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R E V I E W

Abstract: Alcoholism is a complex, multifactorial disorder involving problematic ethanol

ingestion; it results from the interplay between genetic and environmental factors. Personality,

likewise, is formed from a combination of inherited and acquired influences. Because selected

dimensions of emotional temperament are associated with distinct neurochemical substrates

contributing to specific personality phenotypes, certain aspects of abnormal emotional traits

in alcoholics may be inherited. Emotions involve complex subjective experiences engaging

multiple brain regions, most notably the cortex, limbic system, and cerebellum. Results of in

vivo magnetic resonance imaging and post-mortem neuropathological studies of alcoholics

indicate that the greatest cortical loss occurs in the frontal lobes, with concurrent thinning of

the corpus callosum. Additional damage has been documented for the amygdala and

hippocampus, as well as in the white matter of the cerebellum. All of the critical areas of

alcoholism-related brain damage are important for normal emotional functioning. When

changes occur in these brain regions, either as a consequence of chronic ethanol abuse or

from a genetic anomaly affecting temperament and/or a vulnerability to alcoholism,

corresponding changes in emotional functions are to be expected. In alcoholics, such changes

have been observed in their perception and evaluation of emotional facial expressions,

interpretation of emotional intonations in vocal utterances, and appreciation of the meaning

of emotional materials.

Keywords: alcoholism, personality, emotional dysfunction, genetic influences

Introduction
Emotions engage strong mental and affective states giving rise to intense feelings,

both positive and negative. Emotions generally are considered to be separate from

cognition, although it is recognized that emotions can directly influence various

aspects of mental function, and vice versa (Cahill 2003). The brain contributes to

emotional functioning in a coordinated fashion that involves multiple systems of the

body (Keltner and Shiota 2003). The emotional changes accompanying long-term

chronic alcoholism cover a broad spectrum. Some of these changes, eg, apathy and

emotional flatness, are reminiscent of those seen in patients with bilateral frontal

lobe damage (Lezak 1995; Moselhy et al 2001; Di Lazzaro et al 2004) or in patients

with right-hemisphere damage (Kaplan 1988). Other abnormalities are subtle. For

example, alcoholics may make atypical judgments regarding the nature of facial

emotional expressions (Oscar-Berman et al 1990; Townshend and Duka 2003) or

intonations of emotional utterances (Monot et al 1994; Wildgruber et al 2002; Gandour

et al 2003). It also has been suggested that alcoholism may involve an underlying

neurocognitive deficit in the capacity to comprehend emotional information (Loas et

al 2000; George et al 2001; Ravaglia et al 2002; Townshend and Duka 2003).

Furthermore, an individual’s genetic history can impact both a tendency toward
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alcoholism and the development of anomalies in areas of

the brain involved in emotional processing (Dick and Foroud

2003; Yamasaki et al 2003; Bowirrat and Oscar-Berman

2005). Taken together, these various views reflect

considerable uncertainty about the nature of emotional

changes in alcoholism. Whatever the mechanism(s),

however, it is clear that alcoholism can damage the brain,

and emotional abnormalities in alcoholics can interfere with

healthy interpersonal and work-related relationships. In the

present paper, we review research that has examined the

effects of long-term alcoholism on brain systems involved

in emotional functions. We conclude that abnormal

emotional traits in alcoholics, some of which

may be inherited, are associated with corresponding

abnormalities in frontal, limbic, and cerebellar brain

systems.

Genetics of temperament in
relation to alcoholism
Genetic knowledge provides us not only with a molecular

explanation for various behaviors, but also with the

realization that we all carry vulnerabilities to medical and

psychiatric disorders. Genes are segments of DNA that

consist of codes for proteins the body makes and uses to

run itself on a daily basis. Many of those proteins create

physical characteristics (eg, eye color). Other genes contain

the instructions for proteins that function as chemical

messengers in the body. Some hormones are chemical

messengers that can have powerful effects on emotions.

Hormones are molecules that fit into specific receptor sites

on living tissues, and that cause those tissues to respond in

a certain way. Many hormones travel by way of the blood

stream a great distance from where they are manufactured

to the target organ they affect. However, other hormones

often are manufactured and stored in the tissue where they

are later used. A common hormone with which many people

are familiar is epinephrine (adrenaline) – the “fight-or-flight”

hormone. When a person is frightened, scared, or severely

startled, this hormone is released by the adrenal glands into

the blood stream. Epinephrine fits into target sites on the

heart, brain, iris, smooth muscle tissue of the intestine, and

other organs. The action of this hormone is to increase heart

rate, which prepares a person for a proper response, eg,

providing additional oxygen to leg muscles so the person

can run fast if necessary. At the same time, epinephrine

dilates the eyes, reduces circulation to the stomach and

intestine, and increases circulation to the limbs (which can

make a person feel physically agitated or “jumpy”).

Other hormones, having a target area primarily in the

brain, may affect emotion more directly. These include

dopamine, serotonin, and endorphins, and they have

powerful effects on emotions ranging from chronic

depression to euphoria. Because these hormones can be used

up faster than they are produced, sometimes people self

medicate in order to feel particular emotions. For example,

prolonged physical or emotional stress can lead to the use

of substitute substances such as alcohol, caffeine, or drugs

of abuse. Whether an individual turns to drugs for emotional

stimulation depends upon numerous factors, including

genetic background and environmental circumstances.

Although it is well established that personality traits are

heritable (Loehlin 1992; Bouchard 1994; Jang et al 1996),

most theories of personality do not attempt to identify the

specific genes involved. Cloninger and colleagues (1993),

however, proposed a psychobiological model of personality

that purports to map personality at the genetic level. They

proposed that temperament and character traits can be

described in terms of specific psychological factors, and

that these traits are associated with genetically determined

neurochemical substrates. An obvious implication of this

model is that genes associated with neurotransmitters are

related to the hypothesized temperament traits. Another

implication is that traits hypothesized to have a shared

genetic basis should covary at the phenotypic level.

In line with these ideas, Cloninger and his colleagues

developed the Temperament and Character Inventory

(Cloninger et al 1994), a seven-factor scale measuring four

temperament and three character dimensions. Cloninger and

his colleagues claimed that the temperament dimensions of

novelty seeking, harm avoidance, reward dependence, and

persistence are genetically homogeneous and that two of

them are associated with distinct neurochemical substrates:

novelty seeking with dopamine, and harm avoidance with

serotonin. The model also identified three character

dimensions called self-directedness, cooperativeness, and

self-transcendence, which are based on social goals and

values. According to Cloninger and colleagues (1996), the

psychobiological model accounts for the genetic basis of

the personality phenotype, whereas alternative models of

personality comprise genetically and environmentally

heterogeneous factors.

There is some support for Cloninger’s ideas from the

field of molecular psychiatry and the mapping of candidate

genes for dimensions of human personality traits. In three

studies (Benjamin et al 1996; Ebstein et al 1996; Lesch et

al 1996), the dimension of novelty seeking (which includes
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exploratory excitability, impulsiveness, extravagance, and

disorderliness) was linked to the seven-repeat allele (or long

form) of the 16-amino-acid polymorphism of the D4

dopamine receptor gene (DRD4), and in another study harm

avoidance was associated with the short form of a functional

polymorphism (44-base-pair insertion or deletion) in the

serotonin-transporter-linked promoter region (5-HTTLPR).

These results provided empirical support for Cloninger’s

claim that the temperament dimensions of novelty seeking

and harm avoidance have an identifiable genetic basis.

Although replications have been reported (Ebstein et al

1997; Ono et al 1997; Noble et al 1998; Ricketts et al 1998;

Katsugari et al 1999; Strobel et al 1999; Keltikangas-

Jarvinen et al 2003), there also have been numerous failures

to replicate the associations with DRD4 (Malhotra et al 1996;

Gelernter et al 1997; Sander et al 1997; Pogue-Geile et al

1998; Sullivan et al 1998; Ekelund et al 1999; Kühn et al

1999) and 5-HTTLPR (Ebstein et al 1997; Gelernter et al

1998; Mazzanti et al 1998; Kumakiri et al 1999). Other

studies also failed to replicate any positive involvement in

both neurotransmitters, ie, between the DRD4 poly-

morphism and novelty seeking, and between the 5-HTTLPR

polymorphism and harm avoidance (Ball et al 1999; Herbst

et al 2000). Such failures to replicate raise the question of

whether the temperament-character model adequately taps

the genetic architecture of personality.

Evidence from twin studies supports the idea that at least

40% of the addictions to alcohol, tobacco, and other drugs

have genetic influences (Merikangas 1998; Tsuang et al

1998; McGue 1999; Karkowski et al 2000; Theodore et al

2003; Uhl and Grow 2004). For example, Jacob et al (2003)

reported that offspring of monozygotic and dizygotic twins

with a history of alcohol dependence were found to exhibit

alcohol abuse or addiction more frequently than offspring

of nonalcoholic fathers, and offspring of an alcohol-abusing

monozygotic twin whose co-twin was alcohol dependent

were more likely to be alcohol-dependent than offspring of

nonalcoholic twins. However, in the absence of paternal

alcoholism, offspring with high genetic risk (the unaffected

father’s co-twin is alcoholic) showed lower rates of

alcoholism than children of alcoholics (Jacob et al 2003).

Genome scans have identified multiple addiction

vulnerability loci, but no regions that seem to contain genes

of major effect in alcoholics or poly-substance abusers (Long

et al 1998; Foroud and Li 1999; Uhl et al 2001).

A large collaborative research program on the genetics

of alcoholism (COGA), involving several institutions in the

USA, seeks to identify genes contributing to alcoholism and

related traits (ie, phenotypes), including comorbid

psychiatric conditions. COGA investigators have found an

increased prevalence of depressive syndromes in alcoholics.

In particular, the combination of alcoholism and depression

tends to cluster in families (Bierut et al 2002; Nurnberger et

al 2002). Comorbid alcoholism and depression occurred

substantially more often in first-degree relatives of COGA

participants with alcoholism than in relatives of nonalcoholic

control participants. Based on these data, COGA

investigators defined three phenotypes: alcoholism (ALC);

alcoholism and depression (AAD); and alcoholism or

depression (AorD). The data were analyzed to determine

whether the phenotypes were linked to specific

chromosomal regions. These analyses have identified several

chromosomal regions, particularly on chromosomes 1 and

4 that appear to be linked to alcohol-related phenotypes

(Bierut et al 2002; Nurnberger et al 2002). In addition,

increased allele sharing was seen near two markers called

D1S1648 and D1S1588 between 100 and 110 centi-Morgan

(Nurnberger et al 2002). The same portion of chromosome 1

that exhibited linkage with the AorD phenotype also showed

suggestive linkage with the ALC phenotype alone (Reich et

al 1998). This suggests that a gene or genes on chromo-

some 1 may predispose some people to depression and

others to alcoholism.

Candidate gene and whole-genome linkage analyses on

alcoholism and antisocial alcoholism (alcoholism plus

antisocial personality disorder or intermittent explosive

disorder) were performed in population isolates consisting

of Finnish families, among whom probands were alcoholic

offenders, and also in a large Southwestern American Indian

family (Reich et al 1998; Nurnberger et al 2002). Results

included strong evidence for genetic influences in antisocial

alcoholism. Linkage was found at chromosomes 11p

(location of DRD2 dopamine receptor), 4p (GABAA

cluster), and 4q (ADH cluster), as well as sibpair linkage to

the 5HT1B receptor gene previously implicated by mouse

5HT1B knockout studies (Adamson et al 1995). In recent

years, there also have been indications that two serotonin

genes, 5-HT1B and tryptophan hydroxylase (TPH), may

be linked to the impulsive or antisocial dimensions of

behavior in alcoholics (Lappalainen et al 1998; Nielsen et

al 1998; Kühn et al 1999).

Goldman and colleagues (Goldman 1996; Enoch and

Goldman 2001; Heinz et al 2001; Gray and McNaughton

2002) reported the results of a meta-analysis study in which

they examined the correlation between central serotonergic

neurotransmission and three behavior patterns that are
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relevant for alcoholism: disinhibition (impulsive

aggression), negative mood states (such as anxiety and

depression), and a low response to alcohol. The authors

noted that the neurotransmitter serotonin (5-HT3) is very

likely influenced by genetics and early stress experiences,

as well as alcohol itself. Serotonergic dysfunction has been

linked to a number of psychiatric disorders, as well as the

development and maintenance of excessive alcohol

consumption and alcoholism. Serotonin plays a role in

temperature control and sleep and also affects impulse

control and behavior inhibition. Circuits that depend on

serotonin are also vital to a person’s sense of wellbeing and

are involved in reward, allowing the use of selective

serotonin reuptake inhibitors to alleviate feelings of anxiety

and dysphoria.

Serotonergic dysfunction also seems to be a cause of

negative mood states, namely anxiety and depression

(Barr et al 1994; Artigas 1995; Mann et al 1996). Among

alcoholics, the association between serotonergic dysfunction

and depression is less well established. Some genetic linkage

and brain imaging studies, however, have suggested that a

reduced availability of serotonin transporters is associated

with anxiety and depressed mood states among alcoholics,

patients with major depression, and control subjects

(Malison et al 1998; Mazzanti et al 1998; Rosenthal et al

1998; Heinz et al 2001). Some studies indicate that the

association between a low serotonin turnover rate and

aggressive behavior may be mediated by negative emotions,

such as feeling insecure and threatened. Virkunnen and

colleagues (1994) observed that alcoholics with low

serotonin turnover and high aggressiveness suffer from

increased anxiety. A reduction in central serotonin turnover

has been observed in heterogeneous groups of individuals,

eg, alcoholics, violent criminals, and fire-setters. It has been

suggested that “impulsive aggression” is the behavioral

characteristic common to all of these individuals (Kruesi et

al 1990; Virkunnen et al 1994).

Alcohol stands out as the one agent that is consistently

associated with increased risk-taking, criminal activity, and

aggressive or violent behavior more than many other drugs

(Ensor and Godfrey 1993; Taylor and Chermack 1993;

Freemantle 1993; Knight and Godfrey 1993; Seto and

Barbaree 1995; Galanter 1997; Lanza-Kaduce et al 1997;

Giancola et al 2003; Miczek et al 2003; Lane et al 2004).

Research overwhelmingly indicates that children of

alcoholics (who are more likely to develop significant

alcohol problems) also develop behavioral problems more

often than children of nonalcoholics. Miranda et al (2002)

used an emotion-modulated startle paradigm to test the

hypothesis that young adults with positive paternal history

of alcoholism may have altered emotional reactivity to

environmental cues. Alcohol or other substance abusers

tended to have specific kinds of conduct disorder traits

when they were children (eg, attention deficit disorder,

hyperactivity, rule breaking, and poor response to

discipline), and later they developed antisocial personality

disorder. A lack of response to social censure and physical

punishment is atypical, and there is emerging evidence that

the systems embedded in the brain that respond to

emotionally significant events may be lacking in some

individuals who are unable to respond normally to external

events (Monot et al 2001; Miranda et al 2002).

Among the actions of alcohol on several ligand-gated

ionophores such as NMDA, 5-HT3, or cholinergic receptors,

the positive modulation of the GABAA receptor appears to

be of particular significance with regard to aggressive

behavior (Miczek et al 2002, 2003). Moreover, the

interactive effects of alcohol with neurosteroids and

benzodiazepines appear to be mediated by action at

modulatory sites on the GABAA receptor (Grobin et al 1998;

Kumar et al 2004).

The first indication for a significant role of GABAA

receptors in alcohol-heightened aggression was the effective

blockade by benzodiazepine receptor antagonists.

Pretreatment with the broad-spectrum antagonists

flumazenil and ZK93426 prevented alcohol-heightened

aggressive behavior in nonhuman animal models (Miczek,

Barros, et al 1998; Miczek, de Almeida, et al 1998; Miczek

et al 2001; de Almeida et al 2004). Furthermore,

benzodiazepine agonists such as chlordiazepoxide can

enhance the aggression-heightening effects of alcohol

(Miczek and O’Donnell 1980). Alcohol effects on aggressive

behavior depend not only on the molecular characteristics

of the GABAA receptor, but also on its interactions with

other positive modulators. In addition to benzodiazepines,

alcohol interacts with neurosteroids, possibly at similar

subunits of the GABAA receptor.

Emotional dysfunction and brain
damage in alcoholism
Alcoholics have impairments in cognitive processing of

emotional signals. They seem to know what to do in

interpersonal situations, but their social skills are impaired,

and many are unable to implement the strategies they

recommend for themselves (Gaffney et al 1998). More
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specifically, they exhibit deficits in decoding affective

prosody, a non-linguistic aspect of language that conveys

emotion and attitude during discourse (Monot et al 2001).

Monot et al (2001) reported that alcoholics were deficient

in the ability to detect emotion/attitude in someone’s voice,

and Kornreich et al (2002) confirmed that alcoholics are

impaired in emotional processing such as interpreting non-

verbal emotional cues and recognizing facial expressions

of emotion (Philippot et al 1999; Kringelbach et al 2001;

Kornreich et al 2001, 2002; Indersmitten et al 2003). Using

computer images and different intensities of morphed facial

expressions, Kornreich and co-workers found that alcoholics

overestimated the intensity of all emotional expressions,

misinterpreted emotional expressions (except fear) at all

levels of intensity, and were unaware of their misperceptions

(Philippot et al 1999). Oscar-Berman et al (1990) also

reported that, compared with nonalcoholic controls,

alcoholics judged photographs of facial emotional

expressions to be more intense. When listening to sentences,

the alcoholics also had some difficulty judging emotional

intonations and emotional semantic content.

A decoding deficit for anger and contempt also has been

reported. In a recent study by Townshend and Duka (2003),

the authors demonstrated in line with previous studies that

alcoholics were impaired in their recognition of emotional

facial expressions. However, whereas previous studies

(Philippot et al 1999; Kornreich et al 2001, 2002) had found

that alcoholics overestimated the intensity of each of the

emotional facial expressions, Townshend and Duka (2003)

showed that alcoholics inappropriately enhanced the

intensity of fear in the facial expressions. Additionally,

alcoholics showed a different response than the controls in

the recognition of anger and disgust. Alcoholics tended to

overestimate the amount of the relevant emotion. Such a

response could be explained by a tendency in alcoholics to

exaggerate emotions and may be related to a disinhibitory

effect of long-term alcohol use (Oscar-Berman et al 1990;

Philippot et al 1999).

Other considerations in alcoholics’ responses to

emotional materials are length of sobriety and drinking

history. For example, Kornreich et al (2001) found that

recently detoxified alcoholics (three weeks of sobriety) made

significantly more errors in identifying emotional facial

expressions and overestimated the intensity of facial

expressiveness than did either longer term recovered

alcoholics (two months or more) or normal controls.

Decoding accuracy and intensity evaluations varied with

different affects depicted. Expressions of anger and disgust

resulted in sustained error judgments. Additionally, Harding

et al (1996) noted a positive correlation between the degree

of brain atrophy and the rate and amount of alcohol

consumed over a lifetime.

To explain emotional dysfunction, theorists have made

reference to participation of multiple regions of the brain

(Gainotti 2001) (eg, see Table 1 and Figure 1). In alcoholics,

there is growing evidence for involvement of many of the

regions responsible for emotional functioning (Bowirrat and

Oscar-Berman 2005). We begin by examining cortical and

white-matter changes, followed by changes in the limbic

system and the cerebellum.

Cortical changes
Alcoholism-related changes in emotion, cognition, and

behavior have been linked to extensive regions of damage

(Dao-Castellana et al 1998; Sullivan, Deshmukh, et al 2000;

Kubota et al 2001; Moselhy et al 2001; Ravaglia et al 2002).

In vivo MRI studies have shown similar extents of gray

matter and subjacent white matter volume deficits (Jernigan

et al 1991; Pfefferbaum et al 1992; Fein et al 2002). These

patterns differ from neuropathological studies, which are

more consistent in reporting white matter than gray matter

volume abnormalities (Harper et al 1985, 1988; De la Monte

1988; Pfefferbaum et al 1992; Harper et al 1998). In vivo

diffusion tensor imaging, a relatively new imaging modality

that is useful for visualizing white matter bundles and

microstructure (Basser and Pierpaoli 1996), also has

revealed disruption of brain white matter microstructural

integrity in alcoholic men (Pfefferbaum et al 2000) and

women (Pfefferbaum and Sullivan 2002).

The frontal lobes
The frontal lobes are connected with all of the other lobes

of the brain and they receive and send fibers to numerous

subcortical structures as well (Fuster 1997). While control

Table 1 Brain structures involved in emotional functions

Control/inhibition of emotional responses Orbitofrontal cortex
Emotional evaluation Amygdala
Emotional learning and memory Hippocampus; cerebellum
Autonomic component Hypothalamus
Emotional response components Ventral striatum
Expressive motor components:

– Automatic reactions to emotionally Right hemisphere
provocative stimuli

– Consciously learned aspects of Left hemisphere
emotional experience and responses
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of motor function takes place in the posterior region of the

frontal lobes, the anterior region of the frontal lobes

(prefrontal cortex) plays a kind of executive regulatory role

within the brain (Giancola and Moss 1998; Goldberg 2001;

Lichter and Cummings 2001). More precisely, prefrontal

cortex is important for cognitive flexibility, problem solving,

attention, speed in information processing, abstractive and

planning skills, inhibition, and suppression of irrelevant

information (Raine et al 1998; Blair and Cipolotti 2000;

Davidson et al 2000). Normally, the prefrontal cortex inhibits

the occurrence of unnecessary or unwanted behaviors, but

disruptions of these inhibitory functions often will release

previously inhibited behaviors. For example, patients with

lesions of the frontal lobes exhibit impulsive aggression

(Kuruoglu et al 1996; Deckel 1999; Blair and Cipolotti

2000). Additionally, induction studies of transient anger are

associated with orbitofrontal activation, suggesting a role

for this region in anger regulation (Dougherty et al 1999;

Kimbrell et al 1999). Moreover, as noted in a review by

Giancola (1995), and subsequently stressed by Hoaken et

al (1998), executive cognitive functions have proved to be

involved in the expression of aggressive behavior (Ratti et

al 2002).

Prefrontal cortex is not functionally uniform. Major

subdivisions are the dorsolateral prefrontal region and the

orbitofrontal cortical region (OFC). Dorsolateral prefrontal

cortex has reciprocal projections to and from other

neocortical association cortices, limbic structures such as

the hippocampus (via the cingulate cortex and ventral

prefrontal cortex), and diencephalic regions (eg, lateral

regions of the dorsomedial thalamic nucleus, as well as to

ventral and anterior thalamic areas) (Fuster 1997).

Dorsolateral prefrontal cortex has non-reciprocal efferent

connections with basal ganglia sites, sending fibers to the

anterolateral portion of the head of the caudate nucleus. The

dorsolateral prefrontal cortex is a primary neocortical target

of ascending dopaminergic innervation; an ascending

catecholaminergic pathway originating in the midbrain

ventral tegmental area also projects onto dorsolateral

prefrontal sites (for reviews, see Oscar-Berman et al 1991;

Panksepp 1998). Neuroanatomical connections with OFC

parallel those of dorsolateral cortex, but the two systems

are distinctly different. Primary OFC connections are with

the medial thalamus (the magnocellular region of the

dorsomedial nucleus), the hypothalamus, the ventrolateral

portion of the head of the caudate, and the amygdala (Fuster

Figure 1 The human brain in cross section. Cortical, limbic, and cerebellar regions are highly vulnerable to alcoholism-related damage. Among the regions discussed
in this paper are the frontal lobes, amygdala, hippocampus, and cerebellum. Source: Oscar Berman M. Corsini /Concise Encyclopedia of Psychology. Copyright © (2005
Wiley). Reprinted with permission of John Wiley & Sons, Inc.
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1997). The OFC is host to a variety of neurochemical

influences because of its intimate connectivity with

hypothalamic and limbic sites, but it appears to be linked

more with forebrain cholinergic than with catecholaminergic

systems (Oscar-Berman et al 1991). In general, compared

with dorsolateral cortex, OFC is more densely interconnected

with limbic sites and with the basal forebrain, and less

interconnected with other neocortical association areas.

Many studies have found the frontal lobes to be more

susceptible to alcohol-related brain damage than other

cerebral regions. These results were based on neuro-

psychological and neuroradiological data (Ratti et al 1999;

Oscar-Berman 2000; Sullivan 2000; Mann et al 2001). In

addition, studies of brain pathology at autopsy have revealed

decreased neuron density in the frontal cortex of alcoholics

(eg, see Kril et al 1997). Kril and collaborators (1997)

established that 15%–23% of cortical neurons are selectively

lost from the frontal association cortex following chronic

alcohol consumption.

Magnetic resonance imaging studies have shown frontal

lobe volume losses in alcoholic subjects (Pfefferbaum et al

1997), and prefrontal neurobehavioral dysfunctioning has

been frequently observed in alcoholics with and without

Korsakoff’s syndrome (Kril et al 1997; Oscar-Berman

2000). Such abnormalities have been identified with reduced

regional blood flow measurements (Dally et al 1988;

Melgaard et al 1990) and with measurements of lower

glucose metabolism throughout the brain (including

prefrontal cortex) during alcohol intoxication (Volkow et al

1990).

Frontal lobe blood flow (Nicolas et al 1993) and

metabolism (Volkow et al 1992) may decrease in alcoholics

before significant shrinkage or major cognitive problems

become detectable (Nicolas et al 1993; Wang et al 1993).

Cognitive functions and motor coordination may improve

at least partially within three to four weeks of abstinence

(Oscar-Berman et al 1997; Sullivan et al 2000) accompanied

by at least partial reversal of brain shrinkage (Shear et al

1994; Pfefferbaum et al 1995) and some recovery of

metabolic functions in the frontal lobes (Johnson-Greene

et al 1997) and cerebellum (Martin et al 1995; Seitz et al

1999). Frontal lobe blood flow continues to increase with

abstinence, returning to approximately normal levels within

four years (Gansler et al 2000). Relapse to drinking leads to

resumption of shrinkage (Pfefferbaum et al 1995), continued

declines in metabolism and cognitive function (Johnson-

Green et al 1997), and evidence of neuronal cell damage

(Martin et al 1995).

The right hemisphere
Although the left and the right cerebral hemispheres are

complementary in their functions, each half has its own

expertise (Pegna et al 2002). The left hemisphere plays a

special role in processing information analytically and

sequentially, and it is important for communication, logic,

and language. The right hemisphere plays a dominant role

in emotional functions, creativity, musical abilities, and

coordinating interactions with the three dimensional world

around us (eg, spatial cognition) (Oscar-Berman and

Schendan 2000). However, there is variability in the

distribution of brain regions showing lateralization for

emotional functions, and a number of studies have failed to

find lateralization at all (Mammucari et al 1988; Caltagirone

et al 1989; Kowner 1995; Wager 2003).

Nonetheless, evidence from healthy adults and from

brain-damaged patients has shown that the right hemisphere

is superior to the left in analyzing emotional content in

linguistic and non-linguistic communication (Borod et al

1998, 2000; Springer and Deutch 1998). The hypothesis of

right hemisphere dominance for emotional functions is

supported by a large body of clinical and experimental

evidence (Gainotti 1997, 2001) and concerns several

components of the emotional behavior. Thus, Ross (1984),

Blonder et al (1993), and Borod et al (1997) have repeatedly

stressed right hemisphere dominance for non-verbal

emotional communication. Heilman et al (1978) and

Meadow and Kaplan (1994) have shown that the right

hemisphere plays a critical role in autonomic functions, and

Mammucari et al (1988) and Wittling and Roschmann

(1993) have obtained data showing that the right hemisphere

is also critically involved in the subjective experience of

emotions.

Right hemisphere dominance is usually very clear for

negative emotions, but becomes less clear when some

positive emotions are taken into account. To explain the right

hemisphere’s differential involvement in positive and

negative emotions, some authors have assumed separate

hemispheric specializations for these two categories of

emotions (Borod 2000; Murphy et al 2003; Davidson et al

2004). In other words, both hemispheres process emotion,

but each hemisphere is specialized for particular types of

emotion, particularly in the lateral frontal cortex (Wager

2003). In one formulation, the left hemisphere controls

positive emotions and the right hemisphere controls negative

emotions (Sackeim et al 1978; Robinson and Starkstein

1989; Davidson 1992; Gur et al 1994). A disproportional

number of patients who have suffered trauma to the left
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frontal lobe, especially to the lateral prefrontal cortex or

basal ganglia, become depressed (Paradiso et al 1999;

Narushima et al 2003). Patients with right frontal damage,

however, are more likely to show signs of inappropriate

cheerfulness and mania (Starkstein et al 1989). Further,

individuals with affective disorders have shown abnormal

laterality patterns that may be suggestive of right hemisphere

dysfunction (Jaeger et al 1987; Liotti et al 1991; Phillips et

al 2003). There also is evidence of possible premorbid

bilateral- and right-frontal abnormalities in individuals at

risk for alcoholism, a subset of whom display impulsivity,

insensitivity to reinforcement, antisocial personality

disorder, etc (Tarter et al 1985; Hesselbrock 1991; Pihl and

Peterson 1991; Holdcraft et al 1998; Lappalainen et al 1998).

Rather than an opposite dominance of the right

hemisphere for negative emotions and the left hemisphere

for positive emotions, there simply may be a stronger

involvement of the right hemisphere for negative as

compared with positive emotions. This asymmetry may be

explained by assuming that some positive emotions (eg,

happiness) may be better handled by the left hemisphere

because these emotions can be used intentionally for

functions of approach and of social communication.

Whatever the mechanism, it seems that the right hemisphere

is more involved than the left in control of negative emotions,

and right hemisphere abnormalities contribute to some

domains of psychopathology, such as affective disorders

(Jaeger et al 1987; Starkstein et al 1987; Liotti et al 1991)

and content-specific delusions (Feinberg 1999). Further,

there is evidence of possible premorbid bilateral- and right-

frontal abnormalities in individuals at risk for alcoholism, a

subset of whom display impulsivity, insensitivity to

reinforcement, antisocial personality disorder, etc (Tarter

et al 1985; Hesselbrock 1991; Pihl and Peterson 1991;

Lappalainen et al 1998).

Behavioral studies have shown that in healthy humans,

the left side of the face is emotionally more expressive than

the right (Sackeim et al 1978). Additionally, processing of

positive emotions is potentiated when emotional stimuli are

presented to the left hemisphere (via the right ear or the

right visual field), and negative emotions are potentiated

when presented to the right hemisphere (Davidson et al

1987; Burton and Levy 1989). Emotional intonation

(prosody) is more easily recognized when presented to the

left ear (Erhan et al 1998), and stimuli presented in the left

visual field are judged as more emotional (Levine and Levy

1986) and elicit greater autonomic responses (Spence et

al 1996).

As noted earlier, differences between the two cerebral

hemispheres can be seen easily in cases of unilateral brain

damage (Lezak 1995). Of interest to the present discussion

is the fact that alcoholic individuals have difficulty on tasks

that resemble those on which patients with damage to the

right hemisphere also encounter problems. In particular,

patients with right hemisphere lesions, as well as alcoholics,

are disproportionately impaired on non-verbal visuospatial

tasks, as assessed by Performance IQ subtests (Oscar-

Berman 2000). Right hemisphere patients also show

emotional abnormalities such as a diminished reaction to

catastrophic events (Heilman 1997; Crucian et al 2000).

Additionally, deficits in prosody (emotion speech

characteristics) have been found in patients with right

hemisphere frontal damage (Ross and Mesulam 1979) and

in alcoholics (Monot et al 2001), and deficits in recognition

of emotional facial expressions have been linked to right

hemisphere damage (Weddell 1994; Mandal et al 1996) and

to alcoholism (Kornreich et al 2001a, 2001b).

Findings from lesion studies and from neuroimaging

studies in healthy subjects suggest that an increase in right-

sided activation in various sectors of the prefrontal cortex

is associated with increased negative affect. Preliminary

results from an fMRI study (Howard et al 2003) have

suggested that while nonalcoholic controls exhibited strong

right frontal activation when viewing faces (see Figure 2),

especially with negative emotional expressions, alcoholics

displayed reduced right frontal activation (Howard et al

2003).

Because of a similarity in deficits seen in alcoholics and

patients with damage to the right hemisphere, it has been

hypothesized that right-brain functions, visuospatial, and

emotional functions in particular, are more vulnerable to

the effects of alcoholism than are left-brain functions.

Studies of people with brain lesions have provided evidence

that disruption of the integrity of the corpus callosum can

contribute to right hemisphere functional decline as well as

diminution of interhemispheric (cross-callosal) transfer

ability accompanying bilateral cortical atrophy (impairment

in sensory and cognitive integration [Fabri et al 2001] and

interhemispheric transmission [Brown et al 2000; Curran

et al 2001]). Diffusely distributed bilateral cortical atrophy

and thinning of the corpus callosum might be interpreted as

a selective right hemisphere functional deficit using

conventional neuropsychological tests because (a) right

hemisphere functions may have less cortical representation

than left hemisphere functions (possibly because left

hemisphere functions are used more frequently), or (b)
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bilateral damage could cause an interhemispheric

collaboration dysfunction (eg, excessive interhemispheric

inhibition or a cross-callosal transfer dysfunction), which

affects visuospatial and emotional functions more than

linguistic functions.

To test these notions, Schulte et al (2004) examined the

processing of visual information using redundant targets in

alcoholics and healthy controls. Among the authors’

predictions were (a) that interhemispheric parallel

processing of information would be compromised in

alcoholics relative to controls, (b) interhemispheric transfer

time would be prolonged in alcoholics relative to controls,

and (c) interhemispheric transfer time prolongation would

be greater in older than younger subjects. They observed

that the effects of redundant targets were smaller in older

alcoholics than in older subjects with or without history of

alcoholism suggesting reduced interhemispheric neural

summation. Also, the level of performance was associated

with callosal size in controls in contrast to alcoholics. A

decrease in the size of the corpus callosum was related to

prolonged interhemispheric transfer time, and thinning of

the corpus callosum occurred in alcoholism and with aging.

Others also had reported an interaction between alcoholism

and aging for the corpus callosum (Pfefferbaum et al 1996,

2002). There also was an interaction between aging and

alcoholism with regard to brain tissue volumes, with volume

abnormalities greater in older than younger alcoholics

relative to age norms. Finally, in vivo MRI (Pfefferbaum et

al 1996) and post-mortem studies (Harper and Kril 1990)

have revealed significant callosal thinning in chronic

alcoholics. In addition, in vivo studies based on diffusion

tensor imaging have shown compromise of callosal fiber

coherence in alcoholic men (Pfefferbaum et al 2000) and

women (Pfefferbaum et al 2002), the extent of which relates

to the degree of attentional and working memory deficits.

One might speculate that thinning of the corpus collosum

may render alcoholics less able to inhibit negative affect in

right hemisphere circuits. Additionally, there is a growing

literature on the relationship between handedness and

abnormal hemispheric organization in alcoholics (eg, Ellis

and Oscar-Berman 1989; Oscar-Berman and Schendan

2000; Sperling et al 2000). For example, Sperling and

colleagues, in a study of 250 alcohol-dependent inpatients,

found support for the hypothesis of deviant laterality in the

presence of an elevated frequency of developmental risk

factors. Type II alcoholic personalities (early drinking onset,

antisocial personality characteristics, and refractory to

treatment; Cloninger 1987) may be the most vulnerable to

thinning of the corpus collosum and perhaps even to

emotional processing difficulties (Sperling et al 2000).

Another line of research has examined possible cerebral

hemispheric asymmetries in the regulation of different

neurotransmitter systems. For example, Tucker and

Williamson (1984) claimed that there is abundant evidence

for greater serotonin regulation of right hemisphere systems

and greater catecholaminergic and cholinergic regulation

of left hemisphere systems. Perhaps the genetic anomalies

noted in previous sections of this paper (Temperament in

relation to alcoholism) reduce the regulatory capacity of

serotoninergic systems in selected right-hemisphere sites

concerned with processing emotions. If so, it would follow

that an individual would be more vulnerable to episodes of

negative affect and the use of alcohol to cope. Thus, a vicious

cycle would be perpetuated.

Figure 2 A comparison of fMRI activations observed in chronic alcoholics (N = 13) versus healthy controls (N = 15) during encoding of emotional words and
emotional facial expressions. The absence of prefrontal activity of the alcoholics for emotional faces is striking.
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The limbic system
Primary areas of the limbic system include the hypo-

thalamus, amygdala, hippocampus, septal nuclei, and

anterior cingulate gyrus. Functions of the limbic system

include monitoring of internal homeostasis, mediating

memory and learning, and contributing to emotions. In this

section, we discuss the amygdala and hippocampus, because

of their essential roles in emotion and alcoholism.

The amygdala
The amygdala is a small almond shaped structure, deep

inside the anteroinferior region of the temporal lobe. The

amygdala is an extremely heterogeneous brain area

consisting of 13 nuclei and cortical regions and their

subdivisions (Pitkänen 2000; Sah et al 2003). It connects

with prefrontal cortex, the hippocampus, the septal nuclei,

and the medial dorsal nucleus of the thalamus. These

connections make it possible for the amygdala to play its

important role on the mediation and control of major

affective states such as love, fear, rage, anxiety, and general

negative affectivity (Aggleton 2000; Pitkänen et al 2000;

Amaral et al 2003). The amygdala, being a center for the

identification of danger, is fundamental for self-preservation.

In humans, facial expressions of negative affect are

examples of fearful stimuli. In fact, facial expressions convey

such strong emotional information that merely observing

anger or fearful faces elicits visceral responses, including

increased heart rate and sweating (Ohman and Soares 1998).

Neuroimaging studies (Davis and Whalen 2001) have

illustrated that these fearful responses to facial expressions

are processed and largely mediated by the amygdala (having

connections to both early sensory processing areas and

autonomic reflex centers). Furthermore, amygdala responses

to fearful faces have been observed with neuroimaging scans

even in the absence of conscious awareness of their

presentation to subjects (Whalen et al 1998).

A number of studies have linked the amygdala to the

processing of motivational significance of stimuli and to

the control of emotion (Davis 1992; Everitt et al 2003;

LeDoux 2000, 2003). These include studies based on single-

unit recordings in rats (eg, Schoenbaum et al 2000), studies

in monkeys (Rolls 1999), and human fMRI studies (eg,

Aharon et al 2001; Breiter et al 2001).

A “startle response” or “startle reflex” is when people

jump at the sound of a loud, unexpected noise. The reflex is

generally dependent on cues: it can be made stronger by

viewing negative photographs, such as traffic accident

victims; it can be made weaker by positive photographs,

such as happy babies and favorite foods. The amygdala is

essential for the changes in the defensive startle reflex. The

amygdala is involved in forming emotions in response to

exposure to aversive emotional pictures or warning cues

that an individual sees and hears (Levenston et al 2000).

The amygdala is controlled in part by the brain’s dopamine

system, the same system that responds to alcohol and

produces feelings of pleasure when good things happen.

Functional neuroimaging studies of emotional

processing and inhibitory control have revealed an important

modulatory role of the prefrontal cortex, especially in the

right hemisphere, on amygdala responses (Nakamura et al

1999; Narumoto et al 2000; Beauregard et al 2001). In line

with this evidence, a significant response was observed

bilaterally in the amygdala to facial expressions, but the

magnitude of the right amygdala response was larger than

that of the left. It was the response of the right amygdala

alone that habituated over successive scans (Hariri et al

2002), and a larger response was illustrated in the right (not

the left) amygdala.

At a functional level, the stimulus-specific laterality of

these responses reflects the inherent nature and value of

these stimulus types. The right biased response to faces is

consistent with studies implicating right hemisphere brain

regions in general, and the right amygdala specifically, for

processing facial expressions, especially those of negative

affect (Ahern et al 1991; Adolphs et al 2001). Furthermore,

Hariri et al (2002) found that dextroamphetamine, a

nonspecific monoaminergic agonist and anxiogenic,

selectively potentiates the response of only the right

amygdala during the perceptual processing of angry and

fearful faces, suggesting that this structure may be especially

critical in processing the emotional content of stimuli. In

addition, human subjects who were exposed to erotic stimuli

had increased levels of activation of the right amygdala and

right temporal pole as measured by fMRI (Beauregard et al

2001). The right amygdala has also been shown to be

associated with enhanced recall memory for emotional films

(Cahill et al 2000). Finally, recent studies have demonstrated

the involvement of the right amygdala in contextual

conditioned fear and in stress or emotional related processes

(Anderson and Teicher 1999; Baker and Kim 2004; Scicli

et al 2004).

The hippocampus
The hippocampus (HP) is a horseshoe shaped sheet of

neurons located on the floor of each lateral ventricle within

the temporal lobes and adjacent to the amygdala. As part of
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the limbic system, it is intimately involved in motivation

and emotion, and it also plays a central role in the formation

of memories (Burgess et al 2002). The HP consists of the

complex interfolded layers of the dentate gyrus and cornus

ammonis, which are continuous with the subiculum, which,

in turn, merges with the parahipocampal gyrus. The anatomy

of the HP is closely associated with subcortical structures

that contribute to the hypothalamic-pituitary-adrenal axis

(Kjelstrup et al 2002). A recent study also demonstrated

that encoding of emotional memories depends on the HP in

conjunction with the amygdala as well as their interaction

with each other (Richardson et al 2004). Although the idea

that the HP may play a role in brain mechanisms underlying

anxiety is not new (McNaughton and Gray 2000; Deacon

et al 2002), there is now mounting evidence that the ventral

HP plays an important role in a brain system associated

with fear and/or anxiety (Bannerman, Deacon, et al 2002;

Bannerman, Grubb, et al 2002; Kjelstrup et al 2002;

McHugh et al 2004).

Neuroimaging studies have demonstrated reduction of

hippocampal volume in alcoholics compared with control

subjects (Agartz et al 1999; Laakso et al 2000; Pfefferbaum

and Sullivan 2002; Bleich, Sperling, et al 2003; Bleich,

Wilhelm, et al 2003). One MRI study measured volumes of

the HP in late-onset alcoholics (Type 1) and violent early-

onset alcoholics (Type 2) compared with nonalcoholic

controls. The right, but not left, HP was significantly smaller

in both alcoholic groups. While there was no correlation

between the hippocampal volumes with age in the control

subjects, there was tendency towards decreased volumes

with aging and also with the duration of alcoholism in the

Type 1 alcoholic subjects (Laakso et al 2000). Activity in

the right HP decreased the more remote the autobiographical

memories; the gradient of this decrease spanned decades.

(Eleanor et al 2003). This suggested that the right HP

remains active for memories that are 5 or even 10 years old,

and likewise for memories 30 years old, albeit to a much

lesser degree.

Lateral asymmetry in remoteness may also interact with

age. Many individuals with selective bilateral hippocampal

damage are older adults (Spiers et al 2001), as are many

semantic dementia cases. Older subjects may be more

dependent on the right HP than young subjects. Since the

right HP is more active for recent events, then damage to

this structure in older subjects may be more likely to produce

a temporal gradient. Interestingly, Kopelman et al (1989)

found that young amnestic patients showed a relatively flat

temporal gradient, whereas older amnestic patients

demonstrated a more marked gradient.

Chronic alcoholism significantly impairs hippocampal

long-term potentiation (Miranda, Nelson et al 2002) and

produces progressive learning and memory deficits across

a variety of behavioral tests, including active avoidance

(Walker et al 1971) and spatial memory (Santin et al 2000).

Reduction of hippocampal volume in alcoholics is reversible

after short periods of abstinence (White et al 2000). The

loss of hippocampal volume has been attributed to changes

in white matter (Harding et al 1997), but the incorporation

of newly formed neurons to the dentate gyrus could also be

affected by alcohol. Similarly, hippocampal-dependent

cognitive functions have also shown reversibility after

comparable periods of abstinence.

Results of a recent study suggest that the marked effect

of ethanol on the survival of newly formed neurons in the

adult HP could result in impairment of hippocampal-

dependent cognitive functions, or, alternatively, the changes

in cognition observed in alcoholism could lead to decreased

neuronal survival (Herrera et al 2003). Neurogenesis is

primarily a developmental process that involves the

proliferation, migration, and differentiation into neurons of

primordial stem cells of the central nervous system (Gage

2000). Neurogenesis declines until it ceases in the young

adult mammalian brain with two exceptions: the olfactory

bulb and the hippocampus produce new neurons throughout

adult life. However, multiple factors seem to regulate adult

neurogenesis including hormones, neurotransmitters, and

trophic factors (Gage 2000).

The ethanol-induced reductions in hippocampal

neurogenesis can be attributed to two general mechanisms:

an effect on cell proliferation or on cell survival. These

changes in the hippocampal structure could be part of the

anatomical basis for the cognitive deficits described in

alcoholism. The hippocampus is a target site for the

teratogenic effects of ethanol (West and Pierce 1986).

Morphological changes in this brain region may play a

critical role in the manifestation of mental deficiency and

behavioral abnormalities in individuals with fetal alcohol

syndrome or alcohol-related neurodevelopmental disorder

(Institute of Medicine 1996). There is evidence that certain

hippocampal neuronal cell types are particularly sensitive

to ethanol teratogenicity. Chronic exposure of the developing

HP to ethanol can result in selective damage, such as a

decrease in the number of CA1 pyramidal cells in the adult

pig (Abdollah et al 1993; Gibson et al 2000) and rat

(Bonthius and West 1990; Miller 1995). One study of human
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alcoholics aged 45 years and under, reported an early

neuronal loss of the dentate gyrus and the ammonic fields

CA1 through CA4 (Bengochea and Gonzalo 1990), and

another study found glial cell loss (especially astrocytes and

oligodendrocytes) in the hippocampus of alcoholics (Korbo

1999).

The cerebellum
The cerebellum is a portion of the brain that coordinates

movement of voluntary muscles, balance, and eye

movements. It contains about half of the brain’s neurons,

but these particular nerve cells are so small that the

cerebellum accounts for only 10% of the brain’s total weight.

The cerebellum consists mainly of two large tightly folded

lobes joined at the middle by the vermis. Also located

anteriorly are the small flocculonodular lobes (flocculi). The

cerebellum connects with the other brain structures through

the cerebellar peduncles, located to the anterior of the

cerebellum. Deep within the cerebellum is white matter

within which lie the deep cerebellar nuclei. Of these, the

cerebellar dentate nucleus is the most recognizable. Five

different nerve cell types make up the cerebellum: stellate,

basket, Purkinje, Golgi, and granule cells. The Purkinje cells

are the only ones to send axons out of the cerebellum.

Atrophy of the cerebellum is commonly associated with

alcoholism. Gross vermian atrophy is commonly seen post-

mortem in alcoholics (Phillips et al 1987), and it also has

been observed with in vivo neuroimaging techniques

(Sullivan et al 2000). White matter volume of the cerebellar

vermis is significantly reduced (Baker et al 1999; Pentney

et al 2002; Sullivan et al 2003), and cerebellar vermian

atrophy occurs in 25%–40% of all alcoholics. Vermal white

matter volume was reduced in ataxic alcoholics by 42%. It

occurs even more often in people with additional thiamine

deficiency, with 35%–50% of those individuals showing

evidence of superior vermian degeneration (Victor et al

1989).

Alcoholics with Wernicke-Korsakoff’s syndrome have

shown a significant decrease in Purkinje cell density in the

cerebellar vermis and molecular layer volume (Baker et al

1999). A significant reduction in Purkinje cell numbers in

the flocculi suggests disruption of vestibulocerebellar

pathways. This is of particular interest given recent data

showing the importance of the cerebellum in the organization

of higher order cerebral functions (Schmahmann and

Sherman 1998; Schmahmann 2000; Sullivan et al 2003).

A number of functions have been attributed to the

cerebellum, and there is growing evidence for its role in

certain aspects of learning and memory (Buckner et al 1996).

Schneider and colleagues (2001) proposed that cue-induced

craving, in this case alcohol-induced craving, may involve

conditioned emotional reactions that are mediated by the

amygdala, as well as learned memory associations that are

mediated by the cerebellum. Alternatively, stimulation may

have activated cerebellar functions involved in motor or

multisensory coordination. In their study, the authors

demonstrated that the amygdalar and cerebellar activations

observed before therapy in abstinent alcoholic patients may

represent aspects of emotion, motivation, and memory in

cue-induced craving (Schneider et al 2001).

In addition to interactions with limbic system structures,

the cerebellum also influences functions classically

associated with frontal lobe functioning, suggesting a role

for frontocerebellar circuitry (Schmahmann 1997, 2004).

As noted earlier in the section on frontal lobes, this part of

the brain has executive control functions such as cognitive

flexibility, aspects of attention, speed in information

processing, inhibition of preservative errors, abstractive and

planning skills. There is ample evidence for alcohol’s

untoward effects on the structure and function of the

cerebellum and frontal lobes, and disruption of this circuitry

is a potential mechanism underlying behavioral impairment

characteristic of alcoholism (for reviews, see Oscar-Berman

2000; Ilinsky and Kultas-Ilinsky 2002; Sullivan 2003;

Sullivan et al 2003).

Genetic influences on brain
development
Of special interest is a growing body of evidence that genetic

anomalies impact some of the same brain areas that are

vulnerable to the effects of alcoholism, and those that are

involved in emotional processing. For example, Yamasaki

et al (2003) found that the human UBE3A gene (which

shows brain-specific partial imprinting, ie, it has an alteration

in chromatin affecting its expression but not its DNA

sequence) was expressed predominantly in the limbic system

(including the hippocampus), in cerebellar Purkinje cells,

and in the olfactory bulbs. (Imprinting is a reversible form

of gene inactivation but is not a mutation.) With the possible

exception of the olfactory bulbs, all of the regions reported

by Yamasaki et al (2003) to be affected by UBE3A are

known to be affected by chronic alcoholism. As we noted

earlier in the section, Genetics of temperament in relation

to alcoholism, Nurnberger et al (2002) found evidence for

antisocial alcoholism at quantitative trait locus (QTL) 11p.

The subtelomeric region of 11p (11p15.5) contains three
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genes: IGF2 (a growth factor), INS (insulin), and TH

(tyrosine hydroxylase) that lie in an interval of less than

50 kb. In addition, this region contains genes (eg,

KCNQ1OT1) that code for the M-current and similar

potassium channel mediated effects. Finally, two genes

important for catecholaminergic expression in the CNS are

localized to the 11p15.5 region: TH and the gene that

encodes the dopamine receptor D4 (DRD4). Interestingly,

many of the genes in area 11p15 are imprinted. These

observations are potentially important for alcoholism

research because of the role of genetic influences in the

etiology of neurological and neurobehavioral abnormalities.

Perhaps the same genes involved in brain anomalies are also

involved in alcoholism. However, as noted by Dick and

Foroud (2003), sequencing of the human genome will make

the cataloging of human genes and genetic variation

available to researchers who will advance the association

of candidate genes with alcoholism. Once replicable

associations are established, it will still remain a challenge

to identify the causative genetic variants responsible for the

role of that gene in alcohol dependence.

Summary
Genetic studies of personality traits have provided evidence

that temperament dimensions are associated with distinct

neurochemical substrates contributing to specific personality

phenotypes, and that certain aspects of abnormal emotional

traits in alcoholics may be inherited. Additionally, an

individual’s genetic history can impact both a tendency

toward alcoholism and the development of anomalies in

areas of the brain involved in emotional processing, most

notably the cerebral cortex, limbic system structures, and

the cerebellum. Results of in vivo MRI and post-mortem

neuropathological studies of alcoholics indicate that the

greatest cortical loss occurs in the frontal lobes, with

concurrent thinning of the corpus callosum. Additional

damage has been documented for the amygdala and

hippocampus, as well as in the white matter of the cerebellar

vermis. All of the critical areas of alcoholism-related brain

damage are important for normal emotional functioning.

When changes occur in these brain regions as a consequence

of genetic aberrations or chronic ethanol use, or both,

corresponding changes in emotional functions are to be

expected. Such changes have been observed in the

perception and evaluation of emotional facial expressions,

interpretation of emotional intonations in vocal utterances,

and appreciation of the meaning of emotional materials.
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