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Abstract: Hypervalent iodine reagents have been vastly applied in many significant oxidative 

reactions. This surging interest in iodine reagents is mainly due to the very useful oxidizing 

properties, combined with their benign environmental character and commercial availability. In 

this review, we focus on the representative transformations that used the common hypervalent 

iodine reagents as oxidants in heterocycle synthesis and functionalizations, based on the type 

of the hypervalent iodine reagents.
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Introduction
The 1990s witnessed rapid development of hypervalent iodine chemistry. The 

intense interest is mainly due to the remarkable oxidizing properties of hyper-

valent iodine reagents and their attractive features such as easy to handle, low 

toxicity, availability of supply, and environmental benignity.1–20 Two of their most 

important synthetic applications are in the constructions of heterocyclic skeletons 

and functionalization of heterocycles, such as three- to seven-membered rings 

and spiro compounds, under metal-free reaction conditions. Some representative 

transformations have been shown in Figure 1. In this review, we summarize, with 

representative examples, the reactions involving various hypervalent iodine (III) 

and (IV) reagents used as oxidants for the syntheses and functionalization of het-

erocyclic compounds. The organization of the presentation is based on the type of 

the hypervalent iodine reagents.

Hypervalent iodine (III) reagents
The common classification of hypervalent iodine (III) reagents is according to the 

type of ligands attached to the iodine atom, as shown in Figure 2.10,16 These broadly 

applied hypervalent iodine (III) reagents, namely, iodosylarenes 1, (dichloroiodo)

arenes 2a and (difluoroiodo)arenes 2b, [bis(acyloxy)iodo]arenes 3, [hydroxy(tosyloxy)

iodo]benzene 4 (Koser’s reagent), iodonium salts 5, iodonium ylides and iodonium 

imides, and the benziodoxole-based hypervalent iodine reagents 6 and 7 (Togni’s 

reagents), have been found to be powerful and effective oxidants for the synthesis 

of heterocycles and for facilitating functionalization of heterocyclic compounds via 

atom transfer reactions.
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Figure 1 Representative reactions involving hypervalent iodine reagents.
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Figure 2 Representative hypervalent iodine (III) reagents.
Abbreviations: PhIO, iodosobenzene; PIDA, phenyliodine diacetate; PIFA, 
phenyliodine bis(trifluoroacetate); HTIB, [hydroxy(tosyloxy)iodo]benzene.
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B

A

A

A

Figure 3 (A) PhIO-mediated construction of thiaozles, imidazoles, and 
imidazo[1,2-a]pyridines. (B) Proposed mechanism of the oxidation reaction in step I.
Abbreviations: PhIO, iodosobenzene; eq., equivalent; h, hours.

Iodosylarenes
An important synthetic application of iodosobenzene (PhIO) 

is promoting oxidative annulation during the construction of 

heterocyclic framework. For example, Ueno et al21 reported a 

direct preparation of heteroaromatic compounds of imidaz-

oles 9a, thiaozles 9b, and imidazo[1,2-a]pyridines 10 through 

reactions of alcohol substrates 8 with PhIO catalyzed by 

p-toluenesulfonic acid monohydrate and followed by further 

reactions with thioamide, benzamidine, and 2-aminopyridine, 

respectively, under basic conditions (Figure 3).

In 2010, Fan et al22 described a PhIO-mediated synthe-

sis of the three-membered N-benzoyl aziridines 12 and the 

five-membered oxazolines 13 through an intramolecular 

oxidative cyclization of substrates 11 in the presence of 

catalytic amount of tetra-butylammonium iodide (Figure 

4A-a). Similar conditions were applied to the synthesis of 

the four-membered oxetanes 15 and azetidines 17 from sub-

strates 14 and 16, respectively (Figure 4A-b and -c).23,24 The 

proposed mechanism has been shown in Figure 4B.

In addition, PhIO can also be used as an efficient oxidant 

for the functionalization of heterocycles. For example, five- 

or six-membered lactams 19 could be obtained in moderate 

yields through the oxidation of cyclic amines 18 with PhIO 

using H
2
O as solvent (Figure 5).25

Moriarty et al26 reported the oxidation of trimethylsi-

lyl ketene acetals of lactones 20 in methanol, mediated 

by PhIO, to afford the corresponding α-methoxylated 

carbonyl compounds 21 in good yields (Figure 6). They 

also found that reaction of dihydropyran 22 with PhIO in 

H
2
O could afford tetrahydro-2-furaldehyde 23 via carbo-

cationic ring contraction (Figure 7). Under the same con-

ditions, cyclohexene and styrene were converted into the 

corresponding aldehyde products through rearrangement 

oxidations.27
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B

Figure 4 (A) (a) PhIO-mediated synthesis of three-membered ring 12 and five-membered ring 13. (b) PhIO-mediated synthesis of oxetane 15. (c) PhIO-mediated synthesis 
of azetidine 17 (B) Proposed mechanism of (a) and (c).
Abbreviations: PhIO, iodosobenzene; eq., equivalent; TBAI, tetra-butylammonium iodide; THF, tetrahydrofuran; rt, room temperature; h, hours.

In the presence of PhIO and I
2
, N- or O-centered radicals 

could be generated, respectively, from amides or alcohols.28–30 

In 2000, Francisco et al reported the synthesis of homochiral 

7-oxa-2-azabicyclo[2.2.1]heptane ring system 28 from specifi-

cally protected phosphoramidate derivatives of carbohydrates 

24 under the conditions mentioned earlier. Mechanistic studies 

demonstrated a reaction path involving a hemolytic fragmenta-

tion of a hypothetical iodoamide intermediate 26 (Figure 8).30

It is worth noting that the applications of PhIO can 

be significantly restricted in nonpolar solvents due to low 
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Figure 5 PhIO-mediated functionalization of cyclic amines.
Abbreviations: PhIO, iodosobenzene; rt, room temperature; h, hours.

Figure 6 PhIO-mediated oxidation affording α-methoxylated carbonyl compounds.
Abbreviation: PhIO, iodosobenzene.

Figure 7 PhIO-mediated oxidation of dihydropyran.
Abbreviation: PhIO, iodosobenzene.

Figure 8 Synthesis of the homochiral 7-oxa-2-azabicyclo[2.2.1]heptane ring system.
Abbreviations: PhIO, iodosobenzene; IHA, intramolecular hydrogen abstraction reaction.

Figure 9 PhIO-mediated conversion of proline into 2-pyrrolidone in nonpolar 
solvent.
Abbreviations: PhIO, iodosobenzene, rt, room temperature; d, days.

solubility. Therefore, the majority of the known reactions 

occurs in polar solvents and are catalyzed by a Lewis acid 

or a transition metal catalyst, with only a few cases reported 

to be in a nonpolar solvent or without the involvement of a 

catalyst. One of the rare examples is the formation of lactams 

30 in CHCl
3
 from the cyclic amino acids 29 via initial imine 

formation followed by oxidative decarboxylation (Figure 9).31

(Difluoroiodo)arenes
As fluorinating reagents, (difluoroiodo)arenes (ArIF

2
) have 

found many synthetic applications for the syntheses of 

biologically and pharmaceutically interesting F-containing 

heterocyclic compounds.32,33 In 1991, Caddick et al32 reported 

the reaction of 1-(arylthio)glycosides 31 with TolIF
2
, which 

afforded various 1-fluoroglycosides 32 in moderate-to-good 

yields (Figure 10).

Upon treating the iodoaldyl substituted four-, five-, and 

six-membered cyclic ethers 33–35 with TolIF
2
, the five-, six-, 

and seven-membered cyclic ethers 36–38 were stereoselec-

tively synthesized in moderate-to-good yields (Figure 11).34

Dichloroiodoarene
(Dichloroiodo)arenes (ArICl

2
) have been used as chlorinating 

reagents to carry out modification of various heterocyclic 

compounds. For example, reaction of N-protected pyrrolidine 

39 with 4-nitrobenzeneiododichloride afforded α-hydroxy-

β,β-dichloropyrrolidine 40 as the main product via a compli-

cated ionic mechanism involving a C(sp3)–H bond activation 

process (Figure 12). This oxidation gave an α,β,β-oxidation 

pattern relative to the nitrogen of the heterocycle.35

An effective system consisting of a combination of PhICl
2
 

and Pb(SCN)
2
 was developed by Prakash et al36 for convenient 

thiocyanation of various enol silyl ethers 41 (Figure 13).

Recently, Hepples et al37 reported a Lewis base-catalyzed 

chlorination method for the diazocarbonyl compound 43a 

and isatin-3-hydrazone 43b by using PhICl
2
, both of which 

led to the same product 44 (Figure 14).

The common feature of these reactions is the transfer of 

the two chlorine ligands from PhICl
2
 in a germinal fashion 

rather than vicinal.37,38

In 2014, He et al39 reported a method for the direct syn-

thesis of oxazolidin-2-ones 46 and imidazolidin-2-ones 48 

from 1,3-diols 45 and 3-amino alcohols 47 using combined 

PhICl
2
 and NaN

3
 (Figure 15).

[Bis(acyloxy)iodo]arenes
[Bis(acyloxy)iodo]arenes (ArI(OCOR)

2
), notably the easily 

prepared and commercially available phenyliodine diacetate 

(PIDA) and phenyliodine bis(trifluoroacetate) (PIFA), have 

been widely used as oxidizing reagents in various syntheses 

of heterocycles. In this review, the applications of PIDA 

and PIFA are presented based on the type of heterocycles 

obtained.
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Figure 10 Synthesis of various 1-fluoroglycosides with TolIF2.
Abbreviations: rt, room temperature; DCM, dichloromethane.

Figure 11 Ring-expansion reactions induced by TolIF2.
Abbreviations: eq., equivalent; rt, room temperature; h, hour; DCM, dichloromethane.

Figure 12 Synthesis of α-hydroxy-β,β-dichloropyrrolidine with 4-NO2PhICl2.
Abbreviation: eq., equivalent.

Figure 13 PhICl2/Pb(SCN)2-mediated thiocyanation of enol silyl ethers leading to 
lactone 42.
Abbreviations: rt, room temperature; DCM, dichloromethane.

A

B

Figure 15 (A) Direct synthesis of oxazolidin-2-ones and imidazolidin-2-ones using 
PhICl2 and NaN3. (B) Proposed mechanism.
Abbreviations: eq., equivalent; h, hours.

Figure 14 Lewis base-catalyzed chlorination facilitated by PhICl2.
Abbreviations: eq., equivalent; rt, room temperature; min, minutes; DCM, 
dichloromethane.
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Figure 16 PIDA-mediated synthesis of 2H-azirine derivatives from enamines.
Abbreviations: PIDA, phenyliodine diacetate; rt, room temperature; DCE, 
1,2-dichloroethane.

Figure 17 PIFA-mediated synthesis of polysubstituted pyrroles 52.
Abbreviation: PIFA, phenyliodine bis(trifluoroacetate).

A

B

Figure 18 (A) I (III)-mediated synthesis of indoles from enamines 53. (B) I (III)-
mediated synthesis of indoles from enamines 55.
Abbreviations: PIDA, phenyliodine diacetate; PIFA, phenyliodine bis(trifluoroacetate); 
rt, room temperature; DCM, dichloromethane; DCE, 1,2-dichloroethane.

A

B

Figure 19 (A) PIDA-mediated synthesis of imidazoles via condensation of 
α-hydroxy ketones with aldehydes and NH4OAc. (B) Proposed mechanism.
Abbreviations: PIDA, phenyliodine diacetate; min, minutes.

Three-membered heterocyclic products
In 2009, our group reported the synthesis of the smallest 

unsaturated N-containing heterocycle, namely, 2H-azirine 

50, via PIDA-mediated intramolecular oxidative azirination 

of the substituted enamine derivatives 49 under mild condi-

tions (Figure 16).40 A similar strategy was later applied to the 

one-pot synthesis of isoxazoles from enaminones.41

Five-membered heterocyclic compounds
Pyrrole
Mediated by PIFA, the synthesis of polysubstituted pyr-

roles 52 was achieved via a tandem dimerization/cyclocon-

densation of enaminones 51 (Figure 17).42 Asymmetrical 

polysubstituted pyrroles were obtained from enamine 

esters or ketones mediated by PIDA in the presence of 

BF
3
·Et

2
O.43

Indole
In 2006, the syntheses of N-arylated and N-alkylated 

indoles 54 from enamine derivatives 53 were realized 

through a PIFA-mediated intramolecular oxidative 

C(sp2)–N bond formation (Figure 18A).44 The same strat-

egy was also applied to the synthesis of carbazolones 

via PIFA-mediated intramolecular cyclization of 2-aryl 

enaminones.45 In 2009, a variety of functionalized indoles 

56 were synthesized from N-aryl enamines 55 via PIDA-

mediated oxidative C(sp2)–C(sp2) involving no transition 

metals (Figure 18B).46

Azole
In 2007, Das et al47 reported the condensation of α-hydroxy 

ketones 57 with aldehydes and ammonium acetate by 

using PIDA as the sole oxidant. The reaction furnished the 

cyclized imidazole product 58 through an oxidative C(sp2)–N 

bond formation (Figure 19). Various 2-arylbenzimidazoles 

and benzimidazoles were later synthesized adopting the same 

methodology.48

In 1996, Kotali49 realized the synthesis of aminoindazole 

derivatives 60 from the o-aminoaryl ketone acylhydrazones 

59 via PIDA-mediated N–N bond formation (Figure 20).

In 2012, intramolecular oxidative C–O coupling of 

N-(4-alkoxy-phenyl) and N-(4-acetamido-phenyl) benza-

mides was found to afford the benzoxazole products in high 

yields under metal-free conditions by using PIFA as an 

oxidant and TMSOTf as a catalyst (Figure 21).50
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Figure 20 PIDA-mediated synthesis of aminoindazole derivatives.
Abbreviation: PIDA, phenyliodine diacetate.

Figure 21 PIFA/TMSOTf-mediated synthesis of benzoxazole derivatives.
Abbreviations: PIFA, phenyliodine bis(trifluoroacetate); rt, room temperature; 
TMSOTf, trimethylsilyl trifluoromethanesulfonate.

A

B

Figure 22 (A) PIFA-mediated synthesis of 2-trifluoromethyl oxazole derivatives. (B) Proposed mechanism.
Abbreviation: PIFA, phenyliodine bis(trifluoroacetate); DCE, 1,2-dichloroethane.

Upon treating β-monosubstituted enamines 63 with 

PIFA, an intermolecular cross-coupling occurred and was 

succeeded by condensation to provide the 4,5-disubstituted 

2-(trifluoromethyl)oxazoles 64 (Figure 22).51 In this approach, 

the trifluoromethyl moiety in one of the PIFA ligands was 

incorporated into the final products at the C2 position.

In 2010, Saito et al52 reported the oxidative cycloisomer-

ization of propargylamide derivatives 65, mediated by PIDA 

in AcOH or AcOH-HFIP and affording the corresponding 

2,5-disubstituted oxazoles 66 (Figure 23).

Treating anthranilamides 67a or salicylamides 67b 

with PIDA in the presence of potassium hydroxide, the 

2-benzimidazolones 68a and 2-benzoxazolones 68b were, 

respectively, obtained in good yields (Figure 24). The pos-

tulated mechanistic pathway suggested an initial Hofmann-

type rearrangement followed by a sequential intramolecular 

cyclization of the intermediate isocyanate.53

In 2008, PIFA-mediated intramolecular cyclization of 

the thiobenzamides 69 resulting in the benzothiazoles 70 via 

reactive intermediates of aryl radical cations was described 

(Figure 25A).54 Later on, Kumar et al55 applied the polymer-

supported PIDA to construct the benzothiazoles 73 from the 

corresponding o-amino benzenethiol components 71 and 

aldehydes 72 (Figure 25B).

Lactone
In 2007, Dohi et al56 developed a direct construction of the 

biologically important aryl lactone 76 from carboxylic acid 

74 using combined PIDA and KBr (Figure 26). The aryl 

group in the substrate was understood to be indispensable 

due to the benzyl radical intermediate 75 as suggested by the 

mechanism. The aryl lactone product 76 was achieved via 

hydrogen abstraction and then cyclization.

Spiro heterocycles and bisindolines
In 2012, Wang et al57 reported a PIFA-mediated synthesis 

of spirooxindoles 78 from anilide derivatives 77 bearing an 

appropriate α-arylaminocarbonyl group (Figure 27). These 

processes feature a metal-free oxidative C(sp2)–C(sp3) bond 

formation, followed by oxidative spirocyclization.
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Figure 23 PIDA-mediated synthesis of 2,5-disubstituted oxazoles in AcOH or 
AcOH-HFIP.
Abbreviations: PIDA, phenyliodine diacetate; rt, room temperature.

Figure 24 PIDA/KOH-mediated synthesis of 2-benzimidazolones and 
2-benzoxazolones.
Abbreviation: PIDA, phenyliodine diacetate.

A

B

Figure 25 (A) PIFA-mediated intramolecular synthesis of benzothiazoles. (B) PIDA- 
mediated intermolecular synthesis of benzothiazoles.
Abbreviations: PIDA, phenyliodine diacetate; PIFA, phenyliodine bis(trifluoroacetate); 
PS, polymer-supported.

Figure 26 PIDA/KBr-mediated synthesis of aryl lactones.
Abbreviation: PIDA, phenyliodine diacetate.

Recently, Zhang et al58 reported a PIFA-mediated cascade 

annulation of internal alkyne 79, affording the spiro hetero-

cycle 80 (Figure 28). This process encompasses not only two 

sequential C–N/C–O bond formations but also the insertion 

of a carbonyl oxygen, all in one pot.

In 2014, Kim et al59 realized a cascade intramolecular 

oxidative diamination of olefins 81 by using PIDA as an 

oxidant and a halide as an additive, leading to the synthesis 

of a variety of bisindolines 82 (Figure 29).

Six- and seven-membered heterocycles
A PIFA-mediated oxidative C(sp2)–C(sp2) bond formation 

between two aryl rings was reported by Kita et al.60 Later, 

this oxidative coupling strategy was widely applied to the 

conversion of various biaryl substrates tethered by a relatively 

labile linker attached to the heterocycles, such as a silaketale, 

sulfide, sulfoxide, sulfone, or dibenzylether.61–63 For example, 

Moreno et al64 described an efficient synthesis of benzo[c]

phenanthridine 84 and phenanthridinone 86 from properly 

substituted benzylnaphthylamine 83 and naphthylbenzamide 

85, respectively, through a PIFA-mediated intramolecular 

oxidative C–C bond formation between the two electron-rich 

phenyl rings (Figure 30).

Liu et al65 reported the syntheses of a variety of 

3-arylquinolin-2-one compounds 88 from the N-methyl-N-

phenylcinnamamides 87. The reactions involved an exclusive 

1,2-aryl migration along with a metal-free oxidative C–C 

bond formation, mediated by PIFA in the presence of a Lewis 

acid (Figure 31).65

In 2001, Arisawa et al66 reported a PIFA-mediated direct 

intramolecular cyclization of α-(aryl)alkyl-β-dicarbonyl 

compounds 89 leading to the spirobenzannulated products 

90. Both meta- and para-substituted phenol ether derivatives 

containing cyclic or acyclic 1,3-dicarbonyl moieties on the side 

chain underwent the annulation in a facile manner (Figure 32).

In 1990, Kikugawa and Kawase67 reported an intramo-

lecular oxidative C(sp2)–N bond formation in substrates 91, 

which contained a methoxyamide side chain on the aromatic 

ring, to give the N-aryl-N-methoxyamides 92 (Figure 33) via 

a nitrenium ion intermediate. This oxidative amidation pro-

tocol was later applied in many explorations of novel means 

to construct heterocyclic framework.68–70

Starting from N-methoxybenzamide 93 and alkyne 94, 

Misu and Togo71 developed a straightforward synthesis of 

isoquinolones 95 using PIDA generated in situ through an 

intermolecular organocatalytic annulation (Figure 34).

The indenocarboxamides 96 could be converted to 

the fused indeno-1,4-diazepinones 97 through intramo-

lecular oxidative C–N bond formations mediated by PIFA 

(Figure 35).72 Moreover, various PIFA-promoted intramolecu-

lar amidation reactions have been developed for the formation 

of five-, six-, and seven-membered heterocycles.72–75

In 2014, Zhao and Du described a PIDA-mediated oxida-

tive coupling of the two aryl groups in either 2-acylamino-

N-phenylbenzamides 98 or 2-hydroxy-N-phenylbenzamides 
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A

B

Figure 27 (A) Metal-free synthesis of spirooxindoles via PIFA-mediated cascade oxidation. (B) Proposed mechanism.
Abbreviations: PIFA, phenyliodine bis(trifluoroacetate); rt, room temperature; TFE, 2,2,2-Trifluoroethanol.

100 to afford the dibenzodihydro-1,3-diazepin-2-ones 99 

and dibenzo[d,f][1,3]oxazepin-6(7H)-ones 101, respectively 

(Figure 36). The reaction sequence involves an oxidative 

C(sp2)–C(sp2) aryl–aryl bond formation, C(sp2)–C/O bond 

cleavage, and an intramolecular lactamization/lactonization. 

The unique feature of this conversion is the concomitant 

insertion of the ortho-substituted N or O atom into the tether, 

realized for the first time.76

A variety of systems involving PIDA/PIFA have been 

developed to realize functionalization of heterocyclic com-

pounds. Some representative examples are discussed later.

Iodination
By using a combination of PIFA and I

2
, Benhida et al77 devel-

oped an iodination method suitable for electron-deficient 

heterocyclic compounds including substituted indoles 102 

(Figure 37) and coumarins. Moreover, the methodologies 

offered reaction conditions mild enough to ensure the 

survival of sensitive protecting group such as acetyl and 

tert-butyldimethylsilyl. The methods were also applied to 

the iodination of substituted pyrazoles in providing the cor-

responding 4-iodopyrazole derivatives.78

Likewise, PIFA-mediated direct cyanations of various 

heterocyclic compounds including pyrroles, thiophenes, and 

indoles were realized using trimethylsilyl cyanide as a source 

of CN.79 For example, cyanation of N-tosylpyrroles 104 at the 

C2 position was achieved by using trimethylsilyl cyanide along 

with PIFA with moderate-to-excellent selectivity (Figure 38).

Bifunctionalization of glycals 106, including homoge-

neous azidization and selenylation, has been realized by 
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A

B

Figure 28 (A) PIFA-mediated conversion of internal alkynes to spiro heterocycles via cascade annulation. (B) Proposed mechanism.
Abbreviations: PIFA, phenyliodine bis(trifluoroacetate); rt, room temperature; h, hours; DCM, dichloromethane.
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Figure 29 (A) PIDA-mediated synthesis of bisindolines via cascade intramolecular 
oxidative deamination. (B) Proposed mechanism.
Abbreviations: PIDA, phenyliodine diacetate; rt, room temperature; h, hours; 
DMF, N,N-dimethylformamide.

Figure 30 PIFA-mediated synthesis of benzo[c]phenanthridine and phenanthridinone.
Abbreviation: PIFA, phenyliodine bis(trifluoroacetate); DCM, dichloromethane.

Figure 31 PIFA-mediated synthesis of 3-arylquinolin-2-ones from N-methyl-N-
phenylcinnamamides through oxidative C–C bond formation/1,2-aryl migration.
Abbreviations: PIFA, phenyliodine bis(trifluoroacetate); rt, room temperature; 
TFA, trifluoroacetic acid; DCE, 1,2-dichloroethane.

Figure 32 PIFA-mediated direct intramolecular cyclization of α-(aryl)alkyl-β-dicarbonyl 
compounds.
Abbreviations: PIFA, phenyliodine bis(trifluoroacetate); TFE, 2,2,2-Trifluoroethanol.

Figure 33 PIFA-mediated synthesis of N-aryl-N-methoxyamides via an intramolecular 
oxidative C–N bond formation.
Abbreviation: PIFA, phenyliodine bis(trifluoroacetate).

Figure 34 Synthesis of isoquinolones from N-methoxybenzamide and diphenyl 
acetylene mediated by PIDA generated in situ.
Abbreviations: PIDA, phenyliodine diacetate; rt, room temperature.

Mironov et al80 through the reaction of glycals with PIDA in 

the presence of TMSN
3
 and Ph

2
Se

2
 (Figure 39).

[Hydroxy-(organosulfonyloxy)iodo]arenes
Recently, Kawai et al81 described a new method for the 

synthesis of biologically signif icant trifluoromethyl-

2-isoxazoline N-oxides 111. This conversion is realized 

through the intramolecular oxidative N–O coupling in 

β-trifluoromethyl-β-hydroxy ketoximes 109, generated 

from trifluoromethyl-β-keto alcohols 108, and mediated by 

[hydroxy(tosyloxy)iodo]benzene (Figure 40).81

Treatment of 2H-chromene 112 with [hydroxy(tosyloxy)

iodo]benzene in methanol could introduce a methoxyl group 

at the C4 position to afford 4-methoxy-2H-chromene 113 

(Figure 41).82

Benziodoxole-based hypervalent iodine reagents
During the last decade, studies on the development of the 

λ3 iodine benziodoxolone reagents and their applications 

in facilitating organic transformations have attracted the 

attention of many synthetic chemists. Some representative 

examples are presented in this section.

In 2006, Eisenberger et al83 reported the first use of 

benziodoxole-derived reagents 5a and 6b for CF
3
 transfer. 
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Figure 35 (A) PIFA-mediated synthesis of the fused indeno-1,4-diazepinones. (B) Proposed mechanism.
Abbreviations: PIFA, phenyliodine bis(trifluoroacetate); rt, room temperature.

Figure 36 I (III)-mediated formation of dibenzodihydro-1,3-diazepin-2-ones and 
dibenzo[d,f][1,3]oxazepin-6(7H)-ones.
Abbreviation: rt, room temperature.

Figure 37 PIFA/I2-mediated iodination of indole derivatives to 3-iodoindoles 103.
Abbreviations: PIFA, phenyliodine bis(trifluoroacetate); rt, room temperature; h, 
hours; DCM, dichloromethane.

Figure 38 PIFA/TMSCN-mediated selective cyanation of N-tosylpyrroles at the C2 
position.
Abbreviations: PIFA, phenyliodine bis(trifluoroacetate); rt, room temperature; 
TMSCN, trimethylsilyl cyanide; DCM, dichloromethane.

Figure 39 PIDA-mediated homogeneous azidization and selenylation of glycals.
Abbreviations: PIDA, phenyliodine diacetate; h, hours; DCM, dichloromethane.

Later on, many practical applications of this class of hyper-

valent iodine (III) were developed.84,85

In 2014, Wang et al86 described an intramolecular carbotri-

fluoromethylation of alkynes 114 by using Togni’s reagent 

in the presence of Cu(I). A variety of trifluoromethylated 

heterocycles, such as 2H-chromene derivatives 115 and 117, 

1,2-dihydroquinoline derivative 116, and the 2H-chromene 

five-membered cyclic product 118, were synthesized with 

great substituent tolerance and high selectivity (Figure 42).

Due to the multiple reactive sites in indoles, trifluo-

romethylation of indole derivatives presents a challenge 

in synthetic chemistry. Shimizu et al87 developed a direct 

C2-selective trifluoromethylation of indole derivatives 119 

with 2-trifluoromethyl indole 120 as the product by using 

Togni’s reagent (Figure 43). Later on, a method for the 
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Figure 40 HTIB-mediated synthesis of trifluoromethyl-2-isoxazoline-N-oxides.
Abbreviation: HTIB, [hydroxy(tosyloxy)iodo]benzene.

Figure 41 HTIB-mediated synthesis of 4-methoxy-2H-chromene.
Abbreviation: HTIB, [hydroxy(tosyloxy)iodo]benzene.

trifluoromethylation of indole compounds to afford the fused 

tricyclic indoles was established.88

In 2014, Zhang and Studer89 reported a method for the 

synthesis of the biologically important 1-trifluoromethyl-

ated isoquinolines 122. This transformation starts from the 

β-aryl-α-isocyano-acrylates 121 and uses Togni’s reagent as 

the CF
3
 radical precursor to afford the products in moderate-

to-excellent yield, in the absence of any transition metal 

(Figure 44).

Recently, by using Togni’s reagent and a simple catalyst 

CuI, Wang et al90 reported an elegant method for the aryl-

trifluoromethylation of N-phenylcinnamamides 123, where 

a series of CF
3
-containing 3,4-dihydroquinolin-2(1H)-ones 

124 were obtained regioselectively and diastereoselectively 

(Figure 45). The same conversion from N-arylcinnamamides 

to CF
3
-containing dihydroquinolin-2(1H)-ones was also real-

ized under visible light conditions.91

Another widely applied benziodoxole reagent is the 

[(triisopropylsilyl)ethynyl]benziodoxolone (TIPS-EBX) for 

its role in introducing alkynyl groups. Although TIPS-EBX 

had been prepared in 1996,92 the first significant application 

was not reported until 2009 by Brand et al.93 Direct alkynyl-

ation of indole and pyrrole heterocycles 125 was achieved 

with good functional group tolerance by using TIPS-EBX in 

the presence of gold as catalyst (Figure 46).94

Recently, cobalt(III)-catalyzed C2-alkynylation of indoles 

128 using hypervalent iodine–alkyne reagents was reported 

(Figure 47).95 This efficient protocol provided a variety of 

indole derivatives 129 bearing a C2 alkynyl linker, which 

can be connected to a series of synthetically useful functional 

groups such as −F, −Cl, −Br, −CO
2
Me, or −CN.

Applying TMS-EBX in the presence of tertiary amines, a 

metal-free alkynylation of various heterocyclic compounds 

130–133 can be realized under mild conditions and affords 

the corresponding alkynylated heterocyclic compounds 

134–137 containing a quaternary carbon in high yields 

(Figure 48).96

In the presence of CsF, cycloaddition between the 

iodonium ylides 139 and the ortho-silyl aryltriflates 138 

afforded a series of benzofurans 140 at room temperature in 

moderate-to-good yields (Figure 49).97

Aryliodonium imides in the presence of metal complexes 

were reported to efficiently introduce another nitrogen 

atom into the nitrogen-containing heterocycle compounds. 

Figure 50 depicts the selective addition of the imido moiety 

to the N atom of pyridine rings 141 through a Ru-catalyzed 

N–N bond formation.98

Arylation of heterocycles with diaryliodonium salts, 

whether at a carbon or a heteroatom, has drawn much atten-

tion from synthetic chemists. One of the most representative 

examples is the arylation of indole derivatives. In 2006, 

Deprez et al99 developed a method to carry out arylation of 

indoles 144 at C2 through a palladium-catalyzed reaction 

using diaryliodonium salts (Figure 51). This reaction was 

proven to be compatible with free N–H indoles 144, such 

that no by-product from N-arylation was observed.

As arylation using diaryliodonium salts would inevitably 

generate one equivalent of an iodoarene as a side product, it 

makes this approach unattractive with regard to atom econ-

omy. Recently, a Cu-catalyzed tandem C−H/N−H arylation 

of indoles 146 was discovered, which incorporated both aryl 

groups from the reagent diaryliodonium salts while providing 

novel indoles 147 (Figure 52).100

A significant amount of efforts have been devoted to the 

arylation of N-containing heterocycles by using diaryliodo-

nium salts and metal catalysts. For example, a Pd-mediated 

arylation of benzotriazol 148 and a Cu-mediated N-arylation 

of indole 150, cyclohexylamine 152, and the four-membered 

lactam 154 were realized. Selected examples are presented 

in Figure 53.101–105

In 2013, Wang et al106 realized a Cu(OTf)
2
-catalyzed 

regioselective synthesis of polysubstituted quinolines from 

three components including the diaryliodonium salt 156, 

the nitrile 157, and the alkyne 158 (Figure 54). It is worth 

noting that the aryl group of the diaryliodonium serves as a 

C2 building block in this reaction.
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Figure 42 Intramolecular carbotrifluoromethylation of alkynes with Togni’s reagent and Cu(I).
Abbreviations: h, hours; DCM, dichloromethane.

Figure 43 Trifluoromethylation of indole derivatives with Togni’s reagent.
Abbreviations: rt, room temperature; h, hours.

A

B

Figure 44 (A) Synthesis of biologically important 1-trifluoromethylated isoquinolines with Togni’s reagent. (B) Proposed mechanism.
Abbreviation: h, hours.
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Figure 45 Aryltrifluoromethylation of N-phenylcinnamamides by using Togni’s 
reagent and copper catalyst.
Abbreviation: h, hours.

Figure 46 Direct alkynylation of indole and pyrrole heterocycles by using TIPS-EBX.
Abbreviation: TIPS-EBX, [(triisopropylsilyl)ethynyl]benziodoxolone.

Figure 47 Selective cobalt(III)-catalyzed alkynylation of indoles using hypervalent iodine-alkyne reagents.
Abbreviations: TFE, 2,2,2-Trifluoroethanol; h, hours; Cp*, cyclopentadienyl.

Figure 48 Metal-free alkynylation of various heterocyclic compounds with TMS-EBX.

Hypervalent iodine (V) reagents
Among the iodine (V) compounds, Dess–Martin periodinane 

(DMP) and 2-iodoxybenzoic acid (IBX) are the two most 

practical and therefore most widely applied oxidants for their 

mild characteristics. A large range of syntheses and function-

alization of heterocyclic compounds have been achieved in 

recent years through the applications of iodine (V) reagents.

Dess–Martin periodinane
DMP was first introduced in 1984.107 The most special 

property of it is its ability to realize selective oxidation of 

primary and secondary alcohols to their respective aldehydes 

and ketones.108,109 Some applications have been formulated 

based on this property. For example, when treated with DMP 

in a hydrocarbon solvent, cleavage of the glycol C–C bond 

in 1,2-diols 160 takes place, leading to the formation of a 

more complex molecule 162 (Figure 55).110

Another example is the synthesis of the 2-substituted 

benzothiazoles 164 in high yields, which is facilitated by 

DMP through an intramolecular oxidative cyclization of the 

thioformanilides 163 in CH
2
Cl

2
. The mild reaction environ-

ment plays a key role as the reaction proceeds via a thiol 

radical intermediate (Figure 56).111
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Figure 49 (A) Cycloaddition of ortho-silyl aryltriflates and iodonium ylides. (B) Proposed mechanism.
Abbreviation: rt, room temperature.

Figure 50 Ru-catalyzed nitrogen atom transfer.
Abbreviations: h, hours; DCM, dichloromethane.

Figure 51 Diaryliodonium salts-mediated arylation of indoles at C2.
Abbreviations: rt, room temperature; h, hours.

Figure 52 Cu-catalyzed tandem C–H/N–H arylation of indoles with diaryliodonium salts.
Abbreviations: eq., equivalent; DMEDA, N,N’-Dimethyl-1,2-ethanediamine.
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Figure 53 Arylation of N-containing heterocycles with diaryliodonium salts.
Abbreviations: rt, room temperature; h, hours.

Figure 54 A Cu(OTf)2-catalyzed, three-component regioselective synthesis of 
polysubstituted quinolones.
Abbreviations: eq., equivalent; DCE, 1,2-dochloroethane.

Figure 55 Oxidative cleavage of the glycol C–C bond with DMP.
Abbreviations: DMP, Dess–Martin periodinane; rt, room temperature; h, hours.

Figure 56 Synthesis of 2-substituted benzothiazoles with DMP.
Abbreviations: DMP, Dess–Martin periodinane; rt, room temperature; min, minutes.

Iodoxybenzoic acid
Certain heterocyclic compounds such as isoxazolidines, 

[1,2]oxazinanes, and 3,5-disubstituted isoxazolines could 

be synthesized through radical cyclization by using IBX as 

a single-electron transfer (SET) oxidant. The cyclizations 

brought about with this protocol could occur in an intramo-

lecular as well as intermolecular manner.

In 2005, Janza and Studer112 described the generation of 

alkoxyamidyl radicals initiated by IBX as an SET oxidant 

from the acylated alkoxyamines 165. The stereoselective 

5-exo and 6-exo reactions with these N-heteroatom-centered 

radicals led to the isoxazolidines 166a and the [1,2]oxazi-

nanes 166b in good-to-excellent yields (Figure 57).

In 2004, Das et al113 reported the preparation of the 

3,5-disubstituted isoxazolines 169, achieved via an SET 

reaction consisting of multiple components of 167 and 168 

using IBX as an oxidant (Figure 58). The reaction proceeded 

through a substituted aldoxime intermediate followed by a 

1,3-dipolar addition of an alkene.113

Recently, Bredenkamp et al114 reported a new example 

of IBX-promoted direct functionalization of the indoles 170 

to the isatins 172. The reagent mixture 171 (NaI/IBX-SO
3
K 

containing a substituted sulfonyl of IBX) was employed to 

trigger this oxidative process (Figure 59).114

Conclusion
During the past several decades, hypervalent iodine reagents 

have been widely used in the syntheses and functionalization 

of heterocyles. The low production cost has made many of 

them commercially available, and the low toxicity, being 

transition metal-free, renders them environmentally friendly. 

But most importantly, it is their powerful oxidizing properties 

under mild reaction conditions along with high chemoselec-

tivity that have driven hypervalent iodine chemistry to expand 

its territory in the field of synthetic chemistry.
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Figure 57 IBX-mediated stereoselective 5-exo and 6-exo formations of isoxazolidines 
and [1,2]oxazinanes.
Abbreviations: IBX, 2-iodoxybenzoic acid; DMSO, dimethyl sulfoxide; min, 
minutes.

Figure 58 IBX-mediated SET synthesis of isoxazolines involving multiple 
components.
Abbreviations: IBX, 2-iodoxybenzoic acid; SET, single-electron transfer; DCM, 
dichloromethane.

Figure 59 Direct functionalization of indoles to isatins by NaI/IBX-SO3K.
Abbreviation: DMSO, dimethyl sulfoxide.
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