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Abstract: Although rheumatoid arthritis (RA) is the most common autoimmune disease, 

affecting approximately 1% of the population worldwide, its pathogenic mechanisms are 

poorly understood. Tobacco smoke, an environmental risk factor for RA, contains several 

ligands of aryl hydrocarbon receptor (Ahr), also known as dioxin receptor. Ahr plays critical 

roles in the immune system. We previously demonstrated that Ahr in helper T-cells contributes 

to development of collagen-induced arthritis, a mouse model of RA. Other studies have shown 

that cigarette smoke condensate and pure Ahr ligands exacerbate RA by altering bone metabo-

lism and inducing proinflammatory responses in fibroblast-like synoviocytes. Consistent with 

these findings, several Ahr antagonists such as α-naphthoflavone, resveratrol, and GNF351 

reverse the effect of Ahr ligands in RA pathogenesis. In this review, we summarize the current 

knowledge of Ahr function in the immune system and the potential clinical benefits of Ahr 

antagonism in treating RA.
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The roles of Ahr in RA
RA pathogenesis
Rheumatoid arthritis (RA) is a systemic and chronic inflammatory disease character-

ized by synovial inflammation and subsequent joint destruction. Bone damage and 

cartilage loss triggered by osteoclasts and fibroblast-like synoviocytes (FLS) are also 

observed in RA patients. Accordingly, the immune system, particularly T-cells, den-

dritic cells, macrophages, and B-cells as well as proinflammatory cytokines such as 

IL-6 and TNF-α, is implicated in RA pathogenesis.1–8 In particular, IL-17A-producing 

CD4+ T-cells (so-called Th17 cells) have attracted attention in this context because 

accumulating evidence indicates that this T helper (Th) subset plays critical roles in 

several autoimmune diseases, including RA.9–11 Furthermore, neutralizing antibodies 

against IL-6 and TNF-α are promising therapies for RA.12–18

RA is thought to be induced by interactions between environmental and 

genetic risk factors. Environmental risk factors for this disease include smoking 

and infection, and the best-known genetic risk factors are HLA-DRB1 alleles that 

encode a shared epitope (SE).19–22 Several groups have reported a link between SE  

and cigarette smoking in relation to RA risk,23–25 illustrating that disease pathogenesis 

involves both environmental and genetic factors. Although cigarette smoke contains 

several aryl hydrocarbon receptor (Ahr) ligands, such as 2,3,7,8-tetrachlorodibenzo-p-

dioxin (TCDD), 3-methyl cholanthrene (3-MC), and benzo[a]pyrene (BaP), the 

precise mechanisms by which these molecules contribute to RA development are not 
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yet understood. In this review, we summarize our current 

knowledge about the roles of Ahr in immune cells, including 

in Th17 cells, during RA pathogenesis, thereby providing 

further possibility of its use as a target.

Ahr pathway
Ahr is a ligand-activated transcription factor of the bHLH/

PAS family.26–28 It is expressed abundantly in liver and such 

barrier tissues as skin, lung, gut, placenta, and mucosal epi-

thelia, but at low levels or not at all in muscle, testis, kidney, 

and brain, indicating that immune cells express high levels 

of Ahr.29 Under steady-state conditions, Ahr localizes in cyto-

plasm and forms complexes with various proteins including 

HSP90, AIP, and p23.30–32 Upon binding to its ligands, Ahr 

translocates into the nucleus, where it binds Ahr nuclear 

translocator; the resultant complex activates xenobiotic-

responsive elements in the promoters of target genes, such 

as those encoding cytochrome p450 enzymes.26,33–35 In 

addition, Ahr controls degradation of specific targets such 

as estrogen via its ligand-dependent E3 ubiquitin ligase 

activity.36,37 Activated Ahr is itself degraded by the 26S pro-

teasome pathway after being exported from the nucleus to 

the cytoplasm.38–40 In addition to the canonical Ahr signaling 

pathway, as described, Ahr also participates in other signal-

ing pathways, resulting in noncanonical Ahr activities.41 For 

instance, TCDD-induced association of Ahr with the NF-κB 

subunit RelB upregulates inflammatory genes such as IL-8 

via the RelB/Ahr responsive element in macrophages and 

breast cancer cells.42,43 However, Ahr-deficient mice exhibit 

more severe inflammatory symptoms following exposure to 

lipopolysaccharide or cigarette smoke extract due to desta-

bilization of the RelB protein,44,45 suggesting that Ahr can 

function as either a pro- or anti-inflammatory regulator in 

different situations (eg, in response to different stimuli or in 

different cell types and diseases). Therefore, further study is 

necessary to elucidate the molecular mechanisms by which 

Ahr-binding partners and target genes are determined.

Ahr in RA
Because Ahr acts as an important mediator of xenobiotic 

metabolism by inducing cytochrome p450 enzymes such as 

CYP1A1, over the past 3 decades it was primarily studied 

in the field of toxicology and pharmacology. However, two 

different groups reported that Ahr controls generation of 

Th17, a recently identified Th cell subset,46,47 leading many 

immunologists to study Ahr in the immune system. Th17 

cells, which are induced by IL-6 and TGF-β via RORγt 

transcription, are believed to play a key role in the progression 

of several autoimmune diseases, including RA and multiple 

sclerosis (MS).9–11,48 One of the two groups demonstrated 

ligand-specific Ahr action in T-cells: the endogenous ligand 

FICZ exacerbates experimental autoimmune encephalomy-

elitis, a mouse model of MS, by promoting generation of 

Th17 cells, whereas the exogenous ligand TCDD suppresses 

disease progression by inducing production of regulatory 

T (Treg) cells.47 It remains unclear how Ahr causes opposite 

outcomes when activated by FICZ or TCDD; however, several 

studies have demonstrated mechanisms by which Ahr con-

tributes to Th17 differentiation through various intracellular 

signaling pathways (eg, inhibition of STAT1/STAT5, Aiolos-

mediated transcription, and direct interaction with the IL-17 

promoter).49–52 In addition, several microRNAs (miRNAs) 

are regulated by Ahr under pathological conditions such as 

immune disorders and cancers. miRNAs are short (20–22 

nucleotide) noncoding RNAs that negatively regulate gene 

expression by base-pairing with binding sites in the 3′-UTR 

regions of target mRNAs.53–56 miR-132/212 is induced in an 

Ahr-dependent manner under Th17-polarizing conditions, 

and enhances the development of experimental autoimmune 

encephalomyelitis and dextran sulfate sodium-induced coli-

tis.57,58 Several miRNAs form positive or negative feedback 

loops. For instance, although miR-132/212 expression in neu-

rons is controlled by CREB, CREB itself can be upregulated 

by miR-132.59,60 Therefore, identification of Ahr-regulated 

miRNAs and their targets may contribute to understanding 

of the Ahr signaling network.61

As already mentioned, tobacco smoke is a major 

environmental risk factor of RA and contains several 

kinds of Ahr ligands such as TCDD, 3-MC, and BaP. In 

addition, Ahr expression in synovial tissue is significantly 

higher in RA patients than in osteoarthritis patients.62 

Several studies have reported that when FLS cell lines 

or synoviocytes from RA patients are stimulated by Ahr 

ligands or cigarette smoke condensate, they upregulate 

proinflammatory cytokines such as IL-1β.63–66 Moreover, 

Ahr-knockout (KO) mice exhibited significantly reduced 

severity of collagen-induced arthritis (CIA), the most 

widely used mouse model of RA.67 More importantly, the 

same study also demonstrated that Ahr deletion in T-cells 

inhibits CIA development as efficiently as Ahr-KO, with 

reduced numbers of Th17 cells in draining lymph nodes. 

In another context, Ahr may contribute to pathogenesis 

of RA via its effects on bone metabolism. For instance, 

osteoblasts isolated from CIA-treated mice express high 

levels of Ahr, and TCDD negatively regulates osteoblast 

proliferation and differentiation via activation of the 
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ERK-signaling pathway.68 Moreover, Ahr ligand promotes 

osteoclast formation in vitro and bone resorption in vivo.69 

These findings raise the possibility that Ahr in other cell 

types may affect disease progression. Indeed, several 

lines of evidence have shown that Ahr plays various roles 

in immune cells including macrophages, dendritic cells, 

and B-cells, as well as in T-cells.70–72 Taken together, these 

findings indicate that Ahr expression is important for RA 

pathogenesis in several ways: by inducing proinflammatory 

cytokine production in FLSs, by influencing bone metabo-

lism via modulating the balance between osteoblasts and 

osteoclasts, and by regulating Th17 generation. The roles 

of Ahr in RA pathogenesis are summarized in Figure 1.

Treatment of RA via antagonizing 
Ahr signaling
Ahr activation by ligands such as TCDD can induce the pro-

duction of inflammatory cytokines, including IL-1β and IL-6, 

in human FLS cell lines and RA synoviocytes.62,63 Researchers 

have used both Ahr-KO mice and Ahr antagonists to inves-

tigate the functions of Ahr in RA development.62,66,67 In 

Ahr-KO mice, serum levels of proinflammatory cytokines 

such as IL-1β and IL-6 are reduced in the CIA model.67 

Interestingly, T-cell-specific deficiency of Ahr suppresses 

CIA development by inhibiting production of IL-1β and IL-6 

and generation of Th17 cells.67 The functions of several Ahr 

antagonists in RA are discussed further.

α-naphthoflavone
α-naphthoflavone inhibits TCDD-induced upregulation of 

IL-1β in FLS via the NF-κB and ERK signaling pathways.62 

In addition, in the synovial fibroblast cell line MH7A, 

isolated from RA patients, α-naphthoflavone inhibits 

the induction of IL-1β and CYP1A1 by cigarette smoke, 

which contains such Ahr ligands as TCDD.66 IL-1, and in 

particular IL-1β, is a key mediator of the pathogenesis of RA, 

and blocking of IL-1/IL-1 receptor alleviates RA symptoms 

in both animal models and clinical studies.73–79 In the CIA 

model, IL-1-KO mice develop less arthritis than controls.80 

Moreover, IL-1 can promote Th17 cell development, thereby 

increasing the level of IL-17 during the onset of spontane-

ous arthritis in IL-1 antagonist KO mice.81 Together, these 

results raise the possibility that α-naphthoflavone can sup-

press IL-1β production and subsequent Th17 cell generation 

induced by cigarette smoke or Ahr ligands such as TCDD 

in patients with RA.

TCDD
3-MC
BaP

Ahr

IL-8

Bone

Osteoclast
Osteoclast
precursor

Macrophage

Fibroblast

Th17

IL-1
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VEGF-A
MMP-2,9

Naïve T

Figure 1 Ahr roles in RA pathogenesis.
Notes: Cigarette smoke contains several Ahr ligands such as TCDD, 3-MC, and BaP. Ahr activation contributes several aspects of RA pathogenesis: differentiation into Th17 
cells from naïve T-cells; inflammation, angiogenesis, and cartilage destruction by producing IL-1, IL-6, VEGF, and MMPs in fibroblasts; production of proinflammatory cytokines 
such as IL-8 in macrophages; and osteoclastogenesis.
Abbreviations: Ahr, aryl hydrocarbon receptor; TCDD, 2,3,7,8-tetrachlorodibenzo-p-dioxin; 3-MC, 3-methylcholanthrene; BaP, benzo[a]pyrene; VEGF, vascular endothelial 
growth factor; MMPs, matrix metalloproteinases; RA, rheumatoid arthritis; IL, interleukin.
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Resveratrol (3,5,49-trihydroxystilbene)
Resveratrol, a molecule found in red wine, blocks TCDD-

mediated effects such as induction of CYP1A1 and IL-1β 

in the cancer cell lines T-47D and RL95-2, respectively.82 

In rats, resveratrol treatment inhibits induction of CYP1A1 

by pure Ahr ligands such as BaP and 7,12-dimethylbenz[a]

anthracene, compounds found in cigarette smoke, in cells 

of many organs including lung, kidney, liver, spleen, bone, 

and testis.82 Recent work showed that resveratrol inhibits 

CIA development by decreasing the IL-6 level in serum and 

reducing the frequency of Th17 in draining lymph nodes.83 

Importantly, resveratrol decreases TCDD-mediated induction 

of IL-17 under Th17-polarizing conditions in vitro.83 There-

fore, resveratrol may suppress Th17 generation. Another 

study showed that resveratrol induces apoptosis via sirtuin-

1-mediated mitochondrial corruption in MH7A human RA 

synovial cells.84 Consistent with these results, resveratrol 

induces apoptosis via activation of caspase-8 in RA-derived 

FLS,85 or caspase-3/-9 in MH7A human RA synovial cells.86 

Collectively, these findings suggest that resveratrol inhibits 

Ahr signaling to reduce the induction of CYP1A1, suppresses 

the function of Th17 cells, and induces apoptosis in RA 

synovial cells, contributing to control Ahr-mediated inflam-

matory diseases such as autoimmune arthritis.

GNF351 (N-(2-(1H-indol-3-yl)ethyl)-9-
isopropyl-2-(5-methylpyridin-3-yl)-9H-
purin-6-amine)
GNF351 is a high-affinity Ahr antagonist.65,87–90 In human FLS 

isolated from RA patients, IL-1β production is suppressed by 

GNF351, and this suppression is rendered by pretreatment of 

human FLS with the Ahr antagonist CH223191 or by small 

interfering RNA targeting Ahr.65 Furthermore, GNF351 

reduces IL-1β-induced production of growth factors such 

as vascular endothelia growth factor A (VEGF-A) in FLS 

of RA patients via an Ahr-dependent mechanism.88 Growth 

factors such as VEGF play important roles in FLS activation, 

leading to hyperplasia and increased angiogenesis, thereby 

promoting RA development.91 In addition, GNF351 reduces 

IL-1β-induced mRNA expression of matrix metalloprotei-

nases (MMP)-2 and -9 in FLS of RA patients.65 MMPs are 

elevated in FLS of RA patients, resulting in cartilage loss and 

are therefore considered to be promising targets for treatment 

of RA.92–96 In summary, GNF351 inhibits RA development 

by targeting IL-1β and IL-1β-induced VEGF and MMPs. 

Moreover, GNF351 can bind with high affinity to the ligand-

binding pocket of AhR and is a more potent Ahr antagonist 

than compounds such as α-naphthoflavone and resveratrol.87

Potentially antagonistic plant-derived 
compounds
Previous studies have reported that plants contain second-

ary compounds such as β-carboline alkaloids that may exert 

various pharmacological activities.97–102 Several kinds of 

plant-derived alkaloids have antagonistic effects on dioxin-

mediated CYP1A1 induction in mouse and human cell 

lines.98,99 Recently, our group showed that 7-methoxy-(9H-

β-carbolin-1-il)-(E)-2-propenoic acid, a novel β-carboline 

alkaloid isolated from hairy-root cultures of the Vietnamese 

plant Eurycoma longifolia, has anti-inflammatory activity.103 

Consistent with this, extract of E. longifolia is used in 

Vietnam and requires further study to establish its effective-

ness to treat rheumatic disorders.104 This alkaloid is currently 

being investigated as a novel Ahr antagonist to treat inflam-

matory diseases including RA. The functions of several Ahr 

antagonists in RA are summarized in Table 1.

Table 1 The functions of several Ahr antagonists in RA

No Compound Main functions References

1 α-naphthoflavone Inhibits IL-1β production Kobayashi et al62

Inhibits induction of IL-1β and CYP1A1 Adachi et al66

2 Resveratrol Inhibits IL-1β and CYP1A1 Casper et al82

Suppresses Th17 generation Xuzhu et al83

Activates caspase-8
Activates caspase-3/-9

Byun et al85 
Nakayama et al86

3 GNF351 Suppresses IL-1β production Lahoti et al65

Decreases IL-1β-induced production of VEGF-A Lahoti et al88

Reduces IL-1β-induced MMP-2 and MMP-9 Lahoti et al65

4 Plant-derived alkaloids Inhibits dioxin-mediated CYP1A1 induction El Gendy and El-Kadi98 
El Gendy et al99

Abbreviations: Ahr, aryl hydrocarbon receptor; RA, rheumatoid arthritis; CYP1A1, cytochrome P450, family 1, subfamily A, polypeptide 1; VEGF, vascular endothelial 
growth factor; MMPs, matrix metalloproteinases.
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Conclusion and future work
Research on the function of Ahr in RA pathogenesis has 

made significant progress. However, further study will be 

necessary to elucidate the precise molecular mechanisms 

by which deficiency of Ahr or Ahr antagonists such as 

α-naphthoflavone, resveratrol, and GNF351 suppress CIA 

development in mice and attenuate cells isolated from RA 

patients. Recently, we found that dioxin-exposed patients suf-

fer from various inflammatory diseases, including rheumatoid 

disorders (our unpublished data). Furthermore, expression of 

Ahr, CYP1A1, and inflammatory cytokines including IL-1β 

and IL-6 was highly upregulated in peripheral blood of these 

patients (our unpublished data). In future work, we will seek 

to characterize novel potential Ahr antagonists with strong 

anti-inflammatory properties, with the goal of alleviating the 

signs and symptoms of RA in dioxin-exposed patients.
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