) at all 

dose levels. 

Other biochemical tests revealed that levels of alka-

line phosphatase and gamma-glutamyl transferase were 

γ

Figure 2 Effects of ZnO nanoparticles on hematologic indices (A) and blood chemistry values (B).
Notes: *Significant difference from the control group (P,0.05); **significant difference from the control group (P,0.01).
Abbreviations: WBC, white blood cell; Lym, lymphocytes; Mon, monocytes; Gran, granulocytes; RBC, red blood cells; MCH, mean corpuscular hemoglobin; RDW, red 
cell distribution width; Hgb, hemoglobin; MCV, Mean corpuscular volume; MCHC, mean corpuscular hemoglobin concentration; ALT, alanine transaminase; AST, aspartate 
transaminase; ALP, alkaline phosphatase; CREA, creatinine; ALB, albumin; GLB, globulin; γ-GT, gamma-glutamyl transferase; TG, triglycerides; A/G, albumin to globulin ratio; 
HCT, hematocrit; TP, total protein; TC, total cholesterol; GLU, glucose.

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


International Journal of Nanomedicine 2016:11submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

4280

Tang et al

significantly increased (P,0.01) in the medium- and high-

dose groups, possibly as a result of liver injury.

Cytokines concentration and  
antioxidant ability
The effects of ZnO nanoparticles on liver cytokines con-

centration and antioxidant ability are shown in Figures 3 

and 4. The concentrations of IL-6, IFN-γ, and TNF-α of 

liver were induced by the presence of ZnO nanoparticles 

in a dose-dependent manner (P,0.05 or P,0.01). The 

activities of superoxide dismutase and total antioxidant 

capacity of liver were suppressed by the presence of ZnO 

nanoparticles in a dose-dependent manner (P,0.05 or 

P,0.01), but the activity of glutathione peroxidase in 

liver was significantly suppressed by those nanoparticles 

given at a dose of 600 mg/kg (P,0.01). The concentra-

tion of liver malondialdehyde was induced significantly 

by three doses.

Expression of nuclear receptors and  
CYP enzymes
As shown in Figure  5, the levels of mRNA for nuclear 

receptor of CAR were suppressed by the presence of ZnO 

nanoparticles in a dose-dependent manner (P,0.05 or 

P,0.01); however, the mRNA for PXR was induced by ZnO 

nanoparticles (P,0.05 or P,0.01). The levels of mRNA for 

CYP 2C11 were increased approximately tenfold (P,0.01) 

by ZnO nanoparticles, and the levels of mRNA for CYP 3A2 

were also significantly increased (P,0.01 or P,0.05) in a 

dose-dependent manner. However, the levels of CYP 1A2 

mRNA were significantly reduced in the medium- and high-

dose groups (P,0.05).

CYP enzyme activities
As shown in Figure 6, the activity of liver CYP 3A2 was 

significantly lower in animals that received ZnO nanopar-

ticles than in control animals (P,0.01). The activity of 

liver CYP 2C11 was also significantly suppressed by ZnO 

nanoparticles (P,0.05), and the activity of liver CYP 1A2 

was not increased. Although the intestines came in direct 

contact with ZnO nanoparticles, intestinal CYP 2C11 

activity was not induced. While all doses of ZnO nanopar-

ticles induced intestinal CYP 1A1 activity (P,0.05), only 

Figure 4 Effects of ZnO nanoparticles on the antioxidant ability of liver.
Notes: *Significant difference from the control group (P,0.05); **significant difference 
from the control group (P,0.01).
Abbreviations: CAT, catalase; SOD, superoxide dismutase; GSH-Px, glutathione 
peroxidase; MDA, malondialdehyde; ZnO, zinc oxide.

Figure 5 Effects of ZnO nanoparticles on mRNA expression of nuclear receptors 
and CYP enzymes.
Notes: *Significant difference from the control group (P,0.05); **significant difference 
from the control group (P,0.01).
Abbreviations: CAR, constitutive androstane receptor; PXR, pregnane X receptor; 
CYP, cytochrome; ZnO, zinc oxide.

Figure 3 Effects of ZnO nanoparticles on concentration of cytokines.
Notes: *Significant difference from the control group (P,0.05); **significant difference 
from the control group (P,0.01).
Abbreviations: IL-6, interleukin-6; IFN-γ, interferon-γ; TNF-α, tumor necrosis 
factor alpha; ZnO, zinc oxide.

γ α
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the highest dose of ZnO nanoparticles induced CYP 3A2 

activity (P,0.01). Liver CYP 1A2 and intestinal CYP 1A1 

are the same enzyme but have different names, reflecting 

their different tissue distribution, as is the case also for CYP 

3A2 and CYP 3A4.

Histopathological analysis
Representative images from histopathological examinations 

are shown in Figure 7. Figure 7A shows the liver (left) and 

kidney (right) tissues of a rat in the control group. Figure 7B 

shows the liver (left) and kidney (right) tissue of a rat in the 

group fed with 100 mg/kg ZnO nanoparticles. The findings 

shown in Figure 7B are similar to those in 7A, in that the 

cellular structures remain clearly defined and appear to be 

normal. Figure  7C shows liver (left) and kidney (right) 

tissue from a rat in the group fed with 300  mg/kg ZnO 

nanoparticles. In this image, the liver cells are slightly 

swollen. Figure  7D shows liver (left) and kidney (right) 

tissue from a rat in the group fed with 600 mg/kg. The liver 

and kidney cells show vacuolization and significant swelling. 

The liver cell gap shows evidence of minor hemorrhage, 

while the glomerular and renal tubular epithelial cells show 

severe hemorrhage.

Discussion
In this research we defined several effects of ZnO nanopar-

ticles fed to rats. Our major findings are as follows: the ZnO 

nanoparticles changed the indices of hematology and blood 

chemistry, altered the expression and activity of hepatic CYP 

enzymes, and induced pathological changes in liver and 

kidney tissues. We evaluated the toxicity of clinical dose of 

ZnO nanoparticles and have attempted to explain the reason 

for the altered activity of CYP enzymes.

Although bulk micron-sized ZnO is recognized as a 

safe substance by the US Food and Drug Administration, 

whether ZnO nanoparticles are safe for consumption by 

animals has not been determined. Numerous studies have 

reported that excess oral administration of zinc salt and zinc 

powder can lead to liver damage and liver dysfunction, with 

increased values of serum enzymes such as glutamic–pyruvic 

transaminase/glutamic–oxaloacetic transaminase and alkaline 

phosphatase.42 In the present work with ZnO nanoparticles, 

animals that received 300 or 600 mg/kg had significantly 

increased levels of alkaline phosphatase and γ-glutamyl 

transferase, which we believe were most likely due to liver 

injury produced by the nanoparticles. This is supported by 

the histopathologic evidence of liver injury, observed in the 

group fed with 300 mg/kg nanoparticles and more severely 

in the group fed with 600  mg/kg nanoparticles. We also 

propose that the increased white blood cell, neutrophil, and 

granulocyte counts reflect an inflammatory reaction, and 

the decreased numbers of lymphocyte may be indicative of 

immune dysfunction. 

CYP450 enzymes are produced by a super-gene family 

and play key roles in the metabolism of drugs, xenobiotics, 

and endogenous compounds found in animals and humans. 

Members of the CYP1A, CYP2C, and CYP3A isoform 

families are the most important and abundant CYP enzymes 

involved in drug metabolism.43 Induction or inhibition 

of the CYP enzymes following exposure to certain drugs 

and chemicals can result in drug-induced toxicities and 

drug–drug interactions which lead to treatment failure.44 

Metals have been shown to modify CYP450 expression and 

function.45–47 Numerous articles have mentioned that CY450 

enzymes are downregulated during a generalized inflamma-

tory process and that various inflammatory cytokines have 

Figure 6 Effects of ZnO nanoparticles on the activities of liver (A) and intestinal (B) CYP enzymes.
Notes: **Significant difference from the control group (P,0.01).
Abbreviations: CYP, cytochrome; ZnO, zinc oxide.
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Figure 7 Effects of ZnO nanoparticles on the histopathologic appearance of liver and kidney tissues (HE ×400).
Notes: Liver: control group (A), 100 mg/kg (B), 300 mg/kg (C), and 600 mg/kg (D). Kidney: control group (E), 100 mg/kg (F), 300 mg/kg (G), and 600 mg/kg (H). (C) Liver 
cells are slightly swollen (arrows). (D) The intercellular space shows evidence of minor hemorrhage (arrows). (H) The glomerular and renal tubular epithelial cells have 
severe hemorrhage (arrows). Microscopic abnormalities were found in the group fed with ZnO nanoparticles at dose 300 mg/kg (C and G) and more severe abnormalities 
in the group fed at dose 600 mg/kg (D and H).
Abbreviations: ZnO, zinc oxide; HE, hematoxylin and eosin.

some degree of selectivity for specific CYP isoforms.48–50 

CAR and PXR serve as master transcriptional regulators 

of CYP450 isozymes.51,52 In our study, rats fed with a diet 

containing 300 or 600 mg/kg of ZnO nanoparticles showed 

liver inflammation and injury. While CAR mRNA expression 

was suppressed and PXR mRNA expression was induced 

by ZnO nanoparticles, these changes did not have a dose–

response relationship. Expressions of CYP 2C11 and CYP 

3A2 mRNA were significantly induced by ZnO nanoparticles, 

and this effect may have been related to PXR induction. In 

contrast, CYP 1A was suppressed by ZnO nanoparticles. 

While this change is consistent with the trend shown by 
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Conclusion
ZnO nanoparticles added to the animal feed, in the doses 

studied, showed adverse effects on hematologic parameters, 

cytokines, oxidative stress, cytochrome enzymes, liver 

enzymes, and histologic parameters of rat liver. These 

observations are considered to be evidences that the doses 

of zinc added to animal feeds are too high and need to be 

reconsidered, and the drug withdrawal period for animals fed 

with ZnO nanoparticles should be longer than the period that 

is currently followed. 
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