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Purpose: The authors have previously validated an Ocular Pressure Estimator (OPE) that can 

estimate the intraocular pressure (IOP) during external ocular compression (EOC). The authors 

now apply the OPE in clinical states where EOC is clinically important. The original work is 

described for two periods of risk: during sleep and during the digital ocular massage (DOM) 

maneuver used by surgeons after trabeculectomy to keep the operation functional. Other periods 

of risk for external ocular compression are then reviewed.

Methods: The first protocol estimated the IOP in the dependent eye during simulated sleep. Subjects 

had their IOPs initially measured in an upright-seated position, immediately upon assuming a right eye 

dependent side sleeping position (with nothing contacting the eye), and then 5 minutes later while still 

in this position. While maintaining this position, the fluid filled bladder of the OPE was then placed 

between the subject’s closed eye and a pillow during simulated sleep. The IOP was continuously 

estimated in this position for 5 minutes. The subjects then had the IOP measured in both eyes in an 

upright-seated position. The second protocol determined if a larger vertical cup-to-disc ratio was 

more common on the side that patients reported they preferred to sleep on. The hypothesis was that 

chronic asymmetric, compression induced, elevations of IOP during sleep would be associated with 

otherwise unexplained asymmetry of the vertical cup-to-disc ratio. The third protocol assessed the 

IOP during DOM. The OPE was used to characterize the IOP produced during the DOM maneuver 

of five glaucoma surgeons. After this, 90 mmHg was chosen as a target pressure for DOM. The 

surgeons were then verbally coached during three additional compressions. After a 5-minute period, 

the surgeons were asked to reproduce this targeted IOP during subsequent compressions.

Results: The mean IOP during the “sleep session” was 22±5 mmHg (SEM). The mean peak 

pressure was 40±11 mmHg (SEM) and the mean trough pressure was 15±2 mmHg (SEM). 

There was a 78% agreement between the eye that was reported to be dependent during sleep 

and the eye with the larger vertical cup-to-disc ratio, for eyes with at least a 0.10 cup-to-disc 

ratio difference, P=0.001, n=137. The OPE estimated an average induced IOP during typical 

DOM of 104±8 mmHg (SEM), with each compression having an average range of 17±3 mmHg 

(SEM). After coaching, and a 5-minute waiting period, the average induced IOP reduced to 

95±3 mmHg (SEM) with a reduced average range of IOP to 11±1 mmHg.

Conclusion: The OPE was successfully used to estimate the IOP while subjects experienced 

EOC during normal sleep postures. These EOC-induced elevations of IOP were considerable, 

and likely contribute to significant ocular pathology, not only for glaucoma, but for retinal 

vascular occlusive diseases, retinal vascular leakage, and the induction of the ocular-cardiac 

reflex in infants, as well. The correlation of a larger vertical cup-to-disc ratio in patients with 

a sleep posture preference suggests a causal relationship, since patients with other conditions 

known to be associated with cup-to disc ratio asymmetry were excluded from this study. The 

OPE is a useful device to teach DOM to surgeons and patients for home use.
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Introduction
Elevated intraocular pressure (IOP) is an unambiguous and 

established risk factor for glaucomatous optic nerve damage. 

Historically, the IOP in live humans has been estimated with 

many different devices, all of which directly or indirectly apply 

force to the globe while the eyelids are open, and the devices 

have access to the ocular surface. There are instances when 

the IOP is clinically relevant, but existing devices that estimate 

IOP are impossible to use. These clinical settings occur when 

patients’ eyes are closed, eg, during sleep, while rubbing the 

eyes, and during the digital ocular massage (DOM) maneuver 

that is used after trabeculectomy surgery to maintain a func-

tional bleb. In this paper, the following original protocols were 

performed to characterize the IOP transients induced during 

periods of external ocular compression.

The authors have invented, constructed, and validated 

such a device. The details of the device’s construction and 

its validation on a manometrically cannulated human cadaver 

eye and an in vivo pig eye are thoroughly described.1 Briefly, 

the ocular pressure estimator (OPE) was designed around the 

principle that if two vessels with similar wall compliances are 

placed in contact with one another within a confined space, 

and an external force is applied to one of the vessels, the 

pressure inside both vessels becomes the same. For example, 

if two tennis balls are placed into a can, and an external force 

pushes on the outermost ball, the pressure inside both balls 

becomes the same. The OPE is a fluid-filled device with a 

wall compliance that is similar to the eye wall: flexible, but 

relatively inelastic. The OPE has a thin fluid-filled bladder 

that is approximately 1.0×1.5 cm in size, and 2–3 mm thick 

when filled with water, and ready to use. A fluid continuum 

from the lumen of the bladder to the pressure transducer 

was established with high-pressure tubing that terminated 

in a three-way stopcock that was attached to the pressure 

transducer. The stopcock enabled the system to be filled 

with water and to be calibrated with a fluid column lifted 

above the transducer at different heights. The output of the 

transducer was amplified and sent to a strip chart recorder. 

Pressure transients experienced within the fluid-filled blad-

der (the portion of the OPE that is placed against the eye) 

were hydraulically transmitted to and sensed by the pressure 

transducer, remotely located from the fluid-filled bladder. 

Once the OPE was constructed, an analogous system was 

configured, only for the control setup, the device terminated 

in a needle for globe cannulation, instead of the fluid-filled 

bladder. The OPE was used for two of the clinical experi-

ments described in this paper.

Protocol 1: external ocular compression 
during sleep (short-term exposure)
1)	 Determination if simply changing positions from sitting 

to reclining on one side, without any contact with the 

dependent eye induces changes in IOP (n=5).

2)	 Determination of induced IOP when the dependent eye 

is externally compressed when it comes into contact with 

a pillow (n=9).

Protocol 2: external ocular compression 
during sleep (long-term exposure)
1)	 Determining the correlation of vertical cup-to-disc ratio 

asymmetry, which has no obvious cause, to patients’ 

reported preferred sleep posture that places their depen-

dent eye on the same side that has the larger optic nerve 

cup (n=137).

Protocol 3: external ocular compression 
during DOM
1)	 Determining the induced IOP elevations during the DOM 

maneuver using the OPE, and then using the OPE to teach 

surgeons to reproduce a reasonable experimental target 

IOP during DOM (n=5).

Glaucoma is currently thought to result from a derange-

ment in the normal interrelationships of IOP, vascular per-

fusion of the optic nerve, and the mechanical integrity of 

the optic nerve and its surrounding support structures. For 

practical reasons, clinical evaluations of these variables and 

visual function have largely been limited to daytime. Many 

investigators have recognized the potential importance of 

fluctuations in ocular physiology at night, and descriptions 

of diurnal variations of aqueous flow,2–4
 
IOP,5,6 and aqueous 

humor protein concentration7 have been published. The 

assessments of IOP during “sleep”5,6 in all prior studies have 

focused on measurements by standard methods on subjects 

who were awakened for measurements. Distinctions have 

been made between the differential effects of sudden awak-

ening versus gentle arousal on IOP during “sleep”.5,6 Severe 

unilateral visual loss has also been described in patients 

with normal blood pressures during general anesthesia; 

the visual loss was produced by ocular compression by the 

passive weight of the head while patients were positioned 

in the prone position.8 In a case report, an obese patient 

with unilateral floppy eyelid syndrome, keratoconus, and 

advanced glaucoma was described;9 this patient was reported 

to routinely sleep with “significant digital compression of 

the involved eye”.
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The focus of the first protocol of this study was to ascer-

tain whether the weight of the head, in association with 

certain sleeping postures, could transmit pressure to the 

orbit and raise the IOP to levels that would be considered 

clinically important in an awake state. The OPE was used to 

make these measurements.

The vertical cup-to-disc ratio is a common measurement 

that is used to characterize the presence, severity, and stability 

of glaucoma. As glaucoma progresses, the vertical cup-to-

disc ratio becomes larger. An enlarged cup-to-disc ratio is 

a characteristic feature of glaucomatous optic atrophy that 

is uncommon with other forms of optic atrophy. In the sec-

ond protocol of this paper, the authors sought to determine 

whether patients who were first observed to have a mea-

surable vertical cup-to-disc ratio asymmetry subsequently 

reported that they had a preferred sleep posture that put the 

side with the larger cup in a dependent position during their 

lifetimes. This protocol was designed to test the hypothesis 

that chronically elevated nocturnal elevations of IOP due to 

external compression in the dependent eye could produce 

asymmetric optic nerve damage, when all other potential 

causes for this had been excluded.

The potential for failure at different times after trabeculec-

tomy has resulted in several strategies to maintain the patency 

of the bleb. One strategy is to compress or massage the globe 

through a closed lid, elevating the IOP, and mechanically 

forcing aqueous humor through the surgical wound.10–18 When 

successful, the forced passage of aqueous humor breaks weak 

adhesions in the outflow pathway and extends the bleb area. 

The usual endpoint of DOM is either visual elevation of the 

bleb with attendant reduction of the IOP, or simply a substan-

tial diminution of the IOP. The technique usually involves 

cycles of externally applied pressure, followed by intervals of 

no pressure application. This technique allows the clinician 

to visualize the outcome of the effort, provides a moment of 

recovery for the patients who occasionally experience dis-

comfort, and provides time for reperfusion of the eye. DOM 

is administered by surgeons during postoperative examina-

tions and is often taught to patients for self-administration at 

home. There are currently no precise guidelines regarding the 

amount or duration of force required, except that it should be 

sufficient to lower the IOP and elevate, or extend, the filtra-

tion bleb. These are both endpoints that cannot be reliably 

assessed outside the physician’s office. Additionally, the IOP 

induced during successful DOM is unknown.

The focus of the third protocol of this review paper 

was to use the OPE to quantify and characterize the IOP 

transients produced during DOM, as typically performed 

by several surgeons who utilize it in postoperative manage-

ment. Once a reasonable experimental target pressure was 

established, the OPE was then used to teach these surgeons 

how to produce this targeted pressure during subsequent 

DOM maneuvers.

Materials and methods
Two approaches were taken to assess the potential impact of 

external ocular compression during sleep. The first protocol 

was designed to estimate IOP in the dependent eye during 

simulated “sleep”. One hour before a simulated “sleep” 

session, five normotensive human volunteers had their IOP 

measured by Goldmann applanation tonometry. This was 

done 1 hour before simulated “sleep” to ensure that the 

anesthetic effect from measuring the IOP had dissipated, so 

the subjects could feel any discomfort that might be produced 

during ocular compressions during the “sleep session”. 

Then, just before lying down, these subjects had their IOPs 

estimated by a Perkins tonometer in an erect sitting position 

in both eyes. They were then instructed to lie on a bed on 

their right side and not to have their dependent eye come in 

contact with any surface. The subjects’ IOPs were measured 

with a Perkins tonometer immediately after assuming this 

side-sleeping posture and again 5 minutes after maintaining. 

This protocol was similar to the one described for the next 

experiment, except there was no external compressive pres-

sure applied to either eye in this initial protocol.

Healthy ocular normotensive subjects were subsequently 

instructed to lie on a bed on their right side with their head on 

a pillow. Before the side of their face made contact with the 

pillow, the thin pressure sensing fluid-filled bladder portion 

of the OPE was placed over the closed eyelid and allowed to 

come to rest between the closed eyelid and the pillow. Care 

was taken to place the device on the eyelid over the globe, 

without contact with the bony orbit. The plastic surface of 

the device loosely stuck to the eyelid skin without the need 

for adhesives. Patients were instructed to assume a position 

that was a realistic sleep posture for them and to allow the 

fully relaxed weight of their head come to rest on the pillow, 

without forcing their head into it. Similar to the noncompres-

sive protocol described earlier, the IOP was estimated by 

Goldmann applanation tonometry 1 hour before and within 

1 minute after a 5-minute “sleep” session. Exophthalmometry 

readings were also recorded for all subjects.

The second protocol of this paper was designed to study 

the relationship of vertical cup-to-disc ratio asymmetry to a 
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patient’s reported sleep posture preference. It is postulated 

that years of external ocular compression during sleep, with 

clinically relevant increases of IOP, could result in a vertical 

cup-to-disc ratio asymmetry, if the patient had a preferred 

sleep posture preference with one eye being more cons-

stently in a dependent position. The population for this arm 

of the study consisted of all patients contacted by one of the 

authors (MSK) during an 8-month period who fulfilled the 

following criteria.

Patients were initially identified by the presence of a 

difference in the cup-to-disc ratio between the two eyes. 

After a qualitative difference was established, quantification 

of the vertical cup-to-disc ratios was performed. Estimates 

were made using a 90 D lens with a slit lamp through dilated 

pupils. Patients had to have an unambiguous disparity in 

the vertical cup-to-disc ratio asymmetry of greater than or 

equal to 0.1 to be included in this study. After the examiner 

documented the presence and degree of the cup-to-disc ratio 

asymmetry, a uniform series of questions were then asked 

as follows: “When you sleep, do you tend to sleep on our 

back, your tummy, or your side?” If patients reported that 

they were strictly back sleepers they were not eligible for 

this study; the assumption being that if they were correct 

about their sleep posture, there would be no opportunity for 

the weight of the head to be transmitted to the globe. For 

the purposes of this study, sleeping preferentially on one’s 

left side was considered equal in potential risk to sleeping 

in a prone position with one’s head turned to the right; the 

left eye is dependent in both instances. When possible, 

a patient’s spouse was asked to corroborate the patient’s 

stated sleep preference. In general, there was excellent 

spouse–patient agreement,19 and if the responses were oppo-

site, the patient was excluded from this study. After initial 

questioning, patients would occasionally state that they 

always slept on a particular side. This was usually second-

ary to a cardiorespiratory or orthopedic condition.20,21 More 

commonly, patients designated themselves as side sleepers, 

prone sleepers, or both. To ascertain side preference, the 

following question was asked: “When you sleep on your 

side, do you have a favorite side, or do you flip from side 

to side? You do not have to have a favorite side”. The latter 

questions were designed to identify those patients with true 

side preferences while providing them the verbal cue that not 

having a preference was acceptable. If patients preferred a 

prone position, they were asked, “When you sleep on your 

tummy, do you turn your head more often to the left or the 

right, or do you really have no preference for one side over 

the other? You do not have to have a favorite side”. For all 

patients identified as having cup-to-disc ratio asymmetry 

and a sleep position preference, a record was made of age, 

sex, sleep position preference, the vertical cup-to-disc ratio 

of both eyes, and the IOPs (Goldmann applanation tonom-

etry). All patients with a greater than 2 mmHg difference 

of IOP between the two eyes were excluded; patients being 

treated for bilateral glaucoma had to satisfy this criterion 

before and consistently during treatment. Patients with 

asymmetric ocular disease that would differentially affect 

the IOP (ie, unilateral pseudoexfoliation, trauma, pigment 

dispersion) or the number of optic nerve head axons (ie, 

retinal and optic nerve vascular occlusions, retinal laser 

treatment) were excluded. Patients with ambiguous verti-

cal cup-to-disc ratios were also excluded; these included 

gradually sloping rims, irregularly shaped cups and optic 

disc abnormalities. Patients were also excluded if they had 

presurgical ammetropia of $2 D.

In the third protocol of this study, the OPE was used to 

estimate the IOP transients produced during DOM. Five 

glaucoma surgeons, experienced in the postoperative use of 

DOM, participated in these experiments. Unoperated, ocular 

normotensive human beings were used as subjects. Initially, 

each surgeon was asked to apply the fluid-filled bladder to 

the subject’s closed eyelid and apply digital pressure through 

it to the patient’s globe, in a manner that reproduced their 

typical DOM technique. They were encouraged to produce 

four compressions, each for a 10-second period. They were 

instructed to maintain a constant induced pressure during 

each compression. These initial compressions were done 

while the surgeons were masked to the pressures they were 

producing. After the five surgeons had produced their ideal 

personal compression pressures, it was determined that 

all surgeons had produced a value of at least 90 mmHg. 

As a result of this, 90 mmHg was designated as a reasonable 

experimental “target” pressure to achieve during the next 

experiment. Each surgeon was again asked to perform 

DOM; only this time, one investigator provided verbal cues 

to “teach” the surgeon to feel the targeted IOP during three 

additional ocular compressions, while the “teacher” visual-

ized the induced pressures on the strip chart recorder, and 

the surgeon was visually masked to them. After 5 minutes, 

the surgeons were again asked to perform DOM in a masked 

manner, and try to repeat the target pressure of 90 mmHg 

that they had been taught to produce by coaching. Ethical and 

legal approval was obtained prior to the commencement of 

the study. This was provided by the University of Missouri-

Columbia, Columbia, Missouri. All experiments performed 

in support of this paper were performed in accordance with 

the tenets of the Declaration of Helsinki and followed rel-

evant institutional and national guidelines and regulations. 
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All patients provided written informed consent after receiving 

a thorough explanation of the protocol.

Results
Protocol 1, Experiment 1
The IOP was estimated in an erect and a right-sided reclining 

posture in five healthy young adults to determine whether 

assuming the latter posture without eye contact contributed 

to the IOP elevations observed during right-sided posture 

with eye contact (Table 1). There was no significant increase 

in IOP attributed to simply lying on the right side without 

dependent eye contact.

Protocol 1, Experiment 2
In general, the IOP graphs were similar to tonographic trac-

ings, showing fine respiratory associated pressure oscillations 

superimposed on a gradually decreasing pressure. A repre-

sentative tracing is seen in Figure 1. The mean IOP during 

the 5-minute test period for all subjects was 22±5 mmHg 

(SEM), n=9 (Table 2). The highest and lowest IOPs for 

different subjects varied considerably. The mean peak IOP 

during the test period was 40±11 mmHg (SEM) and the 

mean trough IOP was 15±2 mmHg (SEM). One subject had 

an estimated pressure that averaged 57 mmHg and which 

approached 100 mmHg (after a position switch) for the last 

minute and a half of testing; this subject was almost asleep 

when the testing period was stopped.

In all subjects but one (subject F), there was a drop in 

the IOP after the sleep session in the dependent eye only 

(Table 2). This drop in IOP was judged to be a further 

confirmation that eye contact with the pillow had caused 

an orbital compression. In the one case (subject F) where 

pre- and post-“sleep” IOPs were the same, the estimated IOP 

during side-sleeping was less than the Goldmann IOP during 

the entire simulated “sleep” session. These data for subject F 

were interpreted to be the result of an incomplete mechanical 

coupling of the closed eye and the bedding pillow, despite the 

observation of proper positioning of the fluid-filled bladder on 

the eyelid before and just after the “sleep” session. There was 

no apparent relationship of the exophthalmometry readings 

to changes of IOP observed during side sleeping.

Protocol 2, Experiment 1
A total of 137 patients were studied in the sleep position 

preference association with cup-to-disc ratio asymmetry 

protocol. There were 97 males and 40 females. The mean 

age was 62±16 years (SD) for men and 56±18 years (SD) 

for women. The age range was from 14 to 90 years. The 

patients studied were from the Harry S. Truman Memorial 

Veteran’s Hospital and the University of Missouri Eye Clinic. 

The analysis of the cup-to-disc ratios in this study assigned 

equal weight to the difference between a 0.1 and a 0.2 cup 

and to that between 0.7 and a 0.8 cup, both with a differ-

ence of 0.1. The difference between the latter pair of cups, 

Table 1 Results of the estimates of IOP in normal human 
volunteers while erect, just after assuming a reclining posture on 
the right side, and after 5 minutes in this reclining posture

Patient Erect On side On side, after 5 minutes

1) 25, F 16/15 16/16 16/16
2) 32, F 10/11 9/11 10/11
3) 29, M 13/14 14/14 14/13
4) 25, M 11/11 12/12 12/12
5) 27, F 15/15 16/16 16/16

Notes: No contact was made with the dependent right eye except for during 
the IOP measurements that were all made with the same Perkins tonometer. IOP 
measurement is in mmHg. Patient age in years and sex are noted, n=5.
Abbreviations: IOP, intraocular pressure; F, female; M, male.

Figure 1 The tracing of subject B during the 5-minute simulated “sleep session”.
Notes: The initial rise and slow drift toward a lower IOP plateau was the most characteristic pattern observed among the other subjects. Note the fine superimposed 
respiratory pressure variations.
Abbreviation: IOP, intraocular pressure.
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however, may represent a more pathologic situation since the 

number of axons lost as a cup progresses from 0.7 to 0.8 is 

probably greater than when a cup progresses from 0.1 to 0.2, 

since there are likely more optic nerve axons in an annulus 

of larger diameter.

When the variable of a sleep side preference was con-

sidered along with age and sex in a multiple regression 

analysis (Statistical Analysis System software, version 6; 

SAS Institute Inc., Cary, NC, USA), age and sex did not con-

tribute significantly to the linear regression model, although 

there was a trend for the magnitude of the cup-to-disc ratio 

asymmetry to increase with increasing age. The data relat-

ing sleep side preference and cup-to-disc ratio asymmetry 

were evaluated in subgroups. The subgroups were created 

by pooling patients who were estimated to have at least a 

0.10, 0.15, 0.20, and 0.25 difference in the cup-to-disc ratio 

between the two eyes. Therefore, all 137 study subjects had 

a cup-to-disc ratio asymmetry of $0.1. A smaller subset of 

the total patients had a cup-to-disc ratio that was $0.15, and 

all subjects in this group were also included in the group that 

had a cup-to-disc ratio asymmetry of $0.1. This strategy 

was applied to other degrees of cup-to-disc ratio asymme-

try, so that all subjects in the group with a cup-to-disc ratio 

asymmetry of $0.25 were included in all the groups with 

the smaller cup-to-disc ratio asymmetry degrees. There was 

a 78%–85% agreement between the side with the larger 

cup-to-disc ratio and the side with eye dependency during 

sleep. This degree of agreement was statistically significant 

for all age groups (McNemar test,22 P#0.01 for all four 

subgroups; Table 3 and Figure 2). The findings in this arm 

of the study were similar for men and women. In this study 

population, 63% preferred sleeping on their right sides, a 

statistically significant difference, P=0.0013, by one sample 

test of proportions.

Table 2 Results from of the all subjects during the 5-minute simulated “sleep session”, n=9

Subject Intraocular pressures Hertel measurements 
right–left eyePresleep Postsleep Mean during sleep Peak/trough during sleep 

A 9/10 6/11 57 100/19 14–14
B 15/15 12/14 17 30/13 13–12
C 16/16 9/16 19 95/14 17–16
D 18/20 16/21 27 32/24 19–20
E 8/10 6/10 21 25/15 18–18
F 14/14 14/14 6 12/05 17–17
G 10/10 6/10 15 21/13 13–12
H 14/14 10/14 14 15/13 16–15
I 18/16 12/18 21 30/16 19–19

Notes: Right eye/left eye, right eye is the dependent eye. Pre- and post-“sleep” IOPs were measured using the same Goldmann applanation tonometer. All other IOPs were 
estimated with the fluid-filled bladder and the OPE. The mean “sleep” IOP is a time weighted average during the 5-minute simulated “sleep session”. All IOP measurements 
are in mmHg and Hertel exophthalmometry measurements are in millimeters.
Abbreviations: IOP, intraocular pressure; OPE, ocular pressure estimator.

Table 3 A statistically significant relationship was found between the preferred sleep posture and the side with the larger cup-to-disc 
ratio using a McNemar test for paired data with dichotomous outcomes

Cup-to-disc ratio 
difference of at least

Side with the 
larger optic cup

Side preferred 
during sleep

Probability of 
agreement

Agreement 
(%)

Right Left

1) $0.10 Right 71 15 P=0.001 78
Left 15 36 n=137

2) $0.15 Right 47 8 P=0.001 81
Left 7 18 n=80

3) $0.20 Right 31 3 P=0.01 85
Left 5 13 n=52

4) $0.25 Right 21 2 P=0.005 84
Left 3 5 n=31

Notes: Data were subgrouped into those patients exhibiting a cup-to-disc ratio disparity $0.10, 0.15, 0.20, and 0.25. Agreement between the reported preferred side of 
eye dependency during sleep and the optic nerve with the larger cup-to-disc ratio was calculated for each subgroup. For patients observed to have at least a 0.10 cup-to-disc 
ratio asymmetry, there was a 78% agreement (71+36/total).
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Protocol 3, Experiment 1
In the third protocol of this paper, five surgeons attempted 

to produce a constant induced pressure that they felt was 

typical for them during their use of DOM. A typical tracing 

can be seen in Figure 3. Each of these compressions had 

a mean pressure value and range. Additionally, since four 

compressions were made by each surgeon, each surgeon 

had his own mean pressure and mean range of pressures 

for all four compressions, as well as variation around both 

of these means. All numerical data collected during DOM 

on human subjects are shown in Table 4. The mean IOP 

induced by all surgeons during this phase of the experiment 

was 104±8 mmHg (SEM). The mean of the range of pressure 

for these pre-coached compressions was 17±3 mmHg (SEM); 

the target range was 0 mmHg.

Subsequently, each surgeon received verbal cues during 

three more ocular compressions in order for the surgeon 

to acquire a tactile sensation for an induced pressure of 

90  mmHg. After 5 minutes, the surgeons were asked to 

reproduce the 90 mmHg pressure while no longer receiving 

any cues except their learned tactile sense. Each surgeon 

had three attempts to produce the 90 mmHg target pressure. 

Reported results are the mean and SEM for the three attempts. 

The mean induced IOP for all surgeons after “training” to 

produce 90 mmHg was 95±3 mmHg (SEM; Table 4). The 

mean range of pressures after “training” for all surgeons 

decreased to 11±1 mmHg (SEM).

Discussion
For the purposes of discussion, the term “ocular-pillow cou-

pling” (OPC) will refer to the mechanical coupling of the 

closed eye with any surface during sleep and the potential 

increase in IOP attendant with it.

The data collected in this study support the hypothesis 

that IOP can be elevated to a clinically significant level dur-

ing eye contact with a pillow during a side sleeping posture. 

The presence of respiratory variation, the progressive 

decrease in IOP measured with the OPE during the “sleep” 

session, and the unilateral decrease in IOP of the dependent 

compressed eye after the “sleep” session all substantiate the 

hypothesis that the weight of the head is transmitting pressure 

to the globe when physical contact is made with a pillow. 

The effects of neck muscle contraction cannot be negated 

and could either falsely depress or elevate the IOP; the neck 

muscle tone varies from flaccid in rapid eye movement sleep 

to active in lighter stages of sleep.23

The estimates of IOP during OPC may be affected by 

many variables. The device itself was calibrated mano-

metrically just before each “sleep session”. The plastic of 

the fluid-filled bladder was flexible but relatively inelastic. 

These properties were chosen to match those of the globe. 

When the two systems were physically adjacent and pres-

sure was applied to one, the pressure of the fluid within both 

chambers became approximately equal. The ability of this 

device to estimate IOP was validated using a cannulated 

Figure 2 Graph of the vertical cup-to-disc ratio of the right eye minus the left eye, versus age, for patients observed to have at least a 0.10 cup-to-disc ratio asymmetry.
Notes: The eye with the larger optic cup coincided with the side of sleep preference 78% of the time, P#0.001, n=137. Patients who reported they slept on their right side 
appear as • and those who preferred their left side as +. Patients with larger cup-to-disc ratios in the right eye who preferred a right-sided sleep posture therefore appear as 
a • above the horizontal and those with a larger cup-to-disc ratio in the left eye who preferred a left-sided sleeping posture appear as a + below the horizontal.
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human donor eye in a mock orbit and a cannulated pig eye, 

in vivo.1 It is, however, important to realize that the OPE, 

like other external methods for estimating IOP, is register-

ing IOP in a perturbed system. Even though the plastic 

bladder was designed to be as thin as possible, it was still 

approximately 1.5 mm thick when it was used. This extra 

thickness meant that an individual’s eye effectively came 

into contact with external surfaces sooner than it would have 

without the plastic fluid-filled bladder being interposed. 

It was likely that the perturbations induced by the OPE 

slightly raised the IOP, as do other applanating devices 

used to estimate IOP. The fact that the OPE only produced 

accurate estimates of the IOP does not, however, invalidate 

the conclusion that sleeping on one’s eye can substantially 

elevate that eye’s IOP.

The concept that a particular sleep posture could be 

pathologic to the eyes has precedent. The floppy eyelid 

syndrome24 is a condition that is typically manifest in obese 

patients. Patients with the floppy eyelid syndrome present 

with chronic ocular surface pathology that is the result of 

ocular contact with various surfaces incurred while sleeping. 

The eyelids in these patients are not anatomically and 

functionally able to maintain proper tension on the globe to 

prevent this chronic nocturnal trauma. It has been observed 

by authors describing this clinical entity that asymmetric 

findings in this condition are the result of sleep posture 

preferences that place the more injured eye in a dependent 

position.24 In  the initial description of this condition, six 

out of six patients who reported a sleep posture preference 

of one side over another had only ipsilateral ocular surface 

Figure 3 An original data tracing is shown that was produced while one glaucoma surgeon performed DOM in conjunction with the OPE.
Notes: The fluid-filled bladder was interposed between the surgeon’s fingertips and the subject’s closed eyelid. The numbers written on the graph are pressures in mmHg. 
The surgeon was first instructed to reproduce the magnitude of the compression they felt was typical for their ideal DOM maneuver while blinded to the IOPs they were 
inducing; from the left side of the tracing, this is the first four bracketed peaks labeled in cursive “how high he thinks”. Each compression has a pressure range and as such, 
a time-weighted mean pressure value. Subsequently, each surgeon was “coached’ while attempting to produce a target IOP of 90 mmHg (seen as the next two bracketed 
compressions labeled “guided” and a subsequent one labeled “± guided”). Another surgeon provided verbal feedback on the IOPs that were being produced while watching 
them on OPE’s strip chart recorder. After 5 minutes, the newly “trained” surgeon was asked to reproduce this target pressure, without the benefit of coaching, for three more 
compressions (the last three peaks seen at the far right of the figure, bracketed, and labeled “unguided”). All DOM was performed on human subjects with normal IOPs.
Abbreviations: DOM, digital ocular massage; IOP, intraocular pressure; OPE, ocular pressure estimator.
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pathology; only historical patient reports were utilized. All 

patients who manifested unilateral ocular surface pathology 

had relief of their symptoms within 3 weeks after using a 

rigid shield over their eye. The significant improvement 

of signs and symptoms after this intervention strongly 

suggested that the mechanism of damage in this condition 

was the result of OPC.

The tracings obtained during the simulated “sleep” 

sessions are similar to tonographic results. The dynamics 

observed in the “sleep” tracings, however, result from both 

the pressure-sensitive outflow of aqueous humor from the 

anterior chamber and the decompression of the orbit proper 

from the extra weight of the head that is transferred to the 

orbit during OPC. It is therefore likely that patients with poor 

trabecular meshwork outflow facility would take longer and 

be less effective in decompressing their globes when the con-

stant weight of the head was applied to the orbit. However, 

since orbital decompression was measured simultaneously, 

this tracing was not as selective a measure of outflow facility 

as tonography. In most cases, the graph of IOP during OPC 

rose initially, slowly decreased during the “sleep session”, 

and tended to approach a new plateau level. The clinically 

relevant features of this graph are the time it takes to reach 

this new relatively stable IOP and the IOP magnitude of the 

plateau itself; both components contribute to the area under 

the IOP–time curve.

Table 4 Intraocular pressures induced during digital ocular massage

Surgeon Surgeons’ ideal DOM induced pressure 
(precoaching)

Reproducibility of targeted 90 mmHg  
(postcoaching)

Compression Range Mean Compression Range Mean Mean-90

A 1) 10 95 1) 13 98 08
2) 13 88 2) 18 100 10
3) 08 70 3) 08 110 20
4) 16 90
Mean 12 86 13 103 13
SEM 02 06 03 04 04

B 1) 46 102 1) 34 107 17
2) 21 93 2) 08 69 21
3) 48 122 3) 03 117 27
4) 21 126
Mean 29 111 15 98 22
SEM 11 08 10 15 03

C 1) 08 93 1) 06 87 03
2) 15 83 2) 10 100 10
3) 06 92 3) 06 91 01
4) 21 70
Mean 13 85 07 93 05
SEM 03 05 01 05 03

D 1) 10 113 1) 06 87 03
2) 07 118 2) 17 85 05
3) 08 97 3) 13 85 05
4) 32 107
Mean 14 109 12 86 04
SEM 06 05 03 01 01

E 1) 19 136 1) 06 105 15
2) 26 130 2) 08 91 01
3) 16 127 3) 17 85 05
4) 16 113
Mean 19 127 10 94 07
SEM 02 05 03 06 04

Mean of mean 17±3 104±8 11±1 95±3 10±3
Mean of SEMs 5±2 6±1 4±2 6±2 3±1

Notes: All pressures are in mmHg. Each individual surgeon had a range and time-weighted mean IOP for their pre- and postcoaching compressions. The absolute value of 
the difference between the 90 mmHg target pressure and the pressure actually produced during postcoaching massage is shown in the last column, and shows how close the 
surgeon came to reproducing the target pressure. Statistics on the entire group of surgeons are shown at the bottom of the table.
Abbreviations: IOP, intraocular pressure; DOM, digital ocular massage; SEM, standard error of mean.
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Orbital decompression in this model represents the 

decompression of the globe plus the cushioning effect of 

the orbital fat and ease of blood displacement from the bony 

orbit itself. It is likely that patients with an orbital infiltrative 

process such as thyroid ophthalmopathy would have a slower 

and less effective orbital decompression25 with OPC.

In general, the bony orbital rim should protect the globe 

from externally applied pressure unless the object that makes 

contact with the eye is protuberant, (eg, a hand) or is mold-

able (eg, a pillow). Similarly, it was expected that patients 

with higher readings on exophthalmometry would be at 

greater risk from this effect. However, in our ocular nor-

motensive subjects with exophthalmometry readings in the 

normal range, there was no apparent relationship between the 

sleep tracings and ocular protuberance. Perhaps abnormally 

protuberant eyes would show a more definite correlation. 

The higher incidence of glaucoma in the African–American 

population may be in part related to the phenomenon of 

OPC; African–Americans have a racial ocular prominence 

that may be up to 2 mm greater than Caucasians before it is 

considered abnormal.26

When considering the potential mechanisms of damage 

from OPC, several possibilities can be entertained. The typi-

cal fluctuations of aqueous humor flow and IOP occur slowly, 

and the eye has an opportunity to autoregulate its functions. 

With the pressure elevations that occurred during OPC, 

the change in IOP was much faster, leaving less chance for 

autoregulation to be effective. In addition, frequent and sub-

stantial changes in IOP may be more deleterious than gradual 

pressure changes of the same magnitude. Even though the 

periods of significant IOP elevation during OPC may last only 

a few minutes, when considered chronically, such relatively 

short periods may represent a major portion of the time during 

which an eye is exposed to damaging pressures.

To properly evaluate the perfusion of the optic nerve 

head and globe, considerations must be paid not only to the 

IOP but also to the systemic blood pressure as well. There 

is evidence that there are significant decreases in systemic 

blood pressure during sleep in normal subjects.27 Drops in 

nocturnal blood pressure in glaucoma patients exceed those 

reported for healthy young adults.28,29 Patients with progres-

sive visual field deterioration have statistically significantly 

lower blood pressure indices when compared to patients 

without visual field deterioration.28,29 Nocturnal hypotension 

is a likely contributor to the multifactorial insults that result 

in optic nerve morbidity.

Many ocular diseases are likely to be affected by the 

combined effects of OPC and nocturnal hypotension. Patients 

with glaucoma, who typically have poor outflow facility, a 

weakened optic nerve structure, and abnormal optic nerve 

head vascular autoregulation,30 may be especially likely to 

incur damage from these phenomena. These occult IOP 

elevations may also explain some cases of “low-tension” 

or “normal tension glaucoma”,31,32 of clinically worsening 

glaucoma in the face of repeatedly low office-measured IOPs, 

and of asymmetric glaucoma with reproducibly equal IOPs 

in the office. Studies of the natural history of low-tension 

glaucoma have not fully explained asymmetries in optic 

nerve cupping and visual field defects based on corresponding 

asymmetries in the office-measured IOP.31,32 The phenom-

enon of OPC may help to explain the pathogenesis of these 

asymmetric findings.

In one “normal” volunteer, the IOP measuring during 

“sleep” averaged 57 mmHg and peaked at 100 mmHg. This 

subject was quite comfortable during the time that his IOP 

was 100 mmHg. Ocular anesthesia from topical eyedrops 

was an unlikely explanation for this comfort since the “sleep 

session” was started 1 hour after the last topical medication. 

IOPs in the range of 80–100 mmHg were similarly found to 

be comfortable in subjects experiencing DOM performed in 

conjunction with the OPE. These levels of IOP are greater 

than many people’s diastolic blood pressure. Furthermore, 

they have been shown to impair axoplasmic flow in the optic 

nerve,33,34 mechanically deform the optic nerve head,35,36 

impair prelaminar37 and postlaminar38 optic nerve perfusion, 

and decrease the amplitude of the visual evoked potential.30 

This young individual, with normal baseline eye and blood 

pressure, was subsequently observed to have glaucomatous 

cupping in both eyes and an early visual field defect that 

corresponded to a notch in the optic cup. This patient consis-

tently slept on his sides and did not have a side preference. In 

routine practice, this patient would be diagnosed as having 

low-tension glaucoma.

The likely effect of simultaneous nocturnal hypoten-

sion and elevations of IOP from external compression is a 

decrease in ocular perfusion and/or and increased likelihood 

of rheologic turbulence. As such, OPC may have an adverse 

effect on any ocular disease that depends upon adequate per-

fusion. During the course of this study, we interviewed three 

patients who went to bed with normal vision and awoke with 

a retinal venous occlusion; all three patients stated that they 

preferred to sleep on the side of their vascular occlusion when 

asked the standard set of questions. In the recently described 

orbital infarction syndrome,39 two of the three cases described 

initiation of, or a substantial decrement of visual function 

upon awakening; OPC may have played a role in these cases. 

OPC may be related to the pathogenesis of acquired optic 

nerve pits,40,41 which are acquired over a short period of time 
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and are unilateral or bilateral, but acquired sequentially. 

Diabetic and hypertensive retinopathy are likely candidates 

for increased morbidity from OPC and nocturnal hypoten-

sion. These occult and chronic IOP transients may even influ-

ence the structural integrity of Bruch’s membrane and the 

natural history of age-related macular degeneration. Finally, 

OPC and nocturnal hypotension may affect a large subset of 

the population at all ages and may result in an accelerated 

axonal loss from the optic nerve, even in apparently normal 

eyes; the calculated “normal” rate of optic nerve axon loss 

of approximately 4,00042 to 5,600 axons43 per year may be 

adversely influenced by these phenomena.

A separate pathologic response to OPC may be the induc-

tion of the oculo-cardiac reflex. This reflex can be induced 

by ocular compression44 and its activation produces a vagally 

mediated brady-dysrhythmia that can cause fatal cardiac 

arrest.45 There is increased vulnerability of the heart to dys-

rhythmias during sleep46 and unconscious patients show a 

greater oculo-cardiac reflex than awake patients.44 The prone 

position of sleep, a position of risk for OPC, is associated 

with an increased risk of sudden infant death syndrome.47 The 

evidence implicating OPC as a potential contributor to the 

pathogenesis of some cases of sudden infant death syndrome 

is compelling and merits further study.

In considering the possible treatment of OPC, it would be 

expected that any device that transmits the forces of the head 

to the bony orbit could protect the globe from damage. The 

rigid Fox shield has been shown to be effective for postopera-

tive protection and for treating the floppy eyelid syndrome.24 

A similar device protecting both eyes should provide nec-

essary protection. A device that provides this binocular 

protection has been invented by one of the authors (MSK). 

Currently, he is recommending rigid shields as an adjunctive 

low morbidity treatment for functionally one-eyed glaucoma 

patients who have little reserve in their remaining eye and 

who report sleep postures other than strictly supine.

Our preliminary data suggest that the ocular compressions 

produced during normal sleeping postures can lead to sub-

stantial elevations of IOP. If the IOPs measured in this study 

were obtained in the office, they would likely be considered 

a risk factor for ocular pathology. The association between 

the side with the larger cup-to-disc ratio and the side with 

eye dependency during sleep may be causal. This study was 

not designed to identify causality or to address incidence. 

Further research, which is designed to address causality and 

to address incidence, and incorporates fundus photography, 

biometry, and sleep monitoring, is warranted, considering 

the broad implications of these findings; fortunately, this 

mechanism for ocular damage is most likely preventable.

The purpose of trying to identify and characterize patients 

with a sleep posture preference was to test whether chronic 

exposure to occult intermittent IOP elevations on one side 

might produce objective evidence of anatomic damage which 

was correspondingly asymmetric. To test this hypothesis, we 

specifically selected patients with asymmetry of both optic 

nerve cupping and of sleep posture preference. We would 

observe, however, that the concept of potential eye damage 

from OPC is not limited to damage on one side.

Possible sources of error in the cup-to-disc ratio asymme-

try arm of the study include the estimates of the cup-to-disc 

ratios themselves and the sleep preferences reported by the 

patients. In this pilot study, one author (MSK) was the sole 

judge of the vertical cup-to-disc ratios. When the margin of 

the disc was sloping or ambiguous, the patient was not asked 

about sleep preference and was excluded from this study. 

It was felt that cup-to-disc ratio asymmetry of greater than 

or equal to 0.1 could be reliably identified using the standard 

methods described. Intra-observer and inter-observer vari-

ability are important to consider when the cup-to-disc ratio is 

estimated.48 For this reason, this pilot study relied upon only 

one final quantifier of the cup-to-disc ratios; interobserver 

variability was thus eliminated.

Because larger degrees of cup-to-disc ratio asymmetry 

are more obviously identified as asymmetric, the statistics 

were applied to the data in subgroups. In the group that con-

tained patients with at least a 0.10 vertical cup-to-disc ratio 

asymmetry, there were 137 patients; 100% of the patients 

had at least a 0.10 vertical cup-to-disc ratio asymmetry 

(Table 1). There were 80 patients (58%) in the group with 

at least a 0.15 difference, 52 patients (40%) with at least a 

0.20 difference, and 31 patients (23%) with at least a 0.25 

difference. This grouping was designed to de-emphasize the 

importance of absolute cup-to-disc ratio quantification. The 

persistence of statistical significance with larger degrees 

of cup-to-disc ratio asymmetry helps to alleviate concerns 

regarding intraobserver quantification of these cup-to-disc 

ratios. The persistence of statistical significance in all four of 

these subgroups further substantiates the association of the 

side with the larger optic cup and the reported side of sleep 

preference. In projected future studies, stereoscopic disc pho-

tographs and masked readers will be used to add additional 

reliability to the cup-to-disc ratio measurements.

Another potential source of error in assessing cup-to-disc 

ratios was the assumption that the observed asymmetries 

were acquired. Patients with substantial axial ammetropia 

are known to manifest asymmetries in scleral canal size. This 

could result in apparent cup-to-disc ratio asymmetry even 

though there may be the same number of axons in both optic 
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nerve heads. Patients without axial ammetropia are less likely 

to manifest large differences in scleral canal size. In this pilot 

study, patients were excluded if they had greater than 2 D of 

presurgical ammetropia. This was done to limit the possibility 

of cup-to-disc ratio asymmetry arising from the differences 

in scleral canal size. Biometric estimates of axial length and 

of scleral canal size could help identify this potential source 

of inherent cup-to-disc ratio asymmetry.

The concern of experimental bias must be raised. 

The judge of the cup-to-disc ratios and the sleep history 

interviewer was the same investigator. However, since the 

cup-to-disc ratios were first quantified and their values com-

mitted on paper, the only bias that could be applied to the 

experimental outcome would be one in which the experi-

menter encouraged the patients’ reported sleep preference 

to coincide with the observed cup-to-disc ratio asymmetry. 

For this reason, a standard set of questions (described earlier) 

was asked each time and the qualifier, “you do not have to 

have a favorite side”, was included. The patients had no idea 

what the physician’s expectations were or how they should 

answer to please their physician. This is a fundamentally 

different situation from inquiries into compliance with 

topical drug use.49 In the compliance studies, the patients 

clearly had the bias to answer that they had used their drops 

as directed. In summary, for this study, the experimenter 

had no bias in quantifying the cup-to-disc ratios before 

assessing sleep posture preference, and the patients had no 

bias in answering the examiner’s questions regarding sleep 

posture preferences.

It is important to note that people exhibit a wide spectrum 

of sleep behaviors and postures that are maintained for differ-

ent lengths of time and vary for a given individual from night 

to night. Sleep laboratory research has shown that healthy 

people in their second and third decades of life maintain a 

given sleep posture for an average of 15 minutes,50 while 

healthy patients in the seventh and eighth decades of life 

maintain their sleep positions for an average of 33 minutes.20 

In another sleep laboratory study,51 it was shown that among 

healthy sleepers of many ages, about half of all postures 

were held for less than 5 minutes, about a fifth were held for 

5–10 minutes, about a tenth were held for 10–15 minutes, and 

less than once a night a given posture remained unchanged 

for as long as an hour. The existence of illness, usually car-

diorespiratory or orthopedic,20,21 can influence the type and 

duration of sleep postures. The presence of a bed partner also 

influences the range of sleep positions.51

A few researchers have determined the concordance 

between patients’ report of their generally preferred 

sleep posture with objective observations of other tests of 

reliability. One author19 found that individuals can very 

accurately determine their generally preferred sleep position 

and used bed partners as an objective means of corrobora-

tion; it was this information that led us to exclude patients 

who reported different sleeping postures from their spouses. 

In another study,52 51 healthy young women were given 

photographs of sleeping positions to choose from in identify-

ing their own preference; many of these were quite similar. 

Six months later, the same women were asked to make the 

same choice, and 46 of the 51 women chose the identical 

or highly similar position twice. Another study53 assessed 

reported sleep postures and compared them to direct inter-

mittent observations at night. Among the 207 nonpregnant 

controls, there was excellent correlation between the reported 

postures and the postures observed during the initial hours 

of sleep. Later in the sleep cycle, there was a substantial 

abandonment of the supine position in favor of the Sims’ 

position (a side position that places the eye at risk for OPC) 

and the prone position. The percentage of patients observed 

in the lateral position was consistent throughout the night 

(41.2%) and very similar to the 43.9% who claimed to sleep 

in this position. Although the data did not address the corre-

lation between the reported and observed side of sleep, they 

seem to indicate that a reported preference for side sleeping 

in general is relatively reliable; supine postures, although 

initially assumed, tended to be less consistently maintained 

through the night. In the initial report of the floppy eyelid 

syndrome,24 the authors used patient-reported sleep postures 

in their correlations of sleep behavior and clinical pathology. 

Other researchers have found the correlation between 

reported sleep posture and sleep laboratory observations to 

be less reliable.51 A minority of people volunteered that they 

had a side preference when simply asked if they slept on their 

backs, tummy, or side. These patients usually had a coexist-

ing medical condition20,21 that necessitated this posture, and 

these patients were felt to give the most reliable data concern-

ing sleep posture. Most people related their impressions of 

how they slept and this is inherently not as accurate. Even 

though there are several potential sources of error in assess-

ing sleep posture preferences through patient self-reporting, 

an unbiased questioning strategy, an insistence on spousal 

corroboration, and a sufficiently large sample size limit this 

potential in this study.

Among our patients who reported a side preference for 

sleeping, 63% of them reported a right-sided sleep preference. 

This preference for sleeping on the right side in preference to 

the left has been previously observed21,50 in sleep laboratory 

studies. This strengthens the reliability of the sleep posture 

data in this study. The preference for sleeping on the right 
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side may be related to the finding of zones of greater cup 

depth and pallor in the right eyes of ocular hypertensives 

with symmetrical office-measured IOPs.54

An underlying assumption of this study is that observed 

cup-to-disc ratio asymmetries represent acquired differences.55 

It would, therefore, be expected that if a given sleep pattern 

was consistent throughout a person’s life, the cup-to-disc 

ratio disparity should increase with increasing age. A sta-

tistically insignificant trend was observed in the magnitude 

of cup-to-disc ratio disparity with increasing age, but it was 

accompanied by an increase in this parameter’s variability 

as well. The lack of statistical significance was felt to be 

largely due to an inadequate sample size of people aged less 

than 40 years.

The paucity of young subjects exhibiting cup-to-disc 

ratio asymmetry of at least 0.1 was in part secondary to 

fewer contacts with this age group. However, most patients 

who possess an acquired cup-to-disc ratio disparity prob-

ably evolved to this state over time from cup-to-disc 

ratio symmetry. Since this evolution may take decades to 

produce a cup-to-disc ratio asymmetry of at least 0.1, a 

young person would be more likely to be in a subclinical 

transition from cup-to-disc ratio symmetry. This may be 

another reason why there were fewer young patients identi-

fied who met this study criterion. It was our impression that 

there was a lower incidence of unambiguous cup-to-disc 

ratio asymmetry in the younger population although no 

incidence data were collected in this pilot study. Future 

studies will address the incidence of cup-to-disc ratio 

asymmetry in different age groups and the incidence of 

cup-to-disc ratio asymmetry among people who sleep on 

their backs.

DOM is one of several methods available to promote 

aqueous drainage in the postoperative period after glaucoma 

filtering surgery. When successful, the filtration bleb expands 

and the IOP falls; adherents of the technique believe that 

this short-term result, particularly when repeated at regular 

intervals, can lead to long-term improvement in drainage 

function. Until now, there has been no means to quantify 

the pressure applied, so questions of efficacy may partly 

represent variability in technique.

There are several benefits that may be derived from 

quantifying this procedure. There is likely to be a range of 

digital pressures that, in responsive eyes, will produce bleb 

expansion and IOP lowering. It would be useful to define this 

range. If the range is narrow, the OPE could be used to train 

doctors and patients (as we did in this pilot study) to produce 

this effective pressure. If the range is broad (as we suspect), it 

may be necessary to determine the effective pressure for each 

individual patient by in-office testing, and then either train 

the patient to produce that pressure in the office, or send the 

patient home with an OPE to allow direct monitoring of each 

application. We have configured one prototype of the OPE 

to be portable for patient use at home. After the surgeon has 

established the range of induced pressures that are effective 

for a given patient, this form of the OPE can be set so that 

an auditory and visual signal indicates when the patient has 

achieved the targeted pressure. Customizing the pressure 

applied to the requirements of each patient should enhance 

the safety of the procedure. The OPE could also be configured 

to digitally record the time the patient performed the DOM, 

how long each compression lasted, and the magnitude of the 

induced pressures. Recording each treatment may improve 

patient compliance for doing DOM.
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