
© 2008 Ueno and Yamashita, publisher and licensee Dove Medical Press Ltd. This is an Open Access 
article which permits unrestricted noncommercial use, provided the original work is properly cited.

Biologics: Targets & Therapy 2008:2(2) 253–264 253

R E V I E W

Strategies for regenerating injured axons 
after spinal cord injury – insights 
from brain development

Masaki Ueno
Toshihide Yamashita

Department of Molecular 
Neuroscience, Graduate School 
of Medicine, Osaka University, 2-2 
Yamadaoka, Suita-shi, Osaka 565-0871, 
Japan

Correspondence: Masaki Ueno or 
Toshihide Yamashita
Department of Molecular Neuroscience, 
Graduate School of Medicine, Osaka 
University, 2-2 Yamadaoka, Suita, Osaka 
565-0871, Japan
Tel +81 6 6879 3661
Fax +81 6 6879 3669
Email ms-ueno@molneu.med.osaka-u.ac.jp 
or yamashita@molneu.med.osaka-u.ac.jp

Abstract: Axonal regeneration does not occur easily after an adult central nervous system (CNS) 

injury. Various attempts have partially succeeded in promoting axonal regeneration after the 

spinal cord injury (SCI). Interestingly, several recent therapeutic concepts have emerged from 

or been tightly linked to the researches on brain development. In a developing brain, remarkable 

and dynamic axonal elongation and sprouting occur even after the injury; this fi nding is essential 

to the development of a therapy for SCI. In this review, we overview the revealed mechanism 

of axonal tract formation and plasticity in the developing brain and compare the differences 

between a developing brain and a lesion site in an adult brain. One of the differences is that mature 

glial cells participate in the repair process in the case of adult injuries. Interestingly, these cells 

express inhibitory molecules that impede axonal regeneration such as myelin-associated proteins 

and the repulsive guidance molecules found originally in the developing brain for navigating 

axons to specifi c routes. Some reports have clearly elucidated that any treatment designed to 

suppress these inhibitory cues is benefi cial for promoting regeneration and plasticity after an 

injury. Thus, understanding the developmental process will provide us with an important clue 

for designing therapeutic strategies for recovery from SCI.
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Introduction
Axonal regeneration is a fundamental step in the process of recovering from spinal cord 

injury (SCI). However, the axons in the adult central nervous system (CNS) cannot 

regenerate easily, which primarily causes the lack of adequate restorative therapy for 

the SCI so far. Several attempts have been made to promote regeneration, and some 

advances have been obtained. Importantly, these attempts appear to be the applica-

tions of certain extensively revealed mechanisms of brain development. Although the 

axons cannot regenerate easily in an adult brain, in the developing brain, differentiating 

neurons elongate the axons easily to very distal areas; this information is of utmost 

importance and is required to be considered post SCI. What is the difference between 

the ability of elongating the axons in the adult and developing brain? Understanding the 

mechanism of tremendous axonal elongation and navigation during development and 

the differences between the environments of adult and developing CNS has provided us 

with important clues for succeeding in regenerating axons after brain injuries. Although 

several allusions for the therapy have also been brought by the comparison between 

the peripheral nervous system (PNS) and the CNS because axons can regenerate 

in the former system but not in the latter, in this review, we will focus on and compare 

the differences between the adult and developing brain. We have briefl y summarized 

the differences discussed in this review in Figure 1C. From this view, we can consider 

how the recent concepts and strategies for regenerating axons in the adult CNS have 
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emerged and can be developed. Although several excellent 

reviews have yet described the importance of the relation of 

regenerative therapy with the developmental mechanisms 

(Schwab and Bartholdi 1996; Harel and Strittmatter 2006), 

we will overview the whole aspects of its relations as much 

as possible with recent reports, and will emphasize that col-

laboration with developmental and clinical neuroscience is 

more needed.

Axonal regeneration 
in the developing brain
Many earlier reports indicate that the axons in the early 

postnatal spinal cord can regenerate more easily after an 

injury compared to those in an adult (Figure 1: Berstein 

and Stelzner 1983; Bates and Stelzner 1993; Firkins et al 

1993). This fi nding provides two main important sugges-

tions. First, early brain tissue possesses favorable factors 

and environment for axonal growth, and the second, younger 

neurons themselves have a greater capacity for outgrowth 

than adult neurons. The fi rst suggestion is a well-accepted 

concept, and many inhibitory factors in the adult brain have 

been identifi ed up till now. We have reviewed these factors 

in the coming chapters; however, the important point is that 

understanding the favorable environment for axonal growth 

in the developing brain may generate a new approach in the 

designing of a therapy for SCI. Indeed, in many classical 

experiments, embryonic spinal cord was transplanted in the 

lesion site of the postnatal and adult spinal cord (Bregman 

et al 1989, 1993; Iwashita et al 1994). In the early postnatal 

case, injured axons demonstrated immense regeneration pass-

ing through the transplanted embryonic tissue. In the adult 

case, axons could regenerate slightly but not dramatically. 

This also supports the abovementioned two suggestions, 

that early tissue is favorable for axonal growth, and younger 

Figure 1 Comparison between the environments of a developing brain and an adult brain after SCI. A: Axons (blue line; in this case, CST) projected up to a long distance 
through a specifi c route. Even after the injury (red), axons can regenerate more extensively than in adults. Compensatory sprouting also occurs with high plastic ability (orange 
arrow). B: In the adult brain, axons (green line; in this case, CST) cannot regenerate after the injury (red), but compensatory sprouting occur in the rostral positions (orange 
arrows); however, the extent to which this occurs is not greater than that in the developing brain. C: Different components and their properties involved in the developing and 
adult brains after the SCI. Each function is represented as the role toward axonal outgrowth (regeneration) and sprouting (plasticity). The properties of the components are 
presented within the parentheses. The strategies for the therapy targeting each component are represented in the right column. The details can be found in the text.
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neurons may possess a greater capacity of growth. It may 

be clear that younger neurons or certain types of neurons 

possess a much higher ability of elongating axons compared 

to other neurons, as suggested by the reports indicating that 

transplanted embryonic cortical neurons in the injured cor-

tex can extend the axons even through the adult spinal cord 

(Gaillard et al 2007), and that neurons in different mouse 

strains have different regenerative abilities after SCI (Dimou 

et al 2006). However, many of the recent approaches have 

partially succeeded in regenerating axons by suppressing the 

inhibitory cues in the adult brain, suggesting that even the 

adult neurons have the ability to re-elongate axons. From this 

view, generating a favorable environment for axonal growth 

in the injured site should be one of the important goals for 

establishing therapeutic interventions.

Axonal network formation 
by guidance molecules 
in the developing brain
We should fi rst understand how the complicated and precise 

axonal network is formed in the developing brain. During 

development, several steps are required to form a complex 

structure and for the functioning of the brain. First, undif-

ferentiating neural stem cells or progenitor cells proliferate 

extensively around the ventricle called ventricular zone to 

reserve a large number of neurons and glial cells for the 

future adult brain. Next, some of these cells start migrating to 

specifi c areas and differentiating into neurons. After reaching 

the fi nal position, the neurons start projecting the axons to the 

target area. In many cases, the axons are facilitated to pass 

through specifi c routes and targeted to specifi c areas. This 

process is very surprising because this navigation is quite 

precise, and in some cases, the neurons project the axons 

to a great distance from the cell bodies. Since 1990’s, the 

mechanism of this precise navigation has been revealed by 

various studies identifying the axonal guidance molecules. 

Netrin, Ephrin, Semaphorin, and Slit are the representative 

guidance molecules (for review Huber et al 2003). In vitro 

culture system and the analyses from knockout mice have 

clearly revealed that these molecules have an important role 

in navigating axons in the developing brain. For example, 

corticospinal tract (CST), the main tract connecting the sen-

sorimotor cortex to the spinal cord for regulating the motor 

function (Figure 1), is also navigated by these molecules. 

In the fi rst step, Sema3A expressed in the upper layers of 

the cortex repulses the axons of neurons in the deeper layer 

(layer V in the future) to the deeper white matter (Polleux 

et al 1998, 2000). Slit2 then repulses the axons after passing 

the internal capsule, for projecting the specifi c route into the 

cerebral peduncle (Bagri et al 2002). After having passed 

the cerebral peduncle, most of the fi bers cross the midline 

and go through to the contralateral side. It is indicated that 

Netrin and its receptors, Dcc and Unc5H3 contribute to this 

decussation (Finger et al 2002). While passing the spinal 

cord, Ephrin-B3 repulses the CST not to cross the midline 

(Kullander et al 2001; Yokoyama et al 2001).

Recent reports have demonstrated other important 

molecules responsible for guiding axons, morphogens. 

Morphogens – such as Sonic hedgehog (Shh), Fibroblast 

growth factor (Fgf), Bone morphogenetic protein (Bmp), and 

Wnts – are the signaling molecules that diffuse and establish 

a gradient in the embryonic tissues. This gradient signal 

plays a crucial role in arealizing the tissues by changing the 

cells from single type to heterogeneous populations. These 

molecules play a similar role in the developing CNS. The 

famous example is that of the developing spinal cord in which 

Shh, which is expressed in the most ventral place called fl oor 

plate, is diffused dorsally and establishes a gradient concen-

tration. As a result, several clusters of neuronal populations 

are generated in the ventral spinal cord depending on the 

concentration of Shh (Jacob and Briscoe 2003). Intriguingly, 

recent papers have indicated that these morphogens regulate 

not only the specifi cation of tissue areas and cell population, 

but also navigate the axons (for review Charron and Tessier-

Lavigne 2005). Again, CST passes through the spinal cord up 

to a long distance mainly in the fi rst postnatal week in rodents 

(Gianino et al 1999; Joosten and Bär 1999). Interestingly, 

developing CST expresses Ryk, one of the Wnts receptors, 

and is pushed down by Wnts signals in the spinal cord after 

decussation (Liu et al 2005). Wnt1 and 5a are expressed in 

a rostral to caudal gradient that repulses the CST into lower 

levels. Thus, CST can be guided for a long distance to the 

fi nal targets by Wnts signaling.

One ultimate strategy for facilitating defi nite regeneration 

after the SCI may be to reconstruct these guidance cues in 

precise positions spatially and temporally like in the develop-

ing brain. Joosten et al (1995) showed that injured CST in 

adult rats could regenerate by the local application of cervical 

spinal cord extracts which were harvested at the time that 

developing CST axons reached this spinal cord level. On 

the other hand, the injured axons could not regenerate when 

spinal cord extracts were harvested at younger or older age. 

This data implied that specifi cally organized expression of 

guidance molecules seen in the development is also optimal 

for regeneration. It is known, however, that some of these 

guidance molecules are still expressed in the adult developed 
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brain in a different manner or are abnormally re-expressed at 

the lesion site. This appears to make the precise reconstruc-

tion of guidance cues diffi cult. In addition, some of these 

molecules are reported to suppress the regeneration of injured 

axons. Alternatively, recent researches have partly succeeded 

in promoting regeneration by suppressing the expression of 

these guidance molecules. We will focus on this issue in the 

later chapters.

Guiding cells that facilitate 
axonal network formation 
in the developing brain 
and their transplantation
Besides the axon guidance molecules, certain types of 

specifi c guiding cells navigate the axons in the develop-

ing brain. These cells were reported earlier as “guidepost 

cells” in the embryonic limb bud of grasshopper (Bentley 

and Caudy 1983), and in the following papers, several other 

types of navigating cells were identifi ed in the corpus cal-

losum (Silver and Ogawa 1983; Shu and Richards 2001), 

olfactory tract (Sato et al 1998), and thalamocortical axons 

(López-Bendito et al 2006) of the developing rodent brain. 

Although the existence of guiding cells in the developing 

CST is also speculated from the observation of immature 

astrocytes discovered in the route of CST in early postnatal 

days (Joosten and Gribnau 1989), unfortunately, there are no 

clear evidences regarding their role in guiding axons.

As developmentally, early brain tissues possess a favor-

able environment for axonal growth, implanting fetal nerve 

tissue may be a simple way of promoting regeneration after 

SCI. However, obtaining this tissue is extremely diffi cult, 

thus rendering its implantation for clinical therapy rather 

questionable. The next strategy is to transplant guiding 

cells specifi c to the axons in the spinal cord; however, as 

mentioned earlier, specifi c guiding cells for the CST or 

other axons in the spinal cord have not been identifi ed yet. 

Hence, the ongoing approach is to transplant guiding or 

supportive cells that can be obtained from other parts of 

the body. Historically, two types of cell have mainly been 

attempted for conducting transplantation: the peripheral 

nerve (Schwann cells) (Richardson et al 1980; David and 

Aguayo 1981; Takami et al 2002) and olfactory ensheathing 

glial cells (OEG) (Li et al 1997; Ramón-Cueto et al 1998). 

These approaches were not designed from the mechanisms 

of developmental processes; rather, they were developed 

from the mechanism of regeneration and axonal outgrowth 

in the adult brain. Axons of PNS can regenerate more easily 

than those of CNS, raising the possibility that peripheral 

nerves or Schwann cells act as favorable substrates for 

axonal growth. OEGs are the specialized glial cells ensheath-

ing olfactory axons of neurosensory cells in the olfactory 

epithelium. Neurosensory cells (and their axons, olfactory 

axons) are continuously replaced and newly formed in the 

adult, suggesting that OEGs support axonal outgrowth. 

These transplanted cells bridge the lesion site after SCI and, 

to a certain extent, effect regeneration and functional recov-

ery. These experiments may provide us a new insight in to 

establishing therapeutic methods from the basic research on 

brain development: discoveries and identifi cation of guiding 

cells in the developing brain may open a new strategy to 

promote regeneration.

Distinct tissue responses in young 
and adult injured CNS: the role 
of glial cells
One of the points of differences between adult and developing 

brain is that adult CNS includes not only neurons but also a 

large number of matured glial cells. These cells are clearly 

activated in the injured site to repair the tissue, which appears 

to affect the outgrowth of injured axons.

Astrocytes are the cells that are activated after the injury 

and form a glial scar to repair the injured tissue. Glial scar 

formation is an important process for tissue repair. Condi-

tional and selective ablation of activated astrocytes after SCI 

delays the repair process and caused motor defi cits (Faulkner 

et al 2004). Conditional ablation of astrocytic activation 

using Stat3 conditional knockout model also diminishes the 

recovery (Okada et al 2006). These reports indicate that a 

glial scar plays an important role in tissue repair by protecting 

the neighboring intact tissues from excessive degeneration, 

infl ammation, demyelination, etc. Unfortunately, although 

the glial scar is a key contributor to repair, it simultaneously 

inhibits axonal regeneration (Rudge and Silver 1990). An 

important factor that suppresses the regeneration expressed 

by astrocytes is chondroitin sulfate proteoglycans (CSPGs) 

(Mckeon et al 1991; Jones et al 2003; Tang et al 2003). 

CSPGs are glycoproteins within extracellular matrices that 

function as barriers that inhibit the penetration of regenerating 

axons into the lesion sites. By either treating chodroitinase 

ABC, which is the bacterial enzyme that digests CSPGs, or 

by using transgenic mice that express chodroitinase ABC 

in astrocytes, it was possible to promote regeneration after 

SCI (Bradbury et al 2002; Cafferty et al 2007); although, 

functional recovery was not achieved in transgenic mice. 
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In the developing brain, astrocytes are generated from neural 

progenitor cells in the later period of development compared 

with neurons (Temple 2001). Thus, astrocytic responses do 

not occur in early embryonic brain injury (Ueno et al 2006). 

SCI in early postnatal days activates astrocytes but no more 

remarkably than in adults (Barrett et al 1984; Firkins et al 

1993) possibly due to the lower number of astrocytes and 

lesser extent of maturation. Interestingly, although CSPGs 

are basically considered as barriers to axonal elongation in 

the developing brain (Snow et al 1990; Katoh-Semba et al 

1995), they are not upregulated remarkably in the young 

reactive astrocytes after an injury (Mckeon et al 1991; Dow 

et al 1994). It may imply that axons in a younger brain can 

regenerate easily due to the lack of inhibitory factors from 

activated astrocytes. Moreover, others reported that reactive 

astrocytes in the younger brains could be permissive for or 

promote axonal growth (Rudge and Silbver 1990; Bähr et al 

1995). This suggests that there may be different types of 

astrocytes, particularly, an inhibitory and permissive type 

for axonal growth as indicated even in the amphibian which 

has a greater potential for regeneration (Reier 1979; Singer 

et al 1979). The permissive type also looks like a similar 

phenotype as seen in several regions of the developing brain 

as guiding cells (see previous chapter). Thus, understanding 

the mechanism of astroglial activation into different types 

and implanting supportive astrocytes into the lesion may 

establish a new approach to promote axonal outgrowth 

(Davies et al 2006).

Although, the reason for which scar formation is required 

to block regeneration is not clear, at least, the most important 

role of the scar should be fi nishing and enclosing the repairing 

(infl ammatory) response to protect from neighboring intact 

CNS tissue. Thus, scar response should not be eliminated 

from the list of possible strategies that can be considered 

for the therapy. Instead, because scar inhibits the outgrowth 

of axons, completing the repair process speedily and com-

pacting the scar to as small as possible, or deleting specifi c 

molecules that suppresses regeneration but not scar forma-

tion, should be the considered approach.

Oligodendrocytes are the glial cells that are involved 

in myelination. It is widely accepted that these cells (or 

its components and debris) also inhibit axonal regenera-

tion post SCI. Earlier experiments performed by Schwab’s 

group revealed that in the rats in which oligodendrocytes 

(and myelin) are deleted, axonal regeneration after SCI 

is promoted more than in control rats (Savio and Schwab 

1990). Subsequently, they generated a monoclonal antibody 

known as IN-1 that recognizes myelin-associated inhibitory 

proteins, and revealed that treatment using this antibody 

promotes axonal regeneration (Schnell and Schwab 1990; 

Bregman et al 1995). Then, Nogo was identifi ed as the 

inhibitory protein that is recognized by IN-1 (Chen et al 

2000; GrandPré et al 2000; Prinjha et al 2000). Myelin-

associated glycoprotein (MAG) (Mukhopadhyay et al 1994; 

McKerracher et al 1994), and oligodendrocyte myelin pro-

tein (OMgp) (Kottis et al 2002; Wang et al 2002) were also 

identifi ed as the inhibitory proteins for axonal outgrowth. 

Surprisingly, all of these three inhibitory proteins exert their 

inhibitory function through one common receptor, Nogo-66 

receptor (NgR) (Fournier et al 2001; Domeniconi et al 2002; 

Liu et al 2002; Wang et al 2002) and its receptor complex 

p75 (Wang et al 2002; Wong et al 2002; Yamashita et al 

2002), Lingo-1 (Mi et al 2004), and TROY (Park et al 2005; 

Shao et al 2005) (for review, Yamashita et al 2005). Exten-

sive studies using Nogo antibody (Schnell and Schwab 1990; 

Bregman et al 1995) and Nogo knockout mice (Kim et al 

2003; Simonen et al 2003) and NgR (Kim et al 2004) have 

demonstrated that this is one of the critical factors inhibiting 

regeneration in SCI; although, several reports were unable 

to prove similar roles of Nogo and NgR as inhibitors (Zheng 

et al 2003, 2005). Similarly, MAG (Bartsch et al 1995), p75 

(Song et al 2004) defi cient mice do not undergo regeneration 

after SCI, but treatment using Lingo-1 antagonist promotes 

axonal sprouting (Ji et al 2006). Several controversial results 

regarding the role of myelin-associated proteins in regenera-

tion suggest that the inhibitory cues may affect the injured 

axons through more varieties of molecules and through 

complicated mechanisms.

Myelination starts later in CNS development after P14 

in the spinal cord of the rodents (Schwab and Schnell 1989; 

Joosten et al 1989; Hsu et al 2006). This may also imply 

that the strong capacity of regeneration in younger animals 

is achieved due to lesser amounts of myelin components, 

although Nogo is expressed early in postnatal period by 

neurons (Huber et al 2002). Interestingly, less amount of 

myelin can also enable the developing axons to display the 

plastic changes (plasticity) during the early postnatal period 

for learning and adapting to their external environment. This 

fact could also lead to understanding the mechanism that 

promotes plasticity after an adult CNS injury. Indeed, some 

studies succeeded in promoting plasticity after the injury by 

modifying myelin-components. We will discuss this issue 

in the next section.

Microglia is the last glial cell that is believed to be 

originated from mesenchymal lineage (monocyte or myeloid) 

(Chan et al 2007), which is different from other glial cells that 
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are generated from neural progenitor cells (Temple 2001). 

One interesting aspect regarding microglia is that this cell has 

different phases or types that are benefi cial and detrimental 

for axons. One direct evidence that microglia is an inhibitory 

factor for regeneration is that treatment using minocycline, 

an inhibitor of activation of microglia, promotes recovery by 

decreasing the dieback of CST and cell death of oligodendro-

cytes (Stirling et al 2004; Festoff et al 2006; Yune et al 2007). 

Depletion of hematogenous macrophages also promotes 

partial recovery (Popovich et al 1999). Since minocycline 

has an additional neuroprotective effect (Yong et al 2004), a 

selective ablation of microglial cells using transgenic mice 

(Lalancette-Hébert et al 2007) may provide us with more 

convincing results regarding the actual role of microglia in 

SCI. The benefi cial aspects of these cells are suggested from 

the fact that coculturing microglia with neurons can promote 

the extension of neurites (Nakajima et al 1989; Chamak et al 

1994; Bouhy et al 2006). Indeed, microglia express neuro-

trophic factors (Elkabes et al 1996; Dougherty et al 2000). 

One report suggested that later activation of microglial cells 

in vivo by treatment of GM-CSF after SCI facilitates regener-

ation possibly due to BDNF expression by microglia (Bouhy 

et al 2006). Some other studies also succeeded in promoting 

recovery by transplanting microglia/macrophages (Prewitt 

et al 1997; Rabchevsky and Streit 1997). Another benefi cial 

role of microglia may be phagocytosis. As mentioned above, 

myelin-related protein is one of the key factors that inhibit 

regeneration. Microglia can phagocytose the myelin debris 

after CNS injury but not speedily and suffi ciently (George 

and Griffi n 1994; Buss and Schwab 2003). Thus, promoting 

the phagocytic ability may be one of the strategies that can be 

employed for therapy (Vallières et al 2006). Transplantation 

of macrophages that are prestimulated by peripheral nerves 

(myelin components) into injured site promotes the recovery 

of motor function (Rapalino et al 1998). Although it is not 

clear whether this benefi cial effect is due to the enhancement 

of phagocytic ability, one can deduce that in some way, an 

appropriate activation of microglia/macrophage targeted to 

autologous tissue (possibly myelin) is protective and effec-

tive in repair and regeneration (for review, Schwartz et al 

2006). In the developing brain, microglia infi ltrate into the 

CNS around E10 in rodents and are believed to play a role in 

engulfi ng the dying apoptotic cells (Ashwell 1991). Interest-

ingly, microglial cells express neurotrophic factors even in 

the developing brain (Elkabes et al 1996), and it is assumed 

that these cells may have some role to play in axonal growth 

(Chamak et al 1994; Streit 2001), although a direct in vivo 

evidence is defi cient. In this case, understanding the role of 

microglia in the injured brain may offer an important clue 

regarding its role in development.

Plasticity in development, and adult 
brain injuries
It is known that after SCI, compensatory axonal sprouting 

occurs in the upper level of the lesion (Figure 1; Aoki et al 

1986; Li et al 1994; Weidner et al 2001; Fouad et al 2001). 

For a long time, the reason behind the occurrence of slight 

functional recovery, unless spinal axons regenerate, was 

unclear; however, Bareyre et al suggested that the new 

sprouting axons in the upper level establish a new contact 

with the intraspinal interneurons and form a new neural 

circuit that may contribute to partial recovery (Bareyre 

et al 2004). Interestingly, the temporal pattern of the newly 

generated sprouting appears to be signifi cantly similar to the 

developmental process of CST. As described above, axons in 

the CST are elongated in early postnatal life, and after some 

“waiting period” (approximately 3 days), passing axons start 

establishing collaterals; in other words, they begin sprouting 

(O’Leary and Terashima 1988; Gianino et al 1999; Joosten 

and Bär 1999). Thus, an understanding of the mechanism 

of collateral formation in the developing brain will lead us 

to a new approach for promoting sprouting that may lead 

to functional recovery after SCI. In the developing brain, 

axonal collateral formation appears to be initiated by diffus-

ible factors that emanate from their targets (Sato et al 1994; 

Joosten et al 1994). Although the cues that induce collateral 

formation in the spinal cord are unidentifi ed, a potential cue 

may be neurotrophic factors. NT-3 and BDNF are known to 

promote axonal branching in a variety of neurons. Indeed, 

NT-3 enhances developmental sprouting in the spinal cord, 

and also in the injured adult spinal cord (Schnell et al 1994; 

Grill et al 1997; Zhou et al 2003). Although some recent 

papers reveal contrasting results on NT-3, and propound 

instead that providing BDNF treatment to the cell body of 

CST promotes sprouting (Hiebert et al 2002; Hagg et al 2005; 

Vavrek et al 2006).

Interestingly, similar factors appear to be used for con-

trolling the developmental plasticity and plasticity after adult 

brain injury. Neural activity is the fi rst factor that infl uences 

the plastic changes. Developing visual cortex is one of the 

extensively studied areas regarding plasticity in development. 

Neural inputs from both eyes through the thalamus compete 

with each other in the developing visual cortex through neural 

activity. This competition normally forms specifi c ocular 

dominance columns in the visual cortex that respond to 

alternative eyes. Intriguingly, monocular deprivation during 
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the critical period, which is the window period during early 

postnatal days when plastic changes can occur, shifts the 

response of neurons in both columns toward the dominantly 

activated input from the opened eye (for review, Hensch 

2005). Thus, neural activity appears to be the fi rst step in 

inducing plasticity. In the case of SCI, many reports have 

indicated that rehabilitation – such as locomotor training 

and environmental enrichment, which supposedly enhance 

neural activity – promotes functional recovery in rodents 

(Lankhorst et al 2001; Van Meeteren et al 2003; Hutchinson 

et al 2004; Engesser-Cesar et al 2007). The mechanisms that 

improve function after rehabilitation are not fully understood; 

however, neural plasticity must be involved.

Neurotrophin is the next factor involved in plasticity. In 

the developing visual cortex, excess treatment or removal 

of BDNF, NT-4/5 prevents or delays ocular dominance 

formation (Cabelli et al 1995, 1997), and focal injection of 

NT-4/5 prevents the plastic shift in the visual cortex (Riddle 

et al 1995). This implies that axons from each eye compete 

with each other through limited amount of neurotrophins 

in an activity-dependent manner, and only the ones that 

can receive neurotrophic factors are stabilized. In the SCI, 

neurotrophic factors appear to enhance plastic changes via 

sprouting, as mentioned above. Thus, the precise treatment 

using neurotrophic factors and stimulation of neural activity 

(it is related to good rehabilitation strategies) should be one 

of the key strategies to enhance plasticity after SCI.

The last factor contributing to plasticity is inhibitory mol-

ecules. The increasing number of inhibitory factors during 

postnatal development appears to terminate or decrease the 

overall plasticity of neural connections. CSPGs that inhibit 

regeneration after SCI are one of the inhibitory factors that 

also decrease plasticity through the developing brain. CSPGs 

organize a perineuronal net as the extracellular matrix. 

Treatment using chondroitinase ABC degrades CSPGs and 

reactivates the plasticity toward monocular deprivation in 

the adult visual cortex (Pizzorusso et al 2002). Interestingly, 

increasing myelin formation also appears to terminate the 

plastic changes in the visual cortex of younger brain. It is 

reported that the critical period is delayed in the visual cortex 

of NgR defi cient mice (McGee et al 2005). As observed in 

younger animals, myelin components also inhibit plastic-

ity after adult brain injury. For example, in Nogo−/− and 

NgR−/− mice, sprouting (plasticity) of axons was promoted 

after CNS injury (Lee et al 2004; Cafferty and Strittmatter 

2006), and blocking NgR signals also enhanced sprouting 

rostral to the lesion site after SCI (Li et al 2004, 2005; Li 

and Strittmatter 2003).

In conclusion, all these instances suggest that plasticity of 

axons in the developing brain and adult brain after the injury 

appear to involve similar mechanisms. Thus, understanding 

the mechanism of plasticity during development will offer 

an important clue for developing a new therapeutic strategy 

for SCI by promoting plasticity.

Strategy for therapy: insights 
from guidance molecules
The last insights obtained from the researches on development 

are that a number of axonal guidance molecules guiding 

axons during development are re-expressed by the glial and 

infl ammatory cells after the injury or continuously expressed 

in adult CNS cells. By now, Netrin1 (Wehrle et al 2005), 

EphA4 (Goldshmit et al 2004), EphB2 (Bundesen et al 

2003), Sema3, 7a (De Winter et al 2002; Pasterkamp et al 

2003), and Slit1, 3 (Wehrle et al 2005) have been revealed 

to be expressed in the lesion site of SCI. Although these 

molecules have various roles in the repair process, such as 

activation of astrocytes (EphA4; Goldshmit et al 2004), scar 

formation (EphB2; Bundesen et al 2003), and migration of 

adult progenitor cells (Netrin1; Petit et al 2007), there are no 

doubts that some of these molecules also affect the outgrowth 

of injured axons. Sema3A is expressed mainly in the fi bro-

blasts after injury (De Winter et al 2002), and the specifi c 

inhibitor of Sema3A clearly promotes the regeneration of 

axons (Kaneko et al 2006). We also demonstrated an addi-

tional example. Repulsive guidance Molecule (RGM), a gly-

cosylphosphatidylinositol (GPI)-anchored membrane-bound 

protein, is another family of guidance molecules important 

for axonal development, which had been shown to navigate 

the optic nerve in the chick tectum to form a topographic map 

(Stahl et al 1990; Monnier et al 2002; for review, Yamashita 

et al 2007). We as well as others elucidated that RGMa is 

also expressed in the injured tissue including astrocytes, 

microglia, oligodendrocytes, and neurons (Schwab et al 

2005; Hata et al 2006). Treatment with RGMa antibody after 

the SCI in a rat promotes axonal regeneration and synapse 

formation, and recovers behavioral function, as evaluated by 

BBB test (Hata et al 2006; Kyoto et al 2007). This data sug-

gests that RGMa is one of the key inhibitory factors for axonal 

regeneration. Morphogens are also candidate molecules that 

inhibit regeneration. We have recently reported that BMP-2/4 

expression is elevated in the lesion of SCI and administration 

of Noggin, a soluble BMP antagonist, promotes regeneration 

of CST (Matsuura et al 2008). BMP is known as a repulsive 

guidance molecule to commissural axons in the developing 

spinal cord (Augsburger et al 1999; Butler and Dodd 2003), 
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suggesting that similar repulsive factors re-expressed in the 

adult lesion site.

One important issue is that the spinal cord has various 

descending and ascending axons and these have different 

regenerative reaction to therapeutic approaches (Deumens 

et al 2005). In the developing brain, axons in each axon tract 

have different set of receptors for guidance molecules to 

select specifi c route for the targets. It appears that each tract in 

adult also has specifi c molecular profi les for regeneration. For 

example, treatment of Sema3A-inhibitor promotes regenera-

tion of raphespinal tract but not CST (Kaneko et al 2006). It 

was shown that raphespinal axons express neuropilin-1, the 

receptor to mediate repulsive effect of Sema3A. Netrin-1 is 

expressed in oligodendrocytes, cells of central canal, and the 

meninges in adult SCI, and inhibits axonal growth through 

the receptor, Unc5 (Löw et al 2008). Implantation of Netrin-1 

expressing fi broblasts inhibits the regeneration of rubrospinal 

fi bers which express Unc5A, but not CGRP-positive noci-

ceptive axons which do not express Unc5. Thus, when the 

effects of the treatment are examined, we should consider 

which axons express receptors for guidance molecules, which 

axons regenerate after treatments, and how the regeneration 

of specifi c axons contribute to behavioral appearance.

Other targets are the downstream signaling molecules 

of inhibitory cues. Recent reports indicate that the small 

GTP-binding protein Rho and its effectors, ie, ROCK, are 

the key molecules that mediate inhibitory signals for axonal 

growth (for review see Mueller et al 2005; Kubo et al 2007). 

Importantly, Rho is a common downstream molecule of 

many repulsive cues, including RGM (Hata et al 2006), 

myelin-associated proteins through p75 (Yamashita and 

Tohyama 2003), CSPGs (Monnier et al 2003), and members 

of the Semaphorin and Ephrin families (Wahl et al 2000; 

Swiercz et al 2002). Thus, inhibiting the common pathway 

that mediates repulsion is one of the promising targets for 

therapy. Indeed, treatment with ROCK inhibitors, promotes 

axonal regeneration after SCI (Dergham et al 2002; Fournier 

et al 2003; Tanaka et al 2004). Understanding the detailed 

molecular mechanism of the inhibitory signals will reveal 

new targets for therapy.

Many discoveries regarding the role of various molecules 

and their effects in the case of SCI have emerged. This 

indicates that multiple inhibitory factors suppress regenera-

tion. In fact, regeneration can be achieved but not to a great 

extent in each report. The approaches therefore shift to the 

use of a combination of several therapeutic approaches. For 

example, treatment with NT3 and an antibody of myelin-

associated inhibitory proteins (IN-1) (Schnell et al 1994), 

transplantation of fetal spinal cord and neurotrophic factors 

(Bregman et al 1997), chondroitinase ABC and cellular 

transplantation (Fouad et al 2005) etc have succeeded in pro-

moting regeneration to a much greater extent than individual 

therapeutic approaches. Overall, combinational strategies 

that promote the completion of the repair process including 

infl ammation and scar formation rapidly and in a compact 

manner, excluding the inhibitory factors for regeneration, 

bridging the lesion site, and facilitating the regeneration and 

sprouting of axons, should be considered for designing new 

therapeutic approaches. As the number of possible combina-

tions that should be tested is already very large, greater efforts 

will be required to establish appropriate therapeutic methods. 

The scientifi c community working on SCI therefore needs to 

be increased and collaborate with each other. Furthermore, 

developmental neuroscientists can rightly contribute to this 

community.

In conclusion, an important aspect gathered from a large 

number of studies is that behavioral recovery after the injury 

by various treatments and methods is well correlated with the 

histological changes that occur in axons, ie axonal regenera-

tion and sprouting. This implies that axonal regeneration and 

sprouting are crucial for behavioral recovery. Thus, promot-

ing axonal elongation and sprouting is now one of the most 

important strategies to be employed for developing a new 

therapeutic method. In this case, basic research on brain 

development will reveal important clues.
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