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Abstract: Rho-kinase (ROCK) is a serine/threonine kinase and one of the major downstream 

effectors of the small GTPase Rho. The Rho-ROCK pathway is involved in many aspects of 

neuronal functions including neurite outgrowth and retraction. The Rho-ROCK pathway becomes 

an attractive target for the development of drugs for treating central nervous system (CNS) dis-

orders, since it has been recently revealed that this pathway is closely related to the pathogenesis 

of several CNS disorders such as spinal cord injuries, stroke, and Alzheimer’s disease (AD). In 

the adult CNS, injured axons regenerate poorly due to the presence of myelin-associated axonal 

growth inhibitors such as myelin-associated glycoprotein (MAG), Nogo, oligodendrocyte-

myelin glycoprotein (OMgp), and the recently identifi ed repulsive guidance molecule (RGM). 

The effects of these inhibitors are reversed by blockade of the Rho-ROCK pathway in vitro, 

and the inhibition of this pathway promotes axonal regeneration and functional recovery in the 

injured CNS in vivo. In addition, the therapeutic effects of the Rho-ROCK inhibitors have been 

demonstrated in animal models of stroke. In this review, we summarize the involvement of the 

Rho-ROCK pathway in CNS disorders such as spinal cord injuries, stroke, and AD and also 

discuss the potential of Rho-ROCK inhibitors in the treatment of human CNS disorders.
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Introduction
The Rho family of small GTPases, including Rho, Rac, and Cdc42, has a central role 

in cellular motility and cytokinesis due to its involvement in the regulation of actin 

cytoskeletal dynamics (Fukata et al 2003; Riento and Ridley 2003; Narumiya and 

Yasuda 2006). As with other small GTPases, Rho functions as a molecular switch 

that controls various intracellular signaling pathways by shuttling between an active 

(GTP-bound) and inactive (GDP-bound) state. The exchange between the GTP- and 

GDP-bound forms is controlled by several regulatory proteins. Guanine nucleotide 

exchange factors (GEFs) enhance the conversion of a GDP-bound form to a GTP-bound 

form, which results in Rho activation. The GTP-bound form of Rho subsequently 

interacts with its specifi c downstream targets and triggers intracellular signalling 

cascades. On the contrary, GTPase activating proteins (GAPs) stimulate the GTPase 

activity of Rho, which leads to the conversion of an active GTP-bound form to an 

inactive GDP-bound form. Furthermore, guanine nucleotide dissociation inhibitors 

(GDIs) maintain Rho in an inactive GDP-bound form by sequestering it in the cytosol. 

One of the well-characterized downstream effectors of Rho is the Rho-associated, 

coiled-coil-containing protein kinase (ROCK) (Leung et al 1995; Ishizaki et al 1996; 

Matsui et al 1996). ROCK is a serine/threonine protein kinase with a molecular mass 

of 160 kDa. Two isoforms of ROCK exist, ie, ROCKI and ROCKII, and these show 

65% similarity in their amino acid sequences and 92% identity in their kinase domains. 

The kinase domain of both ROCK isoforms is located at the amino terminus, and this 

is followed by a coiled-coil domain containing the Rho-binding site (RBD) and a 
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pleckstrin-homology domain (PH) with an internal cysteine-

rich domain (CRD) at the carboxyl terminus (Figure 1A) 

(Riento and Ridley 2003; Mueller et al 2005). The carboxyl 

terminal domain forms an autoinhibitory loop that folds back 

onto the catalytic domain and reduces the kinase activity of 

ROCK (Amano et al 1999). It has been suggested that the 

GTP-bound form of Rho activates ROCK by binding to the 

RBD in ROCK and counteracting the inhibitory interaction 

between the catalytic domain and the autoinhibitory region 

(Figure 1B).

With respect to tissue distribution, ROCKI and ROCKII 

transcripts are ubiquitously but differentially expressed 

(Nakagawa et al 1996). ROCKII is preferentially expressed 

in brain and muscle tissues, whereas ROCKI is abundantly 

expressed in nonneuronal tissues such as the liver, stom-

ach, spleen, kidney, and testis. Both transcripts are highly 

expressed in the heart and lung. Although the two ROCK 

isoforms have been reported to have differential tissue dis-

tribution, the functional differences between them are less 

characterized. One such difference has been described in 

the process of membrane blebbing during apoptosis. In this 

case, it was demonstrated that caspase-3-dependent ROCKI 

cleavage removed the inhibitory domain of ROCKI, thereby 

rendering it constitutively active: this induced membrane 

blebbing during the course of apoptosis (Coleman et al 

2001; Sebbagh et al 2001). Interestingly, ROCKII was not 

activated by caspase-3 since it lacked the cleavage site. On 

the contrary, ROCKII, not ROCKI, was specifi cally truncated 

and activated by a proapoptotic protease granzyme B in a 

caspase-independent manner during the membrane blebbing 

process (Sebbagh et al 2005). Gene deletion of ROCKI or 

ROCKII in mice also demonstrated the functional differences 

between the 2 isoforms (Thumkeo et al 2003; Shimizu et al 

2005). Most ROCKII-defi cient mice show embryonic lethal-

ity probably due to a defect in the placenta with thrombosis, 

whereas failure of eyelid closure and closure of the ventral 

body wall has been reported in ROCKI-knockout mice. 

However, detailed analysis demonstrated that the latter phe-

notypic defects were also evident in ROCKII-knockout mice, 

suggesting that both isoforms share some aspects of the same 

Figure 1 A schematic drawing of ROCKI and ROCK activation by Rho. (A) ROCKI has the kinase domain at the amino terminus, followed by a coiled-coil domain containing the 
Rho-binding site (RBD), and a pleckstrin-homology domain (PH) with an internal cysteine-rich domain (CRD). ROCKII has a very similar structure. (B) A proposed mechanism 
of ROCK activation by GTP-bound Rho is shown (Amano et al 1999). The carboxyl terminal domain forms an autoinhibitory loop that folds back onto the kinase domain and 
inhibits the kinase activity of ROCK. GTP-bound Rho binds to the RBD region in ROCK and renders the catalytic domain of ROCK to be accessible to its substrates, which 
results in the activation of ROCK.
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biological functions. It is noteworthy that after overcoming 

the perinatal problems, both ROCKI- and ROCKII-defi cient 

mice develop normally without any obvious anatomical and 

functional abnormalities.

ROCK regulates the activities of many target proteins by 

its kinase activity. Some of these proteins such as the myosin 

light chain (MLC) regulate cell morphology (Brown and 

Bridgman 2004). Phosphorylated MLC induces actomyosin 

contraction by enhancement of myosin ATPase activity, 

which is a key step in cytoskeletal rearrangement (Ikebe and 

Hartshorne 1985; Ikebe et al 1986; Brown and Bridgman 

2004). ROCK also increases MLC phosphorylation via the 

inhibition of MLC phosphatase by phosphorylation. Other 

ROCK substrates include the LIM (Lin11/Isl1/Mec3) kinases 

(Ohashi et al 2000; Sumi et al 2001) and collapsin response 

mediator protein-2 (CRMP-2) (Arimura et al 2000, 2004), 

all of which are involved in the regulation of cytoskeletal 

reorganization.

Since a large number of reports have demonstrated the 

involvement of the Rho-ROCK pathway in the pathogenesis 

of several diseases, the Rho-ROCK pathway is considered 

to be a promising target for drug development in fi elds such 

as cardiovascular disease, cancer, erectile dysfunction, 

renal disease, and central nervous system (CNS) disorders 

(Cellek 2002; Shimokawa 2002; Lepley et al 2005; Mueller 

et al 2005; Nishikimi and Matsuoka 2006; Kubo et al 2007; 

Shimokawa and Rashid 2007). In this review, we summarize 

recent progress that has been made in understanding the 

involvement of the Rho-ROCK pathway in CNS disorders 

and discuss the potentials of Rho-ROCK inhibitors as phar-

macotherapeutic drugs for treating CNS disorders.

Spinal cord injury
It is well known that in comparison to the axons of the 

peripheral nervous system (PNS), those of the adult mamma-

lian CNS, including the spinal cord, regenerate poorly after 

injury. The lack of appropriate axonal regeneration in the 

CNS frequently results in permanent neuronal defi cits such 

as paralysis following traumatic damage such as spinal cord 

injury. The pathology of CNS injuries, particularly spinal 

cord injuries, has been understood at a molecular level. It has 

been demonstrated that the lack of regeneration of injured 

CNS axons was mainly due to the CNS environment itself 

rather than due to any intrinsic disability of CNS nerve fi bers 

(Richardson et al 1980; David and Aguayo 1981). At present, 

3 axon outgrowth inhibitors in CNS myelin—Nogo, myelin-

associated glycoprotein (MAG), and oligodendrocyte-myelin 

glycoprotein (OMgp)—have been well documented (Mueller 

et al 2005; Yamashita et al 2005; Kubo et al 2007). Nogo has 

3 different isoforms, ie, NogoA, NogoB, and NogoC. NogoA 

is mainly expressed by CNS oligodendrocytes, whereas 

NogoB and NogoC are widely distributed outside the CNS. 

Nogo-66a, which is one of the inhibitory domains in the Nogo 

protein, is located in the C-terminal region that is common 

to the 3 isoforms (Fournier et al 2001; Oertle et al 2003). 

MAG, which is the fi rst myelin-associated axon outgrowth 

inhibitor to be identifi ed, is a transmembrane protein of the 

immunoglobulin superfamily and is distributed in both PNS 

and CNS myelin (McKerracher et al 1994; Mukhopadhyay 

et al 1994; Li et al 1996). OMgp, a glycosylphosphatidylino-

sitol (GPI)-anchored 110-kDa glycoprotein, is located in 

oligodendrocytes and has an inhibitory effect on neurite 

outgrowth that is as potent as that of Nogo-66a (Kottis 2002; 

Wang 2002b). Interestingly, these 3 structurally distinct 

myelin-associated inhibitors bind to the same receptor, ie, 

NgR, which is a GPI-anchored protein and is expressed 

in CNS neurons as well as in their axons (Josephson et al 

2002; Wang 2002c). Since the GPI-linked NgR lacks an 

intracellular domain, it was assumed that a coreceptor that 

activates the intracellular signaling cascade was present. The 

low-affi nity neurotrophin receptor p75NTR has been identifi ed 

as an NgR coreceptor. Initially, we reported that p75NTR is 

required for neurite outgrowth inhibition by MAG by using 

postnatal dorsal root ganglion (DRG) neurons from mutant 

mice with a mutation in the p75NTR gene (Yamashita et al 

2002). Subsequently, it was found that p75NTR and NgR 

form a receptor complex for MAG and the other 2 inhibi-

tors, ie, Nogo and OMgp, suggesting that p75NTR induces the 

intracellular inhibitory signals of all these myelin-associated 

proteins in association with NgR (Figure 2) (Wang et al 

2002a; Wong et al 2002). Thereafter, Lingo-1 was identifi ed 

as an additional component of the receptor complex with 

NgR and p75NTR (Mi et al 2004). However, whether NgR is 

required for neurite outgrowth inhibition by the inhibitors is 

still debatable (Zheng et al 2005; Chivatakarn et al 2007). 

It has been recently demonstrated that NgR1 only mediates 

growth cone collapse, not neurite outgrowth inhibition, 

triggered by these inhibitors (Chivatakarn et al 2007). In 

contrast to NgR, p75NTR is involved in both growth cone 

collapse and neurite outgrowth inhibition induced by the 

inhibitors, suggesting that an unidentifi ed receptor complex 

containing p75NTR mediates neurite outgrowth inhibition trig-

gered by the inhibitors (Figure 2) (Wang et al 2002a; Wong 

et al 2002; Yamashita et al 2002; Chivatakarn et al 2007). 

Further studies revealed that TROY (also known as TAJ), a 

member of the tumor necrosis factor (TNF) receptor family, 
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formed a functional receptor complex with NgR and Lingo-1, 

which mediates the inhibitory activity of myelin-associated 

inhibitors (Park et al 2005; Shao et al 2005). These suggest 

that several types of receptor complexes convey the inhibitory 

actions of myelin-associated inhibitors (Figure 2).

Nogo, MAG, and OMgp clearly inhibit neurite outgrowth 

in vitro; however, their involvement in axonal outgrowth 

inhibition following in vivo CNS injury remains debatable. 

Although blockade of the Nogo-NgR pathway by a 

neutralizing antibody (Schnell and Schwab 1990; Bregman 

et al 1995; Brosamle et al 2000; Merkler et al 2001) or 

its antagonistic peptide NEP1-40 (GrandPre et al 2002; 

Li and Strittmatter 2003) promoted axonal outgrowth and 

functional recovery in rats with spinal cord injury, Nogo- or 

NgR-defi cient mice exhibited confl icting results (Kim et al 

2003; Simonen et al 2003; Zheng et al 2003, 2005; Kim et al 

2004; Dimou et al 2006). In addition, MAG-knockout mice 

or mice with the mutant p75NTR gene did not exhibit better 

functional recovery and axonal regeneration after spinal cord 

injury (Bartsch et al 1995; Li et al 1996; Song et al 2004).

Recently, we discovered that the repulsive guidance 

molecule (RGMa) acts as another myelin-associated neurite 

outgrowth inhibitor that induces inhibitory signals inde-

pendent of the NgR pathway (Figure 2) (Hata et al 2006; 

Yamashita et al 2007b). RGMa is a 33-kDa GPI-anchored 

protein, and neogenin has been found to be a functional 

receptor for RGM (Rajagopalan et al 2004; Yamashita et al 

2007b). We found that RGMa signifi cantly inhibits neurite 

outgrowth in cultured neurons (Hata et al 2006; Kubo et al 

in press). Interestingly, a neutralizing anti-RGMa antibody 

signifi cantly enhances axonal outgrowth and functional 

recovery in rats with spinal cord injury (Hata et al 2006), 

suggesting that RGMa causes poor axonal regeneration and 

functional recovery after spinal cord injury in addition to 

other myelin-associated inhibitors.

Since there are several types of myelin-associated neurite 

outgrowth inhibitors, a strategy to block a common intracel-

lular effector molecule(s), if any, would be more effective. 

Recent studies have revealed that these myelin-associated 

inhibitors trigger the axonal growth-inhibitory signals via 

Figure 2 Intracellular signal cascades of myelin-associated neurite outgrowth inhibitors. Myelin-associated neurite outgrowth inhibitors such as Nogo, MAG, and OMgp bind to 
the same receptor, namely, NgR. A receptor complex containing p75NTR mediates the inhibitory signals such as growth cone collapse and neurite outgrowth inhibition via the 
activation of Rho and ROCK. NgR is reported to be only involved in the pathway resulting in growth cone collapse (I), but not in the pathway resulting in neurite outgrowth 
inhibition (II), which suggests that an unknown receptor for the neurite outgrowth inhibitors mediates the latter pathway (Chivatakarn et al 2007). In some neurons, TROY 
might be involved in this cascade instead of p75NTR. RGMa binds to a different receptor, namely, neogenin and also activates the Rho-ROCK pathway. Other neurite outgrowth 
inhibitors such as chondroitin sulfate proteoglycans (CSPGs) and members of the semaphorin and ephrin families are also reported to activate the Rho-ROCK pathway for 
their inhibitory functions (not shown).
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the Rho-ROCK pathway (Figure 2) (Mueller et al 2005; 

Yamashita et al 2005; Kubo et al 2007). Botulinum toxin C3, 

which specifi cally inactivates Rho by enzymatic adenosine 

diphosphate (ADP)-ribosylation of the active site in Rho 

blocks neurite outgrowth inhibition by myelin and MAG 

(Lehmann et al 1999). Specifi c ROCK blockers such as 

Y-27632 counteract the inhibitory effects of these myelin-

associated proteins on neurons (Dergham et al 2002; Fournier 

et al 2003; Hata et al 2006; Kubo et al in press). Rho activation 

by outgrowth inhibitors such as MAG and Nogo is mediated 

through p75NTR, which enhances the dissociation of the Rho-

guanine nucleotide dissociation inhibitor (Rho-GDI) from 

RhoA after stimulation by the neurite outgrowth inhibitors 

(Yamashita and Tohyama 2003). Thereafter, RhoA activation 

is promoted by the Rho-guanine nucleotide exchange factor 

(Rho-GEF), which converts RhoA from an inactive GDP form 

to an active GTP form. In addition, a recent report demon-

strated that intracellular proteolysis of p75NTR is essential for 

both Rho activation and neurite outgrowth inhibition induced 

by MAG (Domeniconi et al 2005). Regarding the downstream 

effectors of the Rho-ROCK pathway, we recently reported that 

inactivation of CRMP-2 by ROCK-induced phosphorylation 

results in neurite outgrowth inhibition downstream of MAG 

(Mimura et al 2006). It has also been demonstrated that RhoA 

mediates the actions of myelin-associated neurite outgrowth 

inhibitors through direct binding to CRMP-4 (Alabed et al 

2007). Furthermore, we found that RGMa inhibits neurite 

outgrowth through the activation of the RhoA-ROCK pathway 

in cultured neurons (Hata et al 2006; Kubo et al in press). In 

this case, the activation of myosin IIA, which is one of the 

downstream effectors of ROCK, is a key step for the exertion 

of the inhibitory effects of RGMa (Kubo et al in press). Most 

of the other documented neurite outgrowth inhibitors such as 

chondroitin sulfate proteoglycans (CSPGs) and members of 

the semaphorin and ephrin families are also reported to use 

the Rho-ROCK pathway for their inhibitory functions (Wahl 

et al 2000; Shamah et al 2001; Swiercz et al 2002; Monnier 

et al 2003; Lingor et al 2007). Therefore, Rho-ROCK is one of 

the most appropriate drug targets for counteracting the effects 

elicited by the different types of neurite outgrowth inhibitors.

In addition to Rho-ROCK, several other proteins have 

been identifi ed as effectors of neurite outgrowth inhibitors, 

including conventional protein kinase C (PKC) (Hasegawa 

et al 2004; Sivasankaran et al 2004; Conrad et al 2007), 

glycogen synthase kinase (GSK)-3 (Eickholt et al 2002; Ito 

et al 2006), and the epidermal growth factor (EGF) receptor 

(Koprivica et al 2005). At least in vitro, multiple signals 

mediate the effects of the myelin-derived inhibitors.

After spinal cord injury, RhoA activation is detected in 

both the neurons and glial cells around the lesion site (Dubreuil 

et al 2003; Madura et al 2004), suggesting that activated Rho 

is involved in blocking CNS regeneration and providing a 

strategy to promote the regeneration of injured CNS axons by 

reversing this inhibitory pathway in vivo. The in vivo thera-

peutic effects of Rho inactivation were demonstrated following 

optic nerve injury. C3 transferase (C3) and its cell-permeable 

derivatives such as C3-05 and C3-07, which are specifi c Rho 

inhibitors, promote axonal regeneration after optic nerve injury 

(Lehmann et al 1999; Fischer et al 2004; Bertrand et al 2005). 

Subsequently, local application of C3 to the lesion site showed 

benefi cial effects on histological and functional recovery in 

spinal cord transection injuries (Dergham et al 2002). ROCK 

inactivation also exerts therapeutic effects on CNS injury. In 

rodent spinal cord injury, fasudil, which is the only clinically 

available ROCK inhibitor, and Y-27632, another ROCK 

inhibitor, enhance axonal regrowth and functional recovery 

(Hara et al 2000; Dergham et al 2002; Fournier et al 2003; 

Sung et al 2003). We also found that the cytoplasmic ROCK 

inhibitory protein p21Cip1/WAF1 promoted the sprouting and 

regeneration of CST fi bers and functional recovery in rat spinal 

cord hemisection injuries (Tanaka et al 2004). In addition, 

it was reported that Rho-ROCK inactivation exerts neuro-

protective effects after spinal cord and optic nerve injuries 

and decreases tissue damage and cavity formation, which is 

another benefi cial aspect of Rho-ROCK inhibition (Dubreuil 

et al 2003; Fischer et al 2004; Tanaka et al 2004; Bertrand 

et al 2005). These data in animal models strongly suggest that 

Rho-ROCK inhibitors provide therapeutic benefi ts in patients 

with spinal cord injury (Mueller et al 2005; McKerracher and 

Higuchi 2006; Kubo et al 2007).

Stroke
Ischemic stroke such as cerebral infarction is one of the 

primary CNS disorders and is associated with high morbid-

ity and mortality. Animal models with permanent middle 

cerebral artery (MCA) occlusion demonstrated that infarction 

in the ischemic core occurs very rapidly after induction of 

ischemia and that ischemic damage expands to the peripheral 

region (ischemic penumbra) with time (Garcia et al 1993). 

Therefore, the main therapeutic target of ischemic stroke is 

the peripheral region. There is evidence to demonstrate that 

Rho-ROCK inhibition by C3; fasudil; hydroxyfasudil, which 

is an active metabolite of fasudil; and Y-27632 protects 

against ischemia-induced brain damage (Laufs et al 2000; 

Toshima et al 2000; Satoh et al 2001; Rikitake et al 2005). It 

has been suggested that the therapeutic effect is at least partly 
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mediated by the upregulated expression of endothelial NO 

synthase by Rho-ROCK inhibition and the resultant increase 

in cerebral blood fl ow (Laufs et al 2000; Rikitake et al 2005). 

In addition, fasudil and hydroxyfasudil were reported to have 

a direct neuroprotective effect (Yamashita et al 2007a). It is 

noteworthy that delayed treatment with fasudil also prevents 

ischemia-induced neuronal death in the CA1 region of the 

gerbil hippocampus, suggesting that ROCK inhibition has 

a wide therapeutic time window in the treatment of isch-

emic stroke (Satoh et al 2007). Fasudil is currently the only 

clinically available ROCK inhibitor and was launched in 

Japan in1995 to treat cerebral vasospasm after subarach-

noid hemorrhage (Shibuya et al 1992). Several groups have 

performed clinical trials of fasudil for patients with angina 

(Shimokawa et al 2002; Vicari et al 2005) or acute ischemic 

stroke (Shibuya et al 2005), and fasudil exerted signifi cant 

therapeutic effects in both diseases. In the clinical trials 

for stroke, enrolled patients (160 patients) received fasudil 

within 48 h of ischemic stroke onset, and 60 mg of fasudil 

was administered via intravenous injection twice daily for 14 

days. Fasudil signifi cantly improved both the neurological 

functions and clinical outcome of the patients and showed 

no severe side effects (Shibuya et al 2005). These results 

strongly suggest that Rho-ROCK inhibitors are benefi cial 

and safe treatment options for ischemic stroke patients.

Alzheimer’s disease
Alzheimer’s disease (AD) is one of the most common causes 

of progressive dementia with massive neurodegeneration. The 

histopathological hallmarks of AD are extracellular deposits 

of senile plaques, which are composed of β-amyloid (Aβ) 

peptides, and intracellular neurofi brillary tangles composed 

of hyperphosphorylated tau proteins. Aβ 1–40 and the more 

amyloidogenic Aβ 1–42 are produced by sequential proteo-

lytic cleavage of the amyloid precursor protein (APP) by 

β- and γ-secretase, whereas α-secretase cleaves APP within 

the Aβ domain and produces no Aβ peptides (Hardy and 

Selkoe 2002; Walsh and Selkoe 2004). Results from studies 

on genetic mutations and neurotoxicity strongly suggest that 

Aβ peptides, particularly soluble oligomers of Aβ peptides, 

play key roles in the pathogenesis of AD (Walsh and Selkoe 

2004; Venkitaramani et al 2007). Epidemiological studies 

demonstrated that the risk of AD development is reduced 

in users of some types of drugs such as nonsteroidal anti-

infl ammatory drugs (NSAIDs) (McGeer et al 1990, 1996; 

Anthony et al 2000) and statins, which are cholesterol-

lowering HMGCoA reductase inhibitors (Jick et al 2000; 

Wolozin et al 2000; Rockwood et al 2002; Yaffe et al 2002). 

It was reported that some types of NSAIDs selectively reduce 

the production of amyloidogenic Aβ 1–42 both in vitro and 

in vivo, independent of their inhibitory effects on cyclooxy-

genase (COX) activity (Weggen et al 2001, 2003; Eriksen 

et al 2003; Sagi et al 2003; Takahashi et al 2003; Beher et al 

2004; Kukar et al 2005). Among these compounds, R-fl ur-

biprofen, which is an enantiomer of the classical racemic 

NSAID fl urbiprofen, has reduced COX inhibitory activity and 

thus less toxicity (Morihara et al 2002; Eriksen et al 2003). 

R-Flurbiprofen lowered the levels of Aβ 1–42 and improved 

learning and memory defi cits in a transgenic animal model 

of AD (Eriksen et al 2003; Kukar et al 2007). It also exerted 

benefi cial effects in AD patients in a phase II clinical trial 

(Black et al 2006; Galasko et al 2007; Geerts 2007). It has 

been suggested that the inhibitory effects of NSAIDs on Aβ 

1–42 production are related to inhibition of the Rho-ROCK 

pathway both in cell cultures and in a transgenic mouse model 

of AD (Zhou et al 2003). However, many other groups have 

suggested that the decrease in Aβ 1–42 production by these 

NSAIDs is due to their direct inhibitory effects on γ-secretase 

rather than due to the inhibition of the Rho-ROCK pathway 

(Eriksen et al 2003; Takahashi et al 2003; Weggen et al 

2003; Beher et al 2004; Kukar et al 2005; Leuchtenberger 

et al 2006). Statins are also reported to reduce Aβ produc-

tion in cell cultures and a transgenic mouse model of AD 

(Fassbender et al 2001; Petanceska et al 2002). The inhibition 

of Aβ production by statins is mediated by both the cholesterol 

lowering-dependent and -independent mechanisms (Cole and 

Vassar 2006). Although the precise molecular mechanisms 

remain to be determined, the reduction of Aβ by statins is at 

least partly attributed to the enhancement of α-secretase activ-

ity (Kojro et al 2001; Parvathy et al 2004). Independent of the 

depletion of cellular cholesterol levels, statins inhibit small 

GTPases including Rho by lowering protein isoprenylation 

via the reduction of mevalonate synthesis (Cole and Vassar 

2006). It has been suggested that the inhibition of Rho-ROCK 

by statins results in the activation of α-secretase cleavage 

(Pedrini et al 2005) or the enhancement of APP lysosomal 

degradation (Ostrowski et al 2007), both of which lead to 

the inhibition of Aβ production. In addition, it was recently 

reported that Aβ inhibits neurite outgrowth through the activa-

tion of the Rho-ROCK pathway in SH-SY5Y neuroblastoma 

cells (Petratos et al 2008). It was suggested that the inhibitory 

effect of Aβ is at least partly mediated by the induction of an 

alternatively spliced form of CRMP-2, ie, CRMP-2A, and the 

upregulated phosphorylation of CRMP-2 by ROCK. These 

data suggest that the Rho-ROCK pathway is involved not only 

in Aβ production but also in Aβ-induced neurite outgrowth 
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inhibition, suggesting that Rho-ROCK blockers would be 

benefi cial in the treatment of AD patients.

Development of Rho-ROCK 
inhibitors
In the case of the Rho inhibitor, the cell-permeable C3 analog 

BA-210 was developed, and this molecule is currently in 

phase I/IIa clinical trials mainly to test its safety and toler-

ability in patients with acute thoracic or cervical spinal cord 

injuries without motor or sensory function (McKerracher 

and Higuchi 2006).

With regard to ROCK inhibitors, several types have 

been reported. Isoquinoline derivatives are typical ROCK 

inhibitors, and fasudil is one example (Figure 3) (Uehata et al 

1997; Shimokawa 2002; Sasaki et al 2002). Fasudil blocks 

ROCK by competitive association with the ATP binding site 

of the kinase with a K
i
 value of 0.4 µM (Nagumo et al 2000; 

Jacobs et al 2006; Yamaguchi et al 2006a). Both ROCKI and 

ROCKII are inhibited by fasudil with IC
50

 values of 0.26 µM 

and 0.32 µM, respectively (Shibuya et al 2005). Regarding 

the specifi city, cAMP-dependent protein kinase (PKA) and 

protein kinase C are also inhibited by fasudil with K
i
 values of 

1.0 µM and 9.3 µM, respectively (Uehata et al 1997; Sasaki 

et al 2002). Hydroxyfasudil, a major active metabolite of 

fasudil in vivo, is slightly more effective than the original 

compound (Figure 3) (Rikitake et al 2005; Shibuya et al 

2005). Dimethylfasudil (H-1152P) is an optimized derivative 

of fasudil, and it demonstrates higher potency and selectiv-

ity with K
i
 values of 1.6 nM for ROCK, 630 nM for PKA, 

and 9.27 µM for PKC (Sasaki et al 2002). More selective 

ROCK inhibitors in this category have also been developed 

by improvement of the fasudil and dimethylfasudil molecules 

(Tamura et al 2005). Y-27632, another type of ROCK inhibi-

tor, is in the category of 4-aminopyridine derivatives (Uehata 

et al 1997). Y-27632 inhibits both ROCKI and ROCKII 

by competitively binding to the ATP binding pocket with 

K
i
 values of 0.22 µM and 0.3 µM, respectively (Ishizaki et al 

2000; Jacobs et al 2006; Yamaguchi et al 2006b). With regard 

to its specifi city, Y-27632 also inhibits citron kinase, PKN, 

PKC, and PKA with K
i
 values of 5.3 µM, 3.1 µM, 73 µM, and 

25 µM, respectively (Ishizaki et al 2000). Optimization of this 

series produces a more potent ROCK inhibitor, ie, Y-39983, 

which exerts therapeutic effects on the axonal regeneration 

of crushed optic nerves (Sagawa et al 2007) and reduction of 

hydroxyfasudilfasudil

Y-27632 Y-39983

Dimethylfasudil
(H-1152P)

.2HCl

Figure 3 The chemical structures of ROCK inhibitors.  Two typical ROCK inhibitors, ie, fasudil and Y-27632, and their derivatives are shown. Isoquinoline derivatives, including 
fasudil, hydroxyfasudil, and dimethylfasudil, are represented on the upper side. 4-Aminopyridine derivatives such as Y-27632 and Y-39983 are shown on the lower side.
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intraocular pressure, which is benefi cial in the treatment of 

glaucoma (Nakajima et al 2005; Tokushige et al 2007). Other 

types of ROCK inhibitors have also been described (Mueller 

et al 2005; Kubo et al 2007; Shimokawa and Rashid 2007).

Safety issues
Fasudil, the only clinically available ROCK inhibitor, can be 

used to predict the expected side effects of ROCK inhibitors in 

humans. ROCK inhibition by fasudil in patients with cerebral 

vasospasm does not cause any severe side effects (Shibuya 

et al 1992). Additionally, in clinical trials of fasudil, in which 

patients with stable effort angina or acute ischemic stroke were 

treated, fasudil was well tolerated with no severe side effects, 

including none on the blood pressure and heart rate (Shimo-

kawa et al 2002; Shibuya et al 2005; Vicari et al 2005).

However, ROCKI- or ROCKII-knockout mice exhibited 

developmental abnormalities (Thumkeo et al 2003; Shimizu 

et al 2005), and the administration of Y-27632 to mouse 

embryos resulted in severe prenatal defects (Wei et al 2001). 

These data strongly indicate that ROCK has critical functions 

during the developmental stage. Interestingly, it was recently 

reported that ROCK inhibition by the intracerebroventricular 

administration of Y-27632 increases anxiety-related behavior 

in mouse emotional behavior tests (Saitoh et al 2006). In 

addition, long-term topical administration of high doses of 

Y-39983 to the eyes results in sporadic punctate subconjunc-

tival hemorrhage in rabbit and monkey eyes (Tokushige et al 

2007). Therefore, further evaluation is required to assess the 

safety of ROCK inhibitors.

Concluding remarks
In this review, we summarize the therapeutic effects of Rho-

ROCK inhibitors in animal models of CNS disorders such as 

spinal cord injuries, stroke, and AD. Further, in stroke patients, 

ROCK inhibition by fasudil led to therapeutic effects without 

severe side effects. These data strongly suggest that Rho-ROCK 

inhibition is a promising strategy to overcome CNS disorders 

such as spinal cord injuries, stroke, and AD in humans.
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