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Abstract: In this work, peptides designed to selectively interact with cellular receptors 

involved in the regulation of angiogenesis were anchored to oligo-ethylene glycol-capped gold 

nanoparticles (AuNPs) and used to evaluate the modulation of vascular development using an 

ex ovo chick chorioallantoic membrane assay. These nanoparticles alter the balance between 

naturally secreted pro- and antiangiogenic factors, under various biological conditions, without 

causing toxicity. Exposure of chorioallantoic membranes to AuNP–peptide activators of 

angiogenesis accelerated the formation of new arterioles when compared to scrambled peptide-

coated nanoparticles. On the other hand, antiangiogenic AuNP–peptide conjugates were able to  

selectively inhibit angiogenesis in vivo. We demonstrated that AuNP vectorization is crucial for 

enhancing the effect of active peptides. Our data showed for the first time the effective control of 

activation or inhibition of blood vessel formation in chick embryo via AuNP-based formulations 

suitable for the selective modulation of angiogenesis, which is of paramount importance in 

applications where promotion of vascular growth is desirable (eg, wound healing) or ought to 

be contravened, as in cancer development.

Keywords: angiogenesis activators, antiangiogenic, CAM assay, gold nanoparticles, peptide-

coated gold nanoparticles, vascular development

Introduction
Angiogenesis, or the formation of new capillary blood vessels, occurs mainly during 

mammalian development and reproduction but has also been associated with several 

pathological conditions, including cancer. Neoangiogenesis establishes one of the first 

steps of tumor progression; it is the process by which the nutrients and gases needed 

for sustained and aggressive growth of tumor cells, invasion, and metastasis are 

exchanged through blood vessels. Thus, tumor angiogenesis constitutes an important 

point of control of cancer progression.1 Various antiangiogenic drugs designed to 

prevent endothelial cell proliferation have been reported.1 Despite a few successful 

results, downfalls of these drugs often include the need for introduction of large doses 

of drugs leading to undesired toxic side effects. An effective method of dose reduction 

is the conjugation of drugs to nanoparticles (NPs).

Gold nanoparticles (AuNPs) are the proposed ideal theranostic vehicles for 

cancer. The tumor environment presents an enhanced permeability and retention 

effect, which results from the angiogenic nature of the tumor tissue and its ability 

to sequester chemotherapeutic agents from healthy tissues.2,3 Ideal drug delivery 

nanosystems may exploit this enhanced permeability and retention effect, accu-

mulate in the tumor tissue, and release the desired cargo where needed at a high 

concentration, thus reducing the undesirable deleterious effects to healthy tissue.4,5 
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Additional targeting of malignant cells may be provided by 

small molecules, such as cell-penetrating peptides, that are 

able to cross cellular membranes, improving intracellular 

delivery of NPs.6–8

The activation or inhibition of in vitro angiogenesis 

using functional peptide-coated AuNPs has been previously 

demonstrated.9,10 The peptides, anchored to oligo-ethylene 

glycol (OEG)-capped gold nanospheres, were designed 

to selectively interact with cellular receptors involved in 

the regulation of angiogenesis: P1 (KPQPRPLS) binds 

to the vascular endothelial growth factor receptor-1 and 

promotes signal cascade activation of angiogenic genes; 

P2 (KPRQPSLP) does not interact with any receptor and 

is taken up by the cells (scrambled), and P3 (KATWLPPR) 

binds to neuropilin-1 receptor and promotes receptor 

internalization.9,10 These NPs alter the balance between 

naturally secreted pro- and antiangiogenic factors under vari-

ous biological conditions without causing toxicity.9

The use of models, which could mimic a biological 

system as closely as possible, is crucial. The chorioallantoic 

membrane (CAM) assay is one of the most used in vivo 

model systems for angiogenesis-related studies. The CAM is 

a highly vascularized tissue of the avian embryo and serves 

as an excellent in vivo model for screening potential novel 

therapeutics11 and studying the effects of various drugs/

molecules on neoangiogenesis.12 Ex ovo strategies enhance 

the accessibility of the CAM and chick embryo, facilitating 

experimental manipulation of the embryo13 and enabling the 

in vivo documentation of angiogenesis-related studies.

Here, we use the same three types of peptide-coated 

NPs mentioned previously to evaluate the effect in in vivo 

angiogenesis, and demonstrate for the first time, the effective 

control of activation or inhibition of blood vessel formation 

in chick embryos (Figure 1).

Materials and methods
Materials
All reagents were of analytical grade and purchased from Sigma-

Aldrich (St Louis, MO, USA). Milli-Q water (EMD Millipore, 

Billerica, MA, USA) was used in all experiments. Fertilized 

eggs were acquired from Avibom, Lisboa, Portugal. Peptides 

(lyophilized precipitated) were obtained from Peptide Syn-

thetic, Funtley, UK and used without further purification.

Synthesis of AuNPs
Gold nanospheres (13±2 nm) were synthesized according to 

procedures mentioned in the literature.14 Briefly, an aqueous 

solution of sodium tetrachloroaurate (100 mL, 1 mM) was 

brought to the boil under stirring. Once boiling, a hot aqueous 

solution of trisodium citrate (5 mL, 2% w/v) was added to 

the gold solution. A color change from yellow to colorless 

to deep red indicated the formation of NPs. The solution 

Figure 1 Peptide-coated AuNPs for in vivo targeting of angiogenesis.
Notes: CAM assay was performed with AuNPs functionalized with three different peptides: proangiogenic; antiangiogenic, and a scrambled peptide as control.
Abbreviations: AuNPs, gold nanoparticles; CAM, chorioallantoic membrane.
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was then stirred under boiling for an additional 15 minutes 

and subsequently allowed to cool to room temperature under 

stirring. Prepared AuNPs were filtered (0.2 µm syringe filter) 

and subsequently stored at 4°C.

Surface capping of AuNPs with OEG
AuNPs were then functionalized with OEG, monocarboxy 

(1-mercaptoundec-11-yl) hexaethylene glycol molecular 

weight (MW) =526.7, 5 mg/mL, 200 μL as previously 

described by Kanaras et al.15 A freshly prepared aqueous 

solution of OEG was added to a solution of 13 nm AuNPs 

(10 mL, 5 nM) while stirring. The mixture was incubated for 

2 hours at room temperature, then overnight at 4°C. OEG 

AuNPs were then purified by centrifugation (16,400 rpm, 

15 minutes, three times), redispersed in borate buffer (10 mL, 

0.01 M, pH 9), and subsequently stored at 4°C.

Conjugation of peptides to OEG AuNPs
Three different peptides (P1, P2, and P3) were conjugated 

to OEG AuNPs following our previously reported method.16 

A peptide solution (100 μL, 1 mg/mL, MW P1/P2=922.1, 

MW P3=968.2, in 0.01 M sodium borate buffer, pH 9) was 

added to OEG AuNPs (5 mL, 1.5 nM in 0.01 M sodium 

borate buffer, pH 9) followed by 1-(3-(dimethylamino)

propyl)-3-ethyl-carbodiimide methiodide, 50 μL, 0.2 M in 

water and sulfo-N-hydroxysulfosuccinimide (100 μL, 0.2 M 

in water). The reaction mixture was shaken for 24 hours at 

room temperature, subsequently purified by centrifugation 

(16,400 rpm, 15 minutes, three times) and redispersed in water, 

followed by lyophilization. The full characterization of the 

peptide-coated NPs has been described elsewhere.9,10,15,17,18

Ex ovo CAM assay
Fertilized eggs (total 46) were incubated at 37°C, 90% (v/v) 

relative humidity, until 72 hours and gently opened into a Petri 

dish, allowing the yolk-sac blood vessels facing upwards. 

After 6 hours of incubation, which is required for the embryo 

stabilization, four silicone O-rings (8 mm inside and 10 mm 

outside diameter) were placed on the yolk sac (Figure 2). 

Inside each O-ring, 40 µL of free peptides or peptide-

conjugated NPs were dispensed (0.01 pmol/µL for peptide 

concentration): 1) AuNPs conjugated to P1 peptide or free P1 

peptide, 2) AuNPs conjugated to a scrambled peptide, and 3) 

AuNPs conjugated to P3 peptide or free P3 peptide. The same 

volume of phosphate-buffered saline (PBS) was added to the 

remaining O-ring as control. The eggs were then incubated at 

37°C, 90% (v/v) relative humidity for 24 hours.

All the in vivo CAM experiments were performed accord-

ing to the Directive 2010/63/EU of the European Parliament 

and of the council of 22 September 2010 on the protection of 

animals used for scientific purposes, which does not contain 

any kind of restriction to the use of non-mammal embryos. 

The use of this alternative animal model fits in the “3Rs 

policy” that was strictly followed during experiments.

Images were acquired at 0 and 24 hours of incubation 

using a dissecting microscope with an amplification of 

19.2 times. After image acquisition, the internal area of the 

O-ring was analyzed using Adobe PhotoShop CS3 (ADOBE 

Systems Inc., San Jose, California, USA); the red, green, and 

blue images were then assessed in ImageJ 1.49k (Wayne 

Rasband, National Institutes of Health, USA) (Figure 1). 

Evaluation of images was performed as follows: first, image 

channels were split and the green channel was selected for 

further analysis. Then, noise was removed by smoothing 

the image (despeckling, and dark outliers with 5.0 pix with 

a threshold 50 were removed). For image segmentation, a 

noise tolerance of 8 was considered, excluding the edge 

maxima and binary performed (Figure 2). The skeleton 

plugin of ImageJ was then used for counting the number of 

branches within the region treated with the sample substances 

Figure 2 CAM assay.
Notes: (A) Position of the silicon O-rings in the developing blood vessels plexus of the yolk sac membrane. (B) RGB image of the O-ring interior used for counting the 
number of veins. (C) Green channel of the same image. (D) Binary of the segmented image used to calculate the number of branches.
Abbreviations: CAM, chorioallantoic membrane; RGB, red, green, and blue.
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(ie, AuNPs or free peptide). Tertiary arterioles (lowest 

caliber) in the image obtained after channel split were also 

counted manually for comparison. The percentage of tertiary 

arterioles (number of tertiary vessels divided by the number 

of branches) was calculated for both time points (0 and 24 

hours). After normalization of the percentage of tertiary 

arterioles at 24  hours, compared to the initial number of 

tertiary arterioles (0 hour), the percentage of newly formed 

arterioles was calculated relative to the number of newly 

formed arterioles in the control (PBS).

Statistical analysis
Results are presented as average ± standard deviation of 

triplicate experiments, unless otherwise mentioned. Differ-

ences between groups were considered significant at P,0.05 

using multiple comparisons of two-way analysis of variance, 

based on Tukey’s multiple comparisons test.

Results and discussion
Preparation of peptide OEG-coated 
AuNPs
AuNPs were stabilized by OEG and subsequently conjugated 

to the three peptides (P1, P2, and P3) to infer their functional-

ity as previously described (Figure 3).9,17,18 The “activator” 

(P1–AuNPs), “scramble” (P2–AuNPs), and “inhibitor” 

(P3–AuNPs) were then incubated with chick embryos to 

validate the efficiency of modulating in vivo angiogenesis.

Ex ovo CAM assay
The CAM assay is generally considered a reliable in vivo 

model to study angiogenesis.13,19 The percentage of the 

newly formed arterioles for the control group was compared 

to each test group, treated with either the free peptides 

or the AuNPs-conjugated peptides at a concentration of 

0.01 pmol/µL (Figure 4).

The percentage of newly formed arterioles correlates well 

with the effect of the peptide and is a measure of the efficacy 

of the nanoconjugate. P3 induced a clear reduction in the 

formation of new arterioles when compared to the scrambled 

peptide (P2) (P,0.005). This reduction was much more pro-

nounced in the samples treated with P3–AuNPs (P,0.0001) 

(Figure 5 and Table 1). On the other hand, samples treated 

with proangiogenic peptide (P1) clearly showed induction of 

new arterioles formation in both situations. Again, this effect 

is more evident when the CAMs are exposed to P1–AuNPs 

(Figure 5 and Table 1).

The in vivo results herein presented on activation and inhi-

bition of angiogenesis corroborate our previous in vitro data 

using cell lines.9 The activator peptide (P1) enhanced neovas-

cularization, and the treatment with the inhibitor peptide (P3) 

was able to selectively inhibit angiogenesis as observed previ-

ously in vitro.9 It is important to note here that grafting the 

peptides on to the surface of AuNPs provides for an enhance-

ment of the effect of the peptide without apparent toxicity.9 

This may be attributed to a focalization of the peptide within 

a circumscriptive region, thus allowing for increased effect. 

Another reason for the observed increase might be due to an 

NP-triggered internalization effect. As previously reported, 

this angiogenesis modulation occurs via a receptor-mediated 

process by binding to angiogenic receptors on the endothelia 

of forming blood vessels and/or by changing cell secretion 

of pro- and antiangiogenic factors.9 The enhancement of the 

Figure 3 Characterization of peptide-coated AuNPs.
Notes: (A) Transmission electron micrograph of OEG AuNPs. (B) Normalized UV-vis spectra of OEG AuNPs and peptide–OEG AuNPs showing a slight red shift in the 
plasmon peak arising from a small change in the refractive index around the AuNP due to the peptide coating. Inset is magnifying the SPR peak.
Abbreviations: AuNPs, gold nanoparticles; OEG, oligo-ethylene glycol; SPR, surface plasmon resonance.
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effect of peptides conjugated to AuNPs was shown to be ruled 

by receptor-mediated interactions with specific receptors 

allocated on the target cell membrane.17 In terms of toxicity, 

these nanoconjugates have been previously shown not to 

induce acute toxicity in cell culture,9,17 which is corroborated 

by the lack of effect from the scramble peptide nanoconjugate 

when compared to PBS (P2–AuNP).

Since tumor growth and progression require vascular 

supply, antiangiogenic therapy is a highly effective strategy 

for treating cancer.20 On the other end, therapies that promote 

angiogenesis may contribute to cardiovascular regeneration, 

which is crucial to other disease such as diabetic cardiomyo-

pathy and ischemic heart disease.21,22 The in vivo enhance-

ment of angiogenesis was also observed by others using 

biosynthesized gold nanoconjugates from plant extracts.23 

Thus, angiogenesis results from an intricate network of 

interactions between pro- and antiangiogenic molecules, 

endothelial cell receptors, and various modulators.24,25 Modu-

lation of angiogenesis in vivo using nanovectorization sys-

tems, such as AuNPs, represents a powerful strategy not only 

for targeting cancer progression but also for other diseases.

Conclusion
We demonstrated for the first time the effective modula-

tion of angiogenesis in vivo using peptide-coated AuNPs. 

Exposure of CAMs to peptide activators of angiogenesis 

accelerated the formation of new arterioles by a factor of 

1.27 when compared to the scrambled peptide. Moreover, the 

Figure 4 Angiogenesis on two independent CAMs after 24-hour exposure to: control.
Notes: (A) P1–AuNPs; (B) P2–AuNPs; (C) P3–AuNPs.
Abbreviations: AuNPs, gold nanoparticles; CAM, chorioallantoic membrane.

Figure 5 Percentage of newly formed arterioles.
Notes: As a result of exposure to free peptide or AuNPs (peptide–AuNPs) relative 
to control (phosphate-buffered saline): P1, proangiogenic peptide; P2, scrambled 
peptide; P3, antiangiogenic peptide. The concentration of peptide was kept constant 
(0.01 pmol/µL). Error bars represent the standard deviation from the mean. A total 
of 46 eggs were analyzed. **P,0.005; ***P,0.0001.
Abbreviation: AuNPs, gold nanoparticles.

Table 1 Percentage of newly formed arterioles in CAMs exposed 
to free peptides (P1, P2, or P3) or the respective peptide–AuNP 
relative to control

Peptide Peptide–AuNP Free peptide

P1 158±28 127±10
P2 100±16 100±10
P3 14±4 43±3

Note: Data presented as mean ± standard deviation.
Abbreviations: AuNP, gold nanoparticle; CAM, chorioallantoic membranes.
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nanovectorization of this peptide was able to enhance neovas-

cularization 1.58-fold. Conversely, using the same approach, 

inhibitors of angiogenesis were able to selectively inhibit 

angiogenesis in vivo. These nanovectorization systems may 

provide new routes of targeted delivery using multifunctional 

coatings and may allow additional benefits for nanotheranos-

tics (combining imaging and treatment) applications.26 NPs 

functionalized with KPQPRPLS or KATWLPPR peptides 

bind to the vascular endothelial growth factor receptor or 

neuropilin-1 receptor on endothelial cells for endocytosis-

mediated internalization, promoting signal cascade and acti-

vating or inhibiting angiogenesis, respectively.9,26

We believe that these results provide a striking argument 

for the development of novel NP delivery systems targeting 

angiogenesis. Selective modulation of angiogenesis is of 

great interest for biomedical applications where promo-

tion of vascular growth is desirable (eg, wound healing) or 

ought to be contravened, as in cancer development. It may 

be envisaged that AuNPs functionalized with angiogenic 

peptides may be used for revascularization of stroke-affected 

areas; conversely, antiangiogenic AuNPs may be targeted to 

the tumor site via the enhanced permeability and retention 

effect and further enhanced via active targeting moieties to 

tackle tumor microenvironment and prevent tumor growth 

by avoiding the formation of new vasculature. Simultane-

ously, such AuNP-based formulations will allow computed 

tomography imaging to evaluate tumor development in 

nanotheranostic strategies.
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