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Abstract: Anhedonia, defined as the state of reduced ability to experience feelings of pleasure, 

is one of the hallmarks of depression. Hedonic tone is the trait underlying one’s characteristic 

ability to feel pleasure. Low hedonic tone represents a reduced capacity to experience pleasure, 

thus increasing the likelihood of experiencing anhedonia. Low hedonic tone has been associated 

with several psychopathologies, including major depressive disorder (MDD), substance use, 

and attention-deficit hyperactivity disorder (ADHD). The main neural pathway that modulates 

emotional affect comprises the limbic–cortical–striatal–pallidal–thalamic circuits. The activity 

of various components of the limbic–cortical–striatal–pallidal–thalamic pathway is correlated 

with hedonic tone in healthy individuals and is altered in MDD. Dysfunction of these circuits 

has also been implicated in the relative ineffectiveness of selective serotonin reuptake inhibitors 

used to treat anxiety and depression in patients with low hedonic tone. Mood disorders such as 

MDD, ADHD, and substance abuse share low hedonic tone as well as altered activation of brain 

regions involved in reward processing and monoamine signaling as their features. Given the 

common features of these disorders, it is not surprising that they have high levels of comorbidi-

ties. The purpose of this article is to review the neurobiology of hedonic tone as it pertains to 

depression, ADHD, and the potential for substance abuse. We propose that, since low hedonic 

tone is a shared feature of MDD, ADHD, and substance abuse, evaluation of hedonic tone 

may become a diagnostic feature used to predict subtypes of MDD, such as treatment-resistant 

depression, as well as comorbidities of these disorders.

Keywords: dopamine, catecholamines, noradrenaline, anhedonia, treatment-resistance, pre-

frontal cortex

Introduction
Emotions, mood, and affect are the underlying phenomena of psychological states 

and disorders. Emotions represent complex psychological states that are elicited as a 

response to one’s external environment and involve the interplay between behavioral 

and physiological responses. Unlike emotions, which are specific and usually occur in 

response to a stimulus, mood is a general feeling of one’s psychological state that is 

longer lasting than specific emotions.1 Core affect is defined as a neurophysiological 

state that underlies the general feelings of “good” or “bad”, “drowsy” or “energized”.2 It 

has been suggested that the core affect shapes hedonic valence of one’s experiences.

Anhedonia, defined as the state of reduced ability to experience feelings of pleasure, 

is one of the hallmarks of depression.3,4 However, the term anhedonia is insufficient 
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to summarize the intricate and multidimensional reward-

associated deficits displayed by patients with neuropsychi-

atric disorders.2,5 Deficits in reward-related processing may 

present as loss of interest or pleasure and may impede an 

individual’s ability to engage in goal-directed behavior.2,5 

These behaviors may include the lack of anticipation or 

prediction of expected rewards, lack of ability to evaluate 

the perceived values and costs associated with anticipated 

rewards, inability to gauge the amount of effort required to 

attain rewards, inability to evaluate whether the effort is suf-

ficiently rewarded, and lack of motivation to execute actions 

required to attain rewards.5

If anhedonia is the state of reduced ability to feel pleasure, 

then hedonic tone, also referred to as hedonic capacity or 

hedonic responsiveness, is the trait or genetic predisposition 

underlying one’s baseline range and lifelong characteristic 

ability to feel pleasure. Low hedonic tone represents a 

reduced capacity to experience pleasure at any given time, 

thus increasing the likelihood of experiencing anhedonia.6,7

Low hedonic tone has been associated with several psy-

chopathologies, including major depressive disorder (MDD), 

substance use, and schizophrenia,8,9 although variations in 

hedonic tone can also be observed in healthy individuals.10

It can be hypothesized that individuals suffering with 

genetically lower set point, or lower hedonic tone, will 

need to do more to feel neutral or euthymic, resulting in an 

increased need for stimulation.11 In part, this may manifest 

as seeking external stimulation (eg, dangerous or risky 

behavior and substance abuse) or internal stimulation (eg, 

fantasy) that will raise their hedonic tone.12 Regardless of 

the choice to externally or internally raise their hedonic 

tone, patients with this trait would consistently attempt to 

cope by finding ways to maximize pleasure and raise mood 

from their low baseline tone. Furthermore, when stimula-

tion is absent, individuals with low hedonic tone would be 

hypothesized to experience a shift toward that individual’s 

more usual lower hedonic tone and therefore suffer a drop 

in their mood to their more common baseline dysphoric 

state (Figure 1).12

Thus, it is not surprising that a large body of evidence 

points to the involvement of the reward system, particu-

larly the mesolimbic dopaminergic system, in mediating 

the degree of anhedonia at any given time6,7 as well as the 

risk of developing dysthymia and depression.13,14 Recent 

research into the neurobiology of anhedonia has focused on 

neurobiology of reward and motivation and has identified 

Figure 1 Hypothesized results of lower hedonic tone and behaviors to reach euthymia.
Note: Individuals who experience chronic lower mood (lower hedonic tone) attempt to reach euthymia through internal or external activation.
Abbreviations: HHT, high hedonic tone; LHT, low hedonic tone.
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associated dopaminergic circuits as playing a key role in 

the maintenance of hedonic tone,2,4,15,16 specifically neural 

circuits that contain bottom-up and top-down projections 

into the prefrontal cortex (PFC), lateral habenula, and the 

ventral tegmental area (VTA) dopamine (DA) system.17 In 

association, specific deficits in a variety of PFC areas have 

been implicated in anhedonia (Figure 2).5

The purpose of this article is to review the neurobiology 

of hedonic tone as it pertains to depression, attention-deficit 

hyperactivity disorder (ADHD), and the potential for sub-

stance abuse. We propose the hypothesis that the experience 

of living for these individuals would best be understood 

through awareness of their low hedonic tone as they endeavor 

to attain a euthymic state by modulating the neurobiology 

of these areas. Furthermore, we propose that a dysfunction 

in the reward circuitry that comprises the ventromedial 

prefrontal cortex (VMPFC), subgenuate, and the nucleus 

accumbens (NA) is the underlying biological mechanism 

to this low hedonic tone and, therefore, the various mood 

disorders (Figure 2).

Methods
To identify studies relevant to our review, we performed 

a literature search on PubMed, PsychNET, and Medline 

databases until January 2016 using keywords “hedonic 

tone” AND “mood disorder” AND any of the following 

terms: “reward pathways”, “dopamine”, “neurobiology”, 

“depression”, “ADHD”, or “substance abuse”. Inclusion 

criteria for studies were 1) English language, 2) articles 

published in peer-reviewed journals, and 3) original research 

or review articles. Human and nonhuman primate studies 

were included in the neurobiology of mood and hedonic 

tone section. All other sections of this review included only 

human studies.

Neurobiology of mood disorders
Mood and emotional expression are regulated by a complex 

neural network, which involves the interplay between numer-

ous regions of the central nervous system (CNS). Regions 

that modulate mood and emotions are closely intertwined 

with feelings of reward, pleasure, motivation, as well as our 

internal state and external environment. These regions and 

the associated neural pathways that regulate these functions 

span from the cerebral cortex to the brain stem and include 

the peripheral nervous system via the vagus nerve.

The main neural pathway that modulates emotional affect 

comprises the limbic–cortical–striatal–pallidal–thalamic 

(LCSPT) circuits, which consist of connections between 

the orbital and medial prefrontal cortex (OMPFC), ventro-

medial striatum, ventral pallidum, hippocampal subiculum, 

mediodorsal and midline thalamic nuclei, and amygdala.18 

Through reciprocal connections with cortical regions that 

control higher cognitive functions as well as regions involved 

in the regulation of autonomic functions, including the 

periaqueductal gray and the hypothalamus, these circuits 

integrate higher cognitive functions with visceral information 

and external environmental conditions to affect mood and 

emotional states.19 Furthermore, the connections between 

the OMPFC and the dorsolateral prefrontal cortex (DLPFC) 

connect mood dysregulation with deficits in working memory 

and cognitive flexibility features that are dysfunctional in 

mood disorders (Figure 3).20–22

The OMPFC includes a significant portion of the cere-

bral cortex and is specifically involved in decision making 

and emotional- and reward-driven behaviors.18 Functional 

studies have identified two prefrontal networks within the 

OMPFC:23,24 the orbital network having been implicated 

in sensing food-related information and the anticipation 

of reward24 and the medial network projecting to visceral 

control centers in the hypothalamus and the periaqueductal 

gray25,26 and modulating visceral activity in response to affec-

tive stimuli.24 Thus, the orbital network is responsible for 

associating stimuli with a reward and specifically with the 

reward value of the stimulus.27 On the other hand, the medial 

network is involved with visceral responses to emotions, such 

Figure 2 Hypothesized regions contributing to modulation of hedonic tone.
Note: Neuroanatomical regions in the brainstem that contribute to the regulation of 
hedonic tone, in part, through catecholaminergic modulation of prefrontal circuits.
Abbreviations: A, amygdala; ACG, anterior cingulate cortex; C, caudate; 
DLPFG, dorsolateral prefrontal cortex; H, habenula; Hy, hypothalamus; I, insula; 
LC, locus coeruleus; NA, nucleus accumbens; OMPFC, orbitomedial prefrontal 
cortex; P, putamen; RN, raphe nucleus; SCG, subgenual cingulate cortex; T, thalamus; 
VTA, ventral tegmental area; VMPFC, ventromedial prefrontal cortex.
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as increased respiratory and heart rate, changes in blood pres-

sure, and changes in the digestive activities (Figure 3).24

As well, the OMPFC has also been implicated in the inhibi-

tion of impulsive behavior,28 with reductions in dopaminergic 

input to the OMPFC having been shown to diminish the abil-

ity to inhibit impulsive behavior.29 Since impulsive behavior 

is one of the features of several mood disorders, dysfunction 

in dopaminergic inputs to OMPFC may represent a precursor 

to developing these conditions. Furthermore, in healthy indi-

viduals, activation of the medial network is associated with 

an increase in galvanic skin conductance, which represents an 

indirect measure of emotional arousal through increased activ-

ity in the sympathetic nervous system,30–32 further supporting the 

regions’ role in the regulation of emotional affect (Figure 3).

The amygdala as a part of the limbic system plays a cru-

cial role in various forms of emotional learning, including 

fear conditioning,33 and mediates emotional responses to 

stress.34 Functional imaging studies have shown that the 

amygdala is activated by fear conditioning,35 and patients 

with lesions to the amygdala are unable to recognize fear-

ful stimuli.36 The amygdala receives information about 

the external environment via the thalamus and the sensory 

cortex and is reciprocally connected with the OMPFC, the 

hippocampus, and sensory association areas. The amygdala 

also sends efferent projections to the striatum, both the 

dorsal (caudate nucleus and the putamen) and the ventral 

striatum, and the NA.36 Through projections to brainstem 

regions that control visceral functions, such as cardiovascu-

lar and respiratory functions, the amygdala plays a role in 

coordinating higher cognitive functions and emotions with 

the physiological state, including heart rate and respiratory 

rate observed during stress. Furthermore, increased reactivity 

of the amygdala to stressful stimuli has been implicated as a 

precursor to depression in adolescents.37

Figure 3 Hypothesized regulation of hedonic tone.
Note: Hypothesized interconnections from brainstem to midbrain and prefrontal cortex that result in regulation of hedonic tone.
Abbreviations: ACC, anterior cingulate cortex; DA, dopamine; 5HT, 5-hydroxytryptamine; NE, norepinephrine.
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The amygdala, particularly the central nucleus, coordi-

nates the fear response via connections to autonomic and 

cortical regions. Sensory stimuli, such as visual, auditory, 

and other stimuli, are perceived by the visual regions of the 

thalamus, namely, the lateral geniculate, which sends these 

messages to the central nucleus of the amygdala. Activation 

of this nucleus, in turn, coordinates the autonomic response 

to fear, which includes an increase in the respiratory rate via 

connections to the parabrachial nucleus, increased arousal via 

connections to the lateral hypothalamus, increased autonomic 

activation via projections to the paraventricular nucleus 

of the hypothalamus, increased catecholamine release via 

projections to the locus coeruleus, as well as activation of 

defensive behaviors via connections to the periaqueductal 

gray.38 In addition, the amygdala also has reciprocal con-

nections with cortical regions involved in the processing and 

evaluation of sensory information. These regions integrate 

sensory information and decide whether fear is warranted.38 

For example, the hippocampus is involved in contextualizing 

fear and can either increase or decrease fear reaction based 

on prior experiences and memories, whereas the medial 

PFC is involved in fear extinction.39,40 In individuals who 

have been conditioned to fear, or those with panic disorders, 

dysfunction in this circuitry leads to an inability to extinguish 

or contextualize fear.41 Furthermore, the central nucleus 

of the amygdala is connected to the insular cortex, which 

is involved in contextualizing sensory inputs of various 

modalities, including nociceptive, auditory, and visual.42–44 

This notion is supported by the findings that lesions in the 

insular cortex are associated a reduced sensitivity to the pain 

of others (Figure 3).45

Emotional responses to stressful stimuli are partly medi-

ated by the reciprocal connections of the amygdala, the 

thalamus, and the hippocampus.46 Whereas the dorsal part of 

the hippocampus is primarily involved in memory consolida-

tion, the ventral hippocampus has been shown to modulate 

emotions and mood.46,47 Interestingly, neurons in the hip-

pocampus of adults display a high degree of neuroplasticity 

and neurogenesis and are easily influenced by life experiences 

and medications.48

The basal ganglia, including the dorsal striatum (eg, 

caudate nucleus, putamen), the ventral striatum (eg, NA, 

olfactory tubercle, globus pallidus, ventral pallidum), the 

subthalamic nucleus, and the substantia nigra, are also 

closely interconnected with the PFC and the amygdala.49 

The basal ganglia are involved in motor control, as well as 

motivation and reward processing.49 It has been demonstrated 

that in healthy individuals, volume of the pallidum50 and the 

caudate51 are correlated with anhedonia scores, suggesting 

that these structures may be involved in the regulation of 

hedonic tone. More specifically, the caudate nucleus is 

thought to be involved in evaluating the magnitude of a 

reward and in driving appropriate behaviors required to 

obtain that reward.52,53 Based on these functions, individuals 

with low activity in the caudate nucleus would have a reduced 

capacity to estimate the value of a reward or to initiate actions 

needed to obtain a reward. These are also the characteristics 

of low hedonic tone.12

The DLPFC circuit is involved in working memory and 

cognitive flexibility and has been linked to the pathogenesis 

of mood disorders (Figure 3).20,21 This circuit originates in 

the DLPFC and corresponds to Brodmann’s areas 9 and 10. 

The major efferent connections of DLPFC are composed of 

pyramidal neurons, which project to the dorsolateral caudate 

nucleus, which, in turn, projects to the globus pallidus and 

substantia nigra. These basal ganglia regions project to the 

ventral anterior and mediodorsal thalamic nuclei, which 

send afferent projections back to the DLPFC.21 Dysfunction 

of this circuit has been linked to impaired reasoning ability 

and cognitive inflexibility.21 Patients with DLPFC syndrome 

exhibit poor working memory and organizational abilities 

as well as inability to shift their attention between tasks.21 

It has also been shown that depression is associated with 

hypoactivity in the DLPFC (Figure 3).22

Neural circuits regulating mood and emotional affect 

release a wide range of neurotransmitters and are also 

affected by circulating hormones, particularly those involved 

in the stress response.19 As is the case throughout the CNS, 

neuronal activity within LCSPT circuits is predominantly 

glutamatergic and is locally modulated through the gamma-

aminobutyric acid (GABA) system.54 Glutamate is the main 

excitatory neurotransmitter in the CNS and activates all 

regions of the LCSPT circuits. Furthermore, disruptions in 

glutamate signaling have been implicated in disorders of 

reward processing, including substance abuse.55 On the other 

hand, GABA acts as the main inhibitory neurotransmitter/

modulator of the glutaminergic synapses and is present in 

interneurons situated throughout and acts to specifically 

inhibit neuronal activity.56 In corticostriatal circuits, GABA 

neurons are responsible for the selection and inhibition of 

motivated behaviors.57 Although glutamate and GABA are the 

predominant neurotransmitters in the LCSPT circuits, their 

activity can be modulated by a variety of other neurotransmit-

ters and neuromodulators. For example, endocannabinoids 

have been shown to inhibit the release of both glutamate and 

GABA in the VTA.58 Similarly, glutamate and GABA release 
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can be inhibited by opioids in various regions of the CNS, 

including the regions involved in reward processing, such as 

the VTA, amygdala, and the hippocampus.58–60 Furthermore, 

the activity of glutamate and GABA-containing neurons can 

also be modulated by monoamines. In fact, serotonergic 

modulation of glutamate release has been implicated as one 

of the strategies for treating MDD.61

With respect to mood regulation, monoamine neurotrans-

mitters (including serotonin, DA, norepinephrine (NE), 

and epinephrine) have been the main focus of research and 

have been the primary targets in pharmaceutical treatments 

of depression.19 The monoamine hypothesis of depression 

postulates that depression is caused by decreased modulating 

function of serotonin, NE, or DA in the brain.62 Nevertheless, 

this theory does not explain the apparent lack of efficacy in 

a relatively large subset of patients with treatment-resistant 

depression (TRD) who continue to suffer with residual 

symptoms, including anhedonia. Nonetheless, the extent to 

which monoamines influence neuronal activity is dependent 

on the expression level of the neurotransmitter itself as well 

as on the number of available receptors and transporters on 

the postsynaptic membrane. For example, serotonin can 

bind to 14 different receptor types,63–65 and the effect of 

serotonin on neurons can be region-specific.61 As such, one 

can imagine that this variability may explain the individual 

differential response to the various antidepressants. For 

example, it has been proposed that vortioxetine, which is 

described as a mixed multimodal antidepressant, likely acts 

as an atypical serotonin modulator, enhancing GABA activ-

ity in the striatum but reducing GABA activity in the PFC.61 

Vortioxetine has also been shown to increase glutamate 

activity via antagonism of serotonin receptors 6 and 7 and 

agonism of serotonin receptor 1a.66 Given the complexity 

of neurotransmitter systems regulating mood and emotional 

states, it is not surprising that mood disorders resulting from a 

disrupted balance of these circuits can take on various forms 

and manifest as highly variable symptoms (Figure 3).67

While the role of monoamine antidepressants in modulation 

of reward circuits has been the most extensively investigated, 

recent studies have demonstrated that substances that modu-

late other neurotransmitter systems, particularly N-nitrosodi-

methylamine receptors (glutamate), endogenous opioids, and 

acetylcholine, also affect reward pathways and hedonic tone. 

It has been demonstrated that symptoms of depression can be 

relieved with ketamine, an N-nitrosodimethylamine receptor 

antagonist,68 scopolamine, a muscarinic cholinergic receptor 

antagonist,69 and buprenorphine, a partial mu opioid receptor 

agonist,70 and these pharmacological agents have also been 

shown to alter reward-processing circuits. A single infusion 

of ketamine was shown to reduce anhedonia levels in patients 

with TRD. The reduction in anhedonia was accompanied by an 

increase in glucose metabolism in the dorsal anterior cingulate 

cortex (ACC) and putamen,71 suggesting that antidepressant 

properties of ketamine are mediated by its actions on reward 

processing. Clinical response to scopolamine is correlated with 

a greater neural activity in response to happy versus sad faces 

in the subgenual anterior cingulate cortex (sgACC).72 Further-

more, opioid dependence is associated with a reduced hedonic 

response to positive stimuli and reduced neural activation in 

the rostral PFC and ventrolateral prefrontal cortex (VLPFC),73 

and buprenorphine and samidorphan exert their antidepressant 

effects by affecting the levels of hedonic tone and altering the 

circuitry of the PFC. Taken together, these data indicate that 

nonmonoamine antidepressants, such as ketamine, scopol-

amine, and buprenorphine, induce antidepressant effects by 

restoring hedonic tone to control levels. A better understanding 

of the effects of these agents on neural circuits that regulate 

mood and hedonic tone is an important strategy for identifying 

novel effective treatments of depression.

Dysfunction in LCSPT circuits and the associated 

neurotransmitter systems have been implicated as playing a 

key role in MDD.19 Neuroimaging studies among depressed 

patients have demonstrated changes in the activity in LCSPT 

circuits in response to various treatments. For example, it 

has been shown that depression is associated with frontal 

hypometabolic activity accompanied by hypermetabolic 

activity in regions associated directly with the limbic system, 

including the VMPFC and sgACC.19,74–76 Furthermore, it has 

been shown that in depressed patients, the activity in the 

sgACC is positively correlated with the severity of depres-

sion in response to sad stimuli and negatively correlated in 

response to happy stimuli. At the end of the study, following 

various antidepressant treatments, patients who showed the 

greatest reduction in the activity in the sgACC in response 

to sad stimuli experienced the greatest reductions in Hamil-

ton Rating Scale for Depression scores.77 For clarity in this 

review, it should be noted that the VMPFC overlaps with the 

region referred to as the ACC, particularly the pregenual and 

sgACC parts of the ACC. Therefore, the term “VMPFC” is 

used here for the region as a whole, and the term “sgACC” 

is used in describing studies that have focused on this par-

ticular area. The involvement of the PFC, the VMPFC, and 

the sgACC in depression is further highlighted by studies 

demonstrating normalization of functional activity to levels 

observed in nondepressed subjects following successful 

therapy, including treatment with antidepressants, deep 
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brain stimulation (DBS), and vagus nerve stimulation (VNS) 

(Figure 2).

Selective serotonin reuptake inhibitors (SSRIs) fluoxetine 

and paroxetine have been shown to increase glucose metabo-

lism in the PFC, particularly the dorsolateral, ventrolateral, 

and medial aspects, parietal cortex, and the sgACC.75,78 

In addition, fluoxetine reduced glucose metabolism in the 

sgACC, hippocampus, insula, and pallidum.78 These find-

ings suggest that dysfunction in serotonin reuptake in these 

regions accounts for symptoms of depression.

In patients with TRD, VNS has been shown to improve 

symptoms of depression.79,80 Imaging studies using either 

single photon emission computed tomography or blood oxy-

gen level-dependent methods revealed that improvement in 

depression symptoms induced by VNS was associated with 

decreased activity in the sgACC, VMPFC, and ACC and 

increased activity of the superior temporal gyrus.81,82

DBS has also been shown to be useful in TRD with 

associated modulated activity of the sgACC and PFC in 

treatment-resistant patients. Mayberg et al31 investigated 

whether chronic DBS could modulate the activity of the 

sgACC over 6 months among patients with TRD, defined 

as failure to respond to a minimum of four different anti-

depressant treatments during the current major depressive 

episode lasting at least 1 year. Positron emission tomogra-

phy measures of regional blood flow at baseline identified 

increased blood flow in the sgACC and decreased blood 

flow in the PFC in depressed patients compared to healthy 

controls. After 6 months of treatment with DBS, blood flow 

in the DLPFC and VLPFC among responders increased to 

levels observed in healthy controls, while blood flow in the 

sgACC decreased to levels lower than those measured in 

healthy controls.

Taken together, the results of these studies show that 

hypoactivity in the VLPFC and DLPFC and increased activ-

ity in the VMPFC and sgACC are common findings among 

patients with depression and that reversal of activity in 

these regions to levels observed among healthy individuals 

is associated with improvement of depressive symptoms. 

Furthermore, the activity of these regions can be modulated 

not only by antidepressants in the responsive population 

but also by VNS and DBS in those who do not respond to 

pharmaceutical treatment.

Neurobiology of hedonic tone
It can be hypothesized that hedonic tone is closely related to 

mood, reward, and motivation and is modulated by LCSPT. 

Imaging studies have identified components of the LCSPT 

pathway that are involved in the regulation of hedonic tone. 

These studies have shown that the activity of various com-

ponents of the LCSPT pathway is correlated with hedonic 

tone in healthy individuals and is altered in MDD.

In healthy subjects, presentation of positive stimuli 

increases the activation of regions involved in reward pro-

cessing, including the caudate, putamen, NA, basal forebrain, 

medial frontal region, ACC, inferior parietal area, right 

fusiform, and lingual gyrus.83–85 When asked to suppress a 

positive emotion, healthy subjects show activation of the right 

VLPFC.86 These studies show that these regions are involved 

in the perception of positive and rewarding stimuli.

Several studies have shown that anhedonia alters the 

activation of these regions, as it is negatively correlated 

with the activation of the NA, basal forebrain, and the 

hypothalamus51,84,87 and positively correlated with the activity 

in the VMPFC.51 It has also been shown that subjects with 

higher anhedonia scores have a decreased NA volume and 

a decreased resting activity in the rostral sgACC.87 These 

findings suggest that anhedonia may at least partly be due 

to the insufficient activation of neural circuits that regulate 

feelings of pleasure. We propose that continued low activity 

of these circuits, particularly in depressed individuals, would 

suggest chronic low hedonic tone, an increased likelihood of 

developing anhedonia, and an increased probability of TRD. 

Furthermore, when presented with positive stimuli, patients 

with MDD show attenuated activation of the ventral stria-

tum, medial frontal cortex, and the NA83,85,88,89 and increased 

activation in the inferior frontal cortex, sgACC, thalamus, 

putamen, and the insula.85 As such, it has also been reported 

that depression is correlated with a difficulty in sustaining 

the connectivity between the NA and the DLPFC, as well as 

between the NA and the middle temporal gyrus,88,90 showing 

that depressive state is associated with an inability to activate 

regions responsible for feelings of reward.90,91

Further in support are data examining the CNS differ-

ences in activity of adult females with both ADHD and 

MDD in comparison with those with pure MDD.92 Gardner 

et al reported increased severity of depressive symptoms in 

patients with MDD + ADHD (vs MDD) in association with 

significantly enhanced activity in bilateral frontal regions 

(Brodmann areas 8, 9, 10, 32) in the “Depression + ADHD” 

subgroup compared to those in “the Depression group”. 

They also reported significantly decreased activity within the 

bilateral cerebellum in the “Depression + ADHD” subgroup, 

perhaps suggesting that chronic depression can be subtyped 

by the presence of ADHD and perhaps an associated low 

hedonic tone.92
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Furthermore, studies have also shown that the dysfunction 

in the activity and connections of these circuits observed in 

depression can be regulated by antidepressant treatment. 

After treatment with fluoxetine or venlafaxine, depressed 

patients reported increases in positive affect; interest-

ingly, those patients demonstrating the largest increases in 

positive affect also demonstrated the largest increases in 

frontal activity.88 Furthermore, depressed patients who did 

not exhibit positive emotions also showed decreased PFC 

activity, which changed with improvement in anhedonia in 

response to treatment with fluoxetine and venlafaxine.86 Thus, 

given the similarities between activation of these regions in 

response to positive experiences in healthy populations with 

anhedonia and in patients with MDD, it has been postulated 

that anhedonia, or hedonic tone, may be predictive of devel-

opment of MDD. The results of these studies demonstrate 

that depressed patients show decreased activation in the 

VMPFC and NA and increased activation in the sgACC, 

compared to healthy controls. Normalization of activity in 

these regions to levels observed among healthy individuals 

is associated with improvement of anhedonia. Thus, it has 

been postulated that patients with low hedonic tone look 

for ways to raise their hedonic tone by manipulating the 

neurobiology of the mood system.12 Studies published in 

the literature showing changes in the activation of different 

regions are summarized in Table 1.

Symptoms of low hedonic tone
Hedonic tone, also referred to as hedonic capacity or hedo-

nic responsiveness, is the trait or genetic predisposition 

underlying one’s baseline range and lifelong ability to feel 

pleasure. High hedonic tone is associated with an increased 

likelihood of experiencing happiness, whereas low hedonic 

tone manifests as an increased risk and therefore a general 

feeling of sadness.12 Low hedonic tone is suggestive of a 

reduced lifetime capacity to experience euthymia and a 

lower likelihood of experiencing pleasure at any given time. 

Thus, this results in the increased likelihood of experienc-

ing anhedonia, depression, and/or dysthymia.6,7 Individuals 

with low hedonic tone may be unable to anticipate expected 

reward, to ascertain the amount of effort required to attain the 

anticipated reward, and to engage in goal-directed behaviors 

required to attain a reward.5 In addition, it has been proposed 

that those with a low hedonic tone require higher volumes 

of positive experiences to raise their natural hedonic tone to 

a more euthymic tone, which is often accomplished through 

substance abuse or risky behaviors.12 This phenomenon is 

commonly seen in conditions of low hedonic tone and in 

particular in MDD and ADHD (Figure 1).9,12 Thus, this likely 

explains the findings reported by Gardner et al92 of differences 

in severity between those with MDD + ADHD versus pure 

MDD as well as differences in activity in the frontal regions 

and the cerebellum.

The assessment of hedonic tone is complicated by the lack 

of reliable methods for its evaluation. Currently used methods 

include the Snaith-Hamilton Pleasure Scale, the Dimensional 

Anhedonia Rating Scale, and the Scale for the Assessment of 

Negative Symptoms. Of these, the Dimensional Anhedonia 

Rating Scale has the best reliability and validity.93 However, 

currently available assessments evaluate the current state 

of hedonic tone and do not take into account its long-term 

aspects. Therefore, development of novel assessment 

methods is required in order to properly assess the life-long 

trait of hedonic tone.

Antidepressant side effects and low 
hedonic tone
Dysfunction of the neural circuits that regulate reward pro-

cessing and motivation has also been implicated in the poor 

effectiveness of SSRIs used to treat anxiety and depression 

in patients with low hedonic tone.94 Patients undergoing 

SSRI treatment frequently report having low energy levels 

and emotional blunting,95 and symptoms of low hedonic tone 

often persist during SSRI treatment even if other clinical 

symptoms have been alleviated.96 For example, it has also 

been demonstrated that citalopram, a commonly used SSRI, 

diminishes the neural activation of the striatum to both aver-

sive and rewarding stimuli, suggesting that efficacy of SSRIs 

may be blunted due to their effects on reward processing.94 

This blunting may be related to the inhibitory effects of sero-

tonin on dopamine and noradrenaline through the activity of 

serotonin on the serotonin 2
C
 and 2

A
 receptors, respectively.97 

This may well explain the commonly understood side effect 

of SSRI-induced emotional numbing98 or indifference99 as 

well as what has been described as an amotivational frontal 

lobe syndrome, which is accompanied by apathy and lack 

of motivation, as well as in some cases behavioral disinhi-

bition (all of which were symptoms that were dose related 

and reversible).100

Thus, this would suggest a specific differential ben-

eficial role for norephinephrine reuptake inhibitors, 

serotonin–norephinephrine reuptake inhibitors, and stimu-

lants in patients who suffer with SSRI-induced flat affect to 

directly elevate the extracellular DA and NA in areas such 

as the VMPFC and DLPFC.101–104 Furthermore, this would 

suggest a unique sensitivity to this side effect in those already 
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having pretreatment lower catecholaminergic modulation of 

the PFC and potential higher risk of low hedonic tone.95

This relationship between lowered noradrenergic and 

dopaminergic activity and depression has been supported 

most recently by Harmer et al105 who reported that acute 

administration of a catecholaminergic acting antidepressant 

could increase positive affective processing. The authors 

reported that depressed patients receiving placebo showed 

reduced, 1) recognition of positive facial expressions, 

2) decreased speed in responding to positive self-relevant 

personality adjectives, and 3) reduced memory for this 

positive information in comparison with healthy volunteers 

receiving placebo.105 They then reported that this effect was 

reversed in depressed patients who received a single dose 

of reboxetine, which as a noradrenergic reuptake inhibitor 

raises synaptic catecholaminergic levels.105 Interestingly, 

these effects were noted prior to changes in subjective rat-

ings of mood or anxiety. Thus, the authors concluded that 

Table 1 Summary of studies published in the literature showing changes in the activation of different regions

Study Experimental groups Experimental 
treatment

Effects

Epstein et al83 Healthy controls and MDD 
patients

Presentation of positive 
and negative words

•	 Diminished activation of ventral striatum in response to 
positive stimuli

•	 Diminished activation of DMPFC in response to 
positive stimuli

Admon et al133 Healthy controls and MDD 
patients

Monetary incentive delay 
task

•	 Decreased caudate–dACC connectivity in response to 
reward

Gabbay et al90 Healthy controls (adolescents) 
and MDD patients

N/A •	 Increased striatum–DMPFC and ventral caudate–ACC 
connectivity

•	 ACC, supplementary motor area, and supramarginal 
gyrus connectivity associated with anhedonia severity

Heller et al91 Healthy controls and MDD 
patients

Emotion regulation task •	 MDD patients were unable to sustain the activity in the 
NA in response to positive emotions

•	 MDD patients have reduced PFC activity
Mitterschiffthaler et al85 Healthy controls and MDD 

patients with anhedonia
Presentation of positive 
images

•	 Decreased activation in the medial frontal cortex
•	 Increased activation in the inferior frontal cortex, ACC, 

thalamus, putamen, and insula in response to positive 
stimuli

Light et al86 Healthy controls, MDD patients, 
and MDD patients treated with 
venlafaxine-ER or fluoxetine

Emotion regulation task •	 MDD patients had a diminished ability to inhibit the 
reduction in the VLPFC activity during suppression 
of positive emotions

•	 Lowest VLPFC activity during suppression of positive 
emotions correlated with greatest reduction in 
anhedonia due to treatment

Harvey et al51 Healthy controls with various 
degrees of anhedonia

Presentation of positive 
stimuli

•	 Anhedonia inversely related to anterior caudate volume
•	 Positively related to VMPFC activity

Keller et al84 Healthy controls with various 
degrees of anhedonia

Presentation of musical 
stimuli

•	 Anhedonia negatively correlated with activation of 
NA, basal forebrain, hypothalamus, anterior insula, and 
orbitofrontal cortex

•	 Anhedonia negatively correlated with the connectivity 
between NA, VTA, and paralimbic areas

Pizzagalli et al89 Healthy controls and MDD 
patients with anhedonia

Monetary incentive delay 
task

•	 MDD patients had weaker responses to monetary gains 
in the NA and the caudate

•	 Severity of anhedonia and MDD associated with a 
reduced caudate volume

Wacker et al87 Healthy controls with anhedonia Monetary incentive delay 
task

•	 Anhedonia correlated with reduced NA activation in 
response to reward

•	 Anhedonia correlated with reduced NA volume, 
increased resting activity in the rostral ACC

Keedwell et al11 MDD patients with varying 
degrees of anhedonia

Presentation of happy 
and sad emotional stimuli

•	 Anhedonia positively correlated with VMPFC activity
•	 Anhedonia negatively correlated with amygdala and 

ventral striatum activity

Abbreviations: MDD, major depressive disorder; DMPFC, dorsomedial prefrontal cortex; dACC, dorsal anterior cingulate cortex; N/A, not applicable; ACC, 
anterior cingulate cortex; NA, nucleus accumbens; ER, extended release; VLPFC, ventrolateral prefrontal cortex; VMPFC, ventromedial prefrontal cortex; VTA, ventral 
tegmental area.
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catecholaminergic enhancing antidepressant drug administra-

tion modulates emotional processing in depressed patients 

very early in treatment.105 In fact, this effect happens even 

before changes occur in mood symptoms, resulting in the 

amelioration of the negative biases in information processing 

that characterize the mood disorders.105

Hedonic tone and mood disorders
Low hedonic tone is a characteristic feature of several 

psychopathologies, including MDD, substance use, and 

schizophrenia,8,9 although variations in hedonic tone can also 

be observed in healthy individuals.10 All these disorders are 

characterized by changes in reward processing, and altered 

monoamine signaling has been implicated as their underlying 

mechanism. These observations raise the possibility that 

low hedonic tone can be used to predict subtypes of these 

disorders as well as their comorbidities. While the possibility 

that low hedonic tone may predict other subtypes of MDD 

cannot be eliminated, this review focuses on TRD, as well 

as depression comorbid with ADHD and substance abuse as 

representative MDD subtypes that share low hedonic tone 

as their feature.

Dysfunctional reward processing in MDD has been well 

characterized,106 with depression having been shown to affect 

various aspects of reward processing, such as evaluating the 

value of rewards and motivation to obtain a reward. Pizzagalli 

et al107 have shown that depressed patients have a reduced 

capacity to integrate reinforcement over time and to respond 

to more frequently rewarded cues. Similar observations were 

reported by studies in those with history of depression.108,109 

Depressed patients are also less able to assess the value of the 

reward and exhibit a dissociation between perceived effort 

required to obtain a reward and reward value, suggesting 

that low hedonic tone in depression manifests as an impaired 

ability to modify behavior in response to a reward.106 Taken 

together, these findings suggest that in depressed patients, 

low hedonic tone and anhedonia are associated with an 

altered ability to feel pleasure and a reduced motivation for 

goal-directed behaviors (Figure 1).

Anhedonia has also been shown to be a predictor of 

TRD.110,111 In addition, DBS of the regions hypoactive in indi-

viduals with low hedonic tone, such as the NA,112 the PFC,113 

and the sgACC,78 has been shown to improve symptoms in 

TRD. These observations raise the possibility that hedonic 

tone can be used as a tool to predict treatment outcomes and 

select best treatments for MDD.

In ADHD, low hedonic tone is manifested as an altered 

sensitivity to reinforcement.12 Children with ADHD have been 

reported to respond only to immediate rewards but not when 

the rewards are delayed and therefore only exhibit condition-

ing to immediate rewards.114 It has also been reported that 

children with ADHD have an increased sensitivity to rewards 

and therefore suffer from a heightened frustration when the 

reward is not presented.115 Yet another theory, proposed by 

Quay,116,117 is that children with ADHD are less responsive 

to punishment or nonreward. Although these studies report 

different manifestations of reduced hedonic tone in ADHD, 

the common finding is that ADHD is associated with altered 

feelings of pleasure. These behavioral features of ADHD 

are paralleled by changes in the neural pathways that regu-

late reward and motivation. A meta-analysis published by 

Dickstein et al118 found significant hypoactivity in several 

frontal regions in individuals with ADHD compared with 

control subjects, specifically the orbitofrontal cortices, 

inferior prefrontal, dorsolateral prefrontal, and the anterior 

cingulate. In addition, hypoactivity was detected in related 

regions, such as areas of the thalamus, basal ganglia, and 

parietal cortices.109 The meta-analysis also determined that 

some areas (eg, hypoactivated areas of the frontal and parietal 

regions) showed hyperactivation in individuals with ADHD. 

While this may suggest a compensatory mechanism, it has 

been postulated that this pattern may reflect “invasion” in 

areas where activation would be expected to diminish dur-

ing a cognitive task.119 Furthermore, highly correlated brain 

activity can be seen during rest and a reduction in activa-

tion throughout tasks that require attention. Others have 

suggested that the performance deficit in individuals with 

ADHD may be related to the persistence of spontaneous 

and low-frequency activation of the default-mode network, 

which compete with task-specific processing.120

Alterations in the reward circuitry are also observed in 

substance abuse, and addictive substances are known to 

alter hedonic tone.121 As dependence on a given substance 

develops, an increasing dose of that substance is needed 

to elicit the same pleasurable effect. For example, heroin 

addicts often report that after being addicted for some time, 

they no longer administer the drug to get high, but simply to 

“get straight”, meaning that the goal of the drug is to return 

their baseline hedonic tone back toward normal levels.121 

In addition, low hedonic tone is considered to be one of the 

risk factors for substance abuse, since many addictive sub-

stances, including prescription painkillers, work by raising 

the hedonic tone.121 In adolescents, increased attentional 

processing of pleasant stimuli has been shown to increase 

the likelihood of alcohol use later in life.122 Anhedonia is 

also positively correlated with drug cravings in detoxified 
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alcohol- and opioid-dependent users123 and smokers.124,125 

Positron emission tomography studies have shown that alco-

hol intake induces dopamine release in the ventral striatum 

of human subjects,126,127 suggesting that alcohol use alters 

the function on dopaminergic reward pathways. It has also 

been shown that reduced VLPFC activation, during shifting 

in the probabilistic reversal learning task, may be a marker 

of cocaine addiction and pathological gambling.128 This find-

ing further supports the notion that drug abuse is associated 

with alterations in reward processing, which underlie low 

hedonic tone.

In addition to sharing low hedonic tone as a key feature, 

MDD, ADHD, and substance abuse also share a dysfunction 

in monoamine signaling, particularly in the ventral striatum. 

Neurotransmitter studies have revealed abnormalities in 

DA and NE signaling in both MDD and ADHD, suggesting 

a potentially shared underlying pathophysiology, at least 

in some individuals.129–132 Imaging studies have reported 

decreased striatal activation in depressed patients.106 More 

specifically, depressed patients display a stronger striatal–

ACC connectivity in response to negative stimuli, but a 

weaker connectivity of the same pathway in response to 

positive stimuli.133 Support for the dopaminergic theory of 

ADHD, which states that ADHD results from DA deficits and 

therefore lowered activity in the frontal cortex and striatum,134 

comes from a variety of pharmacological and imaging studies 

that have revealed hypoperfusion and lowered activations in 

those areas.135–138 Interestingly, with treatment with meth-

ylphenidate, normalization of the hypoperfusion of prefrontal 

areas is associated with the corresponding improvement in 

ADHD symptoms.135,139–142

Furthermore, the ability of methylphenidate to elevate 

DA levels in the ventral striatum is attenuated in alcoholics, 

suggesting that DA plays a role in the alterations in reward 

pathways in alcoholism.143 It has also been shown that the 

severity of anhedonia is negatively correlated with the ventral 

striatal activity and volume.11,51,95,144 Observations that dys-

function of this circuitry is also shared by MDD, ADHD, and 

substance abuse further support the idea that hedonic tone is 

the common link between MDD, ADHD, and depression.

Given that MDD, ADHD, and substance abuse share 

the characteristic of low hedonic tone and underlying neu-

robiology, it is not surprising that these disorders also have 

high levels of comorbidities. For example, most individuals 

with depression experience psychiatric comorbidity, accord-

ing to the National Comorbidity Survey Replication.145,146 

It has been reported that depression occurs in 9%–50% of 

patients with ADHD,147 and STAR*D study has reported 

that approximately a third of patients with MDD also have a 

substance use disorder. When MDD is comorbid with ADHD, 

it is associated with a much more severe course, an earlier 

age of illness onset, more complex psychiatric comorbidities, 

decreased quality of life, greater burden of illness, greater 

illness complexity, lower social functioning, lower work 

productivity, and lower employment rates than patients with 

MDD alone.148,149 As well, individuals with MDD and ADHD 

experience higher levels of substance use and psychosocial 

impairment than each disorder in isolation,150–153 suggesting 

a potential variant of MDD, and therefore explaining the 

treatment resistance in this population when treated with 

traditional SSRIs. Among respondents with ADHD, there 

is significant comorbidity with a wide range of Diagnostic 

and Statistical Manual of Mental Disorders, fourth edition 

disorders, with odds ratios of 2.7–7.5 for mood disorders, 

1.5–5.5 for anxiety disorders, 1.5–7.9 for substance use 

disorders, and 3.7 for intermittent explosive disorder.145 

Sternat et al reported that in patients referred to a tertiary 

care center, 32.5% of TRD met criteria for ADHD.154 Fur-

thermore, the best predictors of comorbid ADHD with TRD 

were the number of SSRIs and less specifically the number 

of antidepressants that the patient had failed.

Thus, it has been proposed that low hedonic tone is a 

predictor of comorbidities of various mood disorders.12 

Neuroimaging studies have identified morphological and 

functional features common to both MDD and ADHD, 

including decreased brain volumes and altered activity of 

frontal lobe structures (and specifically the DLPFC and 

ACC), areas that are associated with attention regulation, 

behavior selection, and emotion155,156 and significantly wors-

ened outcome. In ADHD, other than hyperactivity and inat-

tention, impulsivity is one of the most prevalent diagnostic 

symptoms. Impulse control has been associated with prefron-

tal functioning, specifically in the DLPFC, VMPFC, VLPFC, 

inferior frontal gyrus, the rostral and dorsal ACC, and the 

insula.157–159 Dysregulation in these regions is associated 

with the impulsivity observed in patients with ADHD and 

overlaps with the dysregulation observed among depressed 

individuals, as well as individuals with substance abuse dis-

orders. Interestingly, altered activity of these regions is also 

observed in people with low hedonic tone, suggesting that 

low hedonic tone may be a behavioral manifestation of dys-

regulation of these circuits and consequent mood disorders. 

Thus, these patient populations share low hedonic tone as a 

common endophenotype, which may lead to dysthymia and 

double depression. Furthermore, studies investigating the 

role of monoamines in these disorders point to a key role 
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for DA dysfunction in the pathophysiology of ADHD and 

its comorbidities, including MDD. With evidence pointing 

to dysfunctional neuromodulation of the DLPFC in relation 

to executive dysfunction in ADHD,160–164 it is not too much  

of a stretch to consider low hedonic tone as an affective 

correlate in ADHD explaining the lack of responsiveness to 

SSRIs in depression. Low dopaminergic activity has been 

reported in patients with MDD and ADHD, as well as those 

with low hedonic tone.134,165 Furthermore, SSRI treatment is 

commonly associated with symptoms of low hedonic tone, 

even in the absence of other MDD symptoms.67,96 Taken 

together, these observations suggest that low hedonic tone 

results from reduced baseline catecholaminergic activity in 

the regions involved in reward processing and executive 

functions, which may also be a predictive factor of resistance 

to SSRI treatment as well as a predictor of comorbidity of 

various disorders. In support of this suggestion, it has been 

reported in both the STAR*D and GENDEP studies that 

the percent reduction on the primary outcome scale over 

12 weeks of treatment was best predicted by loss of interest 

and diminished activity (perhaps proxy measures for low 

hedonic tone) even after adjustment for overall depression 

severity and other clinical covariates such as age, sex, and 

center differences.166

Conclusion
Low hedonic tone is characterized by a dysfunction of neural 

circuits that regulate motivation and reward processing and 

is a common feature of MDD, ADHD, and substance abuse. 

Anhedonic, depressed patients consistently show decreased 

prefrontal activity and increased activity in the VMPFC and 

sgACC. These patients with low hedonic tone attempt to cope 

with their depression and enter into a euthymic state by rais-

ing their hedonic tone, thus achieving a shift toward a more 

neutral hedonic tone, and therefore a rise in their mood. In the 

absence of antidepressant therapy, or in TRD where altered 

activity in these regions cannot be normalized with phar-

macologic therapy, patients will often choose ways to self-

medicate, often through substance abuse, in order to modify 

the neurobiology of the mood system to correct their chronic 

low hedonic tone. Similarly, patients with ADHD share a 

similar functional dysregulation in the frontal cortex and 

similar abnormalities in DA and NE signaling. Perhaps, this 

explains the high comorbidity between MDD and ADHD. If 

one imagines then that the presence of anomalous activity of 

the PFC and the cingulate gyrus is a function of a chronic dis-

turbance in catecholaminergic innervation (and specifically 

lower dopaminergic and noradrenergic  tone),167,168 then 

activities that raise dopaminergic and noradrenergic tone, 

such as substance abuse, would be favored by patients suf-

fering with this neurobiology.

Since low hedonic tone is a shared feature of these 

disorders, evaluation of hedonic tone may become a diag-

nostic feature used to predict subtypes of MDD, such as 

TRD, as well as comorbidities of MDD with ADHD and 

substance abuse.
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