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Abstract: We report a high-performance chemiresistive sensor for detection of volatile organic 

compound (VOC) vapors based on core-shell hybridized nanostructures of Fe
3
O

4
 magnetic 

nanoparticles (MNPs) and poly(3,4-ethylenedioxythiophene) (PEDOT)-conducting polymers. 

The MNPs were prepared using microwave-assisted synthesis in the presence of polymerized 

ionic liquids (PILs), which were used as a linker to couple the MNP and PEDOT. The resulting 

PEDOT–PIL-modified Fe
3
O

4
 hybrids were then explored as a sensing channel material for a 

chemiresistive sensor to detect VOC vapors. The PEDOT–PIL-modified Fe
3
O

4
 sensor exhibited 

a tunable response, with high sensitivity (down to a concentration of 1 ppm) and low noise 

level, to VOCs; these VOCs include acetone vapor, which is present in the exhaled breath of 

potential lung cancer patients. The present sensor, based on the hybrid nanostructured sensing 

materials, exhibited a 38.8% higher sensitivity and an 11% lower noise level than its PEDOT–

PIL-only counterpart. This approach of embedding MNPs in conducting polymers could lead 

to the development of new electronic noses, which have significant potential for the use in the 

early diagnosis of lung cancer via the detection of VOC biomarkers.

Keywords: hybrid nanomaterials, nanoparticle, conducting polymer, electronic nose, lung 

cancer detection 

Introduction
The early and accurate detection of lung cancer is essential to the effective treatment 

of patients and reduction of the mortality rate associated with the cancer disease.1–5 

Among various detection methods, breath analysis has attracted significant attention 

owing to its noninvasive nature and simplicity. This method also has the potential to 

diagnose lung cancer at an early stage by detecting volatile organic compound (VOC) 

biomarkers in exhaled breath.6–9 As such, a number of breath-analysis tools have 

been developed including gas chromatography/mass spectrometry,10–14 ion flow tube 

mass spectrometry,15,16 chemo-luminescence sensors,17 optochemical fibers,18 infrared 

spectroscopy,19 and polymer-coated surface acoustic wave sensors.20 Incorporating most 

of the conventional breath analysis techniques into portable sensing devices is difficult, 

however, owing to the bulky and expensive nature of these instruments and complexity 

of their operation.21,22 Furthermore, these methods often require a presampling step to 

increase the relative concentration of breath VOCs to detectable levels.2,23 Therefore, 

the development of highly efficient, sensitive, simple, inexpensive, and reliable breath 

sensing devices is essential for early diagnosis of cancer disease by breath analysis.

A chemiresistive sensor, also referred to as an electronic nose is portable, fast, 

noninvasive, and highly responsive to various VOCs2,9,24 and constitutes a robust and 

cost-effective solution for VOC detection. These sensors rely on changes in the electri-

cal resistance of channel materials arising from their interaction with VOC biomarkers. 
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Developing a channel material that can efficiently interact 

with the VOC molecules in the exhaled breath is crucial. 

Efficient channel materials should rapidly adsorb/desorb the 

target analytes, and exhibit high sensitivity and stability (ie, 

low noise level) in their presence. Chemiresistive sensors 

have been fabricated from various channel materials includ-

ing metal oxides,25–27 intrinsically conducting polymers,28–31 

functionalized carbon nanomaterials or nanocomposites,32–35 

and quartz crystal microbalance. Nanomaterials are consid-

ered as efficient channel materials with excellent sensing 

capability, owing to their unique nanoscale features and 

high surface-to-volume ratio.36,37 For example, metal or 

metal oxide nanoparticles used as channel materials showed 

an improved sensitivity to specific analyte molecules.38–41 

However, these nanoparticle-based sensors need further 

improvement in terms of sensitivity, selectivity, and stability 

for their practical use in applications. This can be achieved 

through added functionalities of hybrid nanomaterials that 

combine inorganic nanoparticles and organic molecules.42,43 

In this regard, core-shell-structured hybrid materials of 

magnetic nanoparticles (MNPs) (eg, Fe
3
O

4
) and conducting 

polymers (eg, poly(3,4-ethylenedioxythiophene) [PEDOT],44 

polyaniline [PANi],45,46 and polypyrrole [PPy]47,48) are espe-

cially promising sensing materials owing to their synergistic 

effect. These hybrid materials have been used for a number 

of applications including drug delivery, sensors, wastewater 

treatment, energy storage, and catalysts.

Herein, we propose a highly sensitive and stable chemire-

sistive sensor based on core-shell nanostructured hybrid 

materials consisting of MNPs and conducting polymers. The 

hybrid materials consisted of a Fe
3
O

4
 core surrounded by a 

PEDOT shell; a polymerized ionic liquid (PIL) was used as 

a linker to couple the core and shell materials. Coupling the 

PEDOT and Fe
3
O

4
 via the PIL-mediated process yielded 

the core-shell nanostructured PEDOT–PIL-modified Fe
3
O

4
 

(PIL@Fe
3
O

4
)

 
hybrid materials. The hybrid material was 

then used as an active sensing material for the detection of 

various VOC molecules. The synthesis of core-shell hybrid 

nanostructures of PEDOT–PIL@Fe
3
O

4
 and sensing device 

are illustrated in Figure 1. PIL is expected to play multiple 

roles in the microwave synthesis of Fe
3
O

4
 nanoparticles. 

For example, they: 1) consist entirely of highly polarizable 

ions that absorb microwaves efficiently, thereby resulting 

in improved yields of products; 2) act as a stabilizer for the 

Fe
3
O

4 
nanoparticles and prevent their aggregation in the solu-

tion; and 3) function as a surface-functionalizing material 

that imparts specific functionalities to the surfaces of Fe
3
O

4
 

nanoparticles for efficient hybridization with conducting 

polymers. The sensor arrays based on the hybrid PEDOT–

PIL@Fe
3
O

4
 channel materials exhibited high sensitivity 

(1 ppm concentration) to VOC biomarkers including metha-

nol, ethanol, acetone, benzene, and toluene, which are present 

in the exhaled breath of lung cancer patients.6–9 The sensors 

also exhibited a high stability with a low level of noise, 

°

Figure 1 Schematics of the synthesis of core-shell PEDOT–PIL@Fe3O4 hybrid, and its application in chemiresistive sensor for detection of lung cancer VOCs.
Note: The human body photo was adapted with permission from Hakim M, Broza YY, Barash O, et al. Volatile organic compounds of lung cancer and possible biochemical 
pathways. Chem Rev. 2012;11(11)2:5949.65 Copyright © 2012 American Chemical Society.
Abbreviations: APS, ammonium persulfate; Ar, relative amplitude of the electrical signals; Mw, microwave; min, minute; PEDOT, poly(3,4-ethylenedioxythiophene); 
PIL, polymerized ionic liquid; VOCs, volatile organic compounds; EDOT, 3,4-ethylenedioxythiophene.
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indicative of the high reliability of the sensing channels. The 

results suggest that the sensors based on PEDOT–PIL@Fe
3
O

4
 

channel materials have significant potential for applications, 

including the point of care diagnostics and early diagnosis of 

cancer disease, via the detection of biomarkers.

Experiment
Materials
Iron(II) chloride tetrahydrate (.99.0%), iron(III) chloride 

hexahydrate (ACS reagent, 97%), bromoethane (98%), 

1-vinylimidazole (99%), and azobis(2-methylpropionitrile) 

(99%) were purchased from Sigma-Aldrich (St Louis, MO, 

USA) and used without further purification. Ammonium 

persulfate (APS) (98%) and ammonia solution (28%) were 

purchased from Tokyo Chemical Industry (TCI) Chemicals 

(Tokyo, Japan). Methanol (99%), ethanol (98%), acetone 

(98%), benzene (98%), toluene (99.8%), and chloroform 

(99.5%) were used as purchased.

Microwave-assisted synthesis of Fe3O4 
nanoparticles
PIL of poly(1-vinyl-3-ethylimidazolium) salts bearing the 

anion (Br-) was synthesized in accordance with a previ-

ously reported procedure.49,50 For the preparation of PIL-

stabilized magnetic nanocrystals, an aqueous solution of 

PIL (200 mg) was slowly added, under vigorous stirring, 

to a mixed solution of FeCl
2
⋅4H

2
O (0.2 g in 5 mL of 0.5 M 

HCl) and FeCl
3
⋅6H

2
O (0.54 g in 10 mL water) at room tem-

perature. After 15 minutes, 16 mL of ammonium hydroxide 

solution was added dropwise for 10 minutes. This mixture 

was then loaded into a tube, and placed inside a microwave 

reactor. The microwave reactor (MARS; CEM corporation, 

Matthews, NC, US) was operated at a power and pressure 

of 800 W and 4,000,000 Pa, respectively, and irradiated at 

150°C for 10 minutes under continuous stirring. The dark-

brown precipitate, ie, PIL@Fe
3
O

4
, was obtained by removing 

the supernatant and washing repeatedly with water.

Synthesis of PEDOT–PIL@Fe3O4 nano-
composites
PEDOT was formed on the surface of the Fe

3
O

4 
MNPs by 

oxidative in situ polymerization of EDOT in the presence of 

PIL@Fe
3
O

4
. An oxidizing agent, APS, was then added to the 

mixture containing the EDOT and PIL@Fe
3
O

4
 followed by 

24 hours’ reaction under vigorous stirring at room temperature. 

The polymerization of EDOT on the Fe
3
O

4
 surface was initiated 

when APS was added to a mixture of PIL@Fe
3
O

4
 and EDOT 

monomer. The PIL on the Fe
3
O

4
 surface provided efficient 

linkage between the PEDOT and the Fe
3
O

4
 and was therefore 

used as a polymerization template for the PEDOT, from which 

hybrid core-shell-structured PEDOT–PIL@Fe
3
O

4
 composites 

were obtained. The PEDOT–PIL@Fe
3
O

4 
products were washed 

repeatedly with deionized water and ethanol in order to remove 

unreacted species (eg, EDOT, freely suspended PIL molecules, 

APS) from the products. For the sake of comparison, the PIL-

doped PEDOT (PEDOT–PIL) without Fe
3
O

4
 nanoparticles was 

also prepared under the same synthetic condition.

Preparation and characterization of 
sensing device
Sensor arrays were fabricated via spray layer-by-layer 

deposition onto interdigitated electrodes composed of 25% 

Ag/75% Pd tracks, separated by a 15 μm ceramic gap, and 

prepared by cleaving 22 nF capacitors. The electrode sur-

face was rendered contaminant-free by polishing and then 

cleaning with ethanol. The spray layer-by-layer deposition 

device was equipped with a spray valve controller that 

allowed for precise control of the nozzle scanning speed 

(Vs =50 mm⋅s−1), solution flow rate, air pressure (0.1 MPa), 

and target-to-nozzle distance (8 cm). After fabrication, the 

vapor sensors were conditioned overnight at 30°C in a con-

trolled atmosphere.

Characterization
Structure and morphology of the PIL@Fe

3
O

4
 and PEDOT–

PIL@Fe
3
O

4 
samples were characterized by a Hitachi S-4800 

scanning electron microscope and a TECNAI 20 transmission 

electron microscope (TEM) equipped with an energy disper-

sive X-ray fluorescence spectrometer for energy-dispersive 

X-ray analysis. To characterize the crystal structure, X-ray 

diffraction measurements were performed at 2θ values of 

20°–80° and a step size of 0.02°, using a Bruker D8 advance 

diffractometer. In order to examine the chemical composi-

tion, X-ray photoelectron spectroscopy (XPS) measurements 

were performed with a VG Microtech ESCA2000 using 

monochromatic Al Kα radiation (hν =1,486.6 eV). Atomic 

force microscopy (AFM) was performed in tapping mode 

with an AFM XE-100. Specimens for AFM study were 

prepared by drop-casting Fe
3
O

4
@PIL-PEDOT suspension 

onto a silicon wafer and drying in a vacuum.

The chemiresistive property of the sensor was determined 

by recording the electrical responses of specimens during 

successive 5-minute rectangular pulses of VOC and pure 

nitrogen flows. Sensors were mounted in a vapor-sensing 

chamber and exposed at room temperature to saturated VOC 

analytes including ethanol, methanol, acetone, benzene, and 
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toluene. The mass flow controllers were used to regulate 

the flow rate of the pure nitrogen and the solvent vapors. In 

addition, the electrical valves were controlled by a program 

developed under the Labview software. The sensing device 

was operated at room temperature, and the total flow rate 

was kept constant at 100 cm3⋅min−1 during the measurements. 

Furthermore, the electrical conductivities of the conductive 

polymer composite (CPC)-based sensors were recorded with 

a Keithley 6517A multimeter and these sensors were placed 

in a 100×10×3 mm chamber during the dynamic vapor sens-

ing measurements. The chemiresistive response of the CPC 

sensors is determined from the relative amplitude of the elec-

trical signals (A
R
). A

R
 is the ratio of the change in resistance 

upon exposure to solvent vapors, normalized by the initial 

resistance of the sensor, as indicated in Equation 1:

	 A
R R

RR
O

O

=
−

� (1)

where R is the resistance of the sensing materials when 

exposed to analyte vapors and R
O
 is the initial resistance 

when exposed to a nitrogen flow.

Results and discussion
The Fe

3
O

4 
MNPs were prepared in the presence of PIL by 

microwave-assisted synthetic method, in which micro-

wave irradiation led to the rapid formation of PIL@Fe
3
O

4
 

nanoparticles. Figure 2 shows the field-emission scanning 

electron microscopy images of the PIL@Fe
3
O

4
 (Figure 2A) 

and PEDOT–PIL@Fe
3
O

4
 (Figure 2D) powder samples. 

These images reveal that the PEDOT–PIL@Fe
3
O

4 
nano-

particles are larger than the PIL@Fe
3
O

4
 ones, indicating 

PEDOT-layer-encapsulation of the Fe
3
O

4
 nanoparticles. 

Furthermore, the TEM images of PIL@Fe
3
O

4
 (Figure 2B  

and C) revealed that a thin (ie, with thickness on the 

order of nanometers) layer of PIL formed on the surface 

of the  ~10 nm sized Fe
3
O

4 
MNPs. The PIL molecules 

act as a stabilizer that prevents the aggregation of Fe
3
O

4
 

nanoparticles in the suspension, and provide functional-

ity for the polymerization with PEDOT on the surface of 

the Fe
3
O

4
. Furthermore, the TEM images of the PEDOT–

PIL@Fe
3
O

4
 (Figure 2E and F) indicated that the core 

Fe
3
O

4
, which consists of particles with sizes of ~15 nm,  

is covered by PEDOT layers. The driving force for the 

hybridization of PEDOT and PIL@Fe
3
O

4
 was explained in 

a previous study;49 ie, the PIL on the surface of the Fe
3
O

4
 

nanoparticles functions as a charge balancing stabilizer to 

the positively doped PEDOT chains during the polymeriza-

tion process. The AFM images of PEDOT–PIL@Fe
3
O

4
 in 

Figure S1 showed that the measured particle sizes are con-

sistent with those observed by TEM. The formation of MNPs 

via microwave irradiation was confirmed by X-ray diffrac-

tion measurement, as shown in Figure S2. The magnetic 

property of the PIL@Fe
3
O

4
 was also examined by measuring 

Figure 2 SEM and TEM images of the (A–C) PIL@Fe3O4 and (D–F) PEDOT–PIL@Fe3O4 composites.
Abbreviations: PEDOT, poly(3,4-ethylenedioxythiophene); PIL, polymerized ionic liquid; SEM, scanning electron microscopy; TEM, transmission electron microscopy.
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magnetization as a function of an external magnetic field 

at 300 K. The magnetic hysteresis loop (Figure S3) shows 

nonlinear and reversible characteristics without remanence 

or coercivity, which implies that the PIL@Fe
3
O

4
 exhibits 

superparamagnetic behavior.51 The magnetic property of 

the PIL@Fe
3
O

4 
may play the role of improving device 

performance, especially by depressing the noise of sensing 

signal which will be discussed later. 

The chemical composition of the resulting PIL@Fe
3
O

4
 

nanoparticles and PEDOT–PIL@Fe
3
O

4
 hybrids were char-

acterized by XPS. Figure 3 shows the XPS spectra of the 

PIL@Fe
3
O

4
 (Figure 3A and B) and the PEDOT–PIL@Fe

3
O

4
 

(Figure 3C and D). The Fe 2p (Figure 3A) and N1s spectra 

(Figure 3B) exhibited peaks corresponding to the Fe
3
O

4
 

nanoparticles and the imidazolium ring in the PIL, respec-

tively; this ring confirmed the presence of PIL molecules 

on Fe
3
O

4
 nanoparticles. In addition, the peak at 169 eV  

in the S 2p spectrum (Figure 3C) is associated with the S
2
O

8
- 

anion of the APS oxidant, and those at 164 and 165 eV are 

attributed to the spin-split doublets of sulfur atoms in the 

PEDOT backbone.52 The deconvolution of the O 1s spec-

trum revealed three different peaks (Figure 3D). The most 

intense peak at 533.4 eV corresponds to the oxygen in ether 

(C–O–C), while the peaks at 531.7 and 535.5 eV originate 

from the S=O and C=O bonds, respectively.53 These data are 

consistent with the formation of PEDOT on Fe
3
O

4
 nanopar-

ticles using PIL as a linker.

A chemiresistive sensor was fabricated by depositing 

the PEDOT–PIL@Fe
3
O

4 
nanostructures onto interdigitated 

microelectrodes. The performance of the sensors, during this 

exposure for analytes including ethanol, methanol, acetone, 

benzene, and toluene, was evaluated in terms of their sensor 

response, which is defined (see Equation 1) as the relative 

resistance change (A
R
 =ΔR/R

O
). Upon exposure to the analyte 

vapors, the sensor showed a sharp increase in resistance with 

analyte’s sorption and exhibited a positive vapor coefficient. 

The resistance of each of the sensors returned to its initial 

value when the analyte vapor flow was turned off and the N
2
 

Figure 3 XPS spectra.
Notes: (A) Fe 2p and (B) N 1s XPS spectra of the PIL-modified Fe3O4 nanoparticles. (C) S 2p and (D) O 1s XPS spectra of the PEDOT–PIL@Fe3O4 hybrid composite.
Abbreviations: PEDOT, poly(3,4-ethylenedioxythiophene); PIL, polymerized ionic liquid; XPS, X-ray photoelectron spectroscopy; p, atomic “p” orbital; s, atomic “s” orbital.
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gas flow restored; this was indicative of a complete desorp-

tion of vapor molecules from the sensing materials and full 

recovery of the device. The reproducibility of the results 

was demonstrated for vapor exposures performed between 

the recovery periods. The performance of the sensor based 

on the PEDOT–PIL@Fe
3
O

4
 composite was compared with 

that of its PEDOT–PIL-only counterpart; the nonconductive 

PIL@Fe
3
O

4
 was excluded from the chemiresistive VOC 

sensing test.

Figure 4 shows the normalized sensor response of the 

PEDOT–PIL and PEDOT–PIL@Fe
3
O

4
 channels to saturated 

concentrations of the different VOCs. The sensing behavior 

of the PEDOT–PIL@Fe
3
O

4
 channels differed markedly 

from that of the PEDOT–PIL and varied significantly with 

the type of VOC molecules. In the case of the PEDOT–PIL 

sensors, the maximum amplitude of the signal is less than 

0.22 and the electrical response to different VOCs can be 

written in descending order of sensitivity as: A
Rmethanol 

.  

A
Rethanol 

. A
Racetone

. A
Rbenzene 

. A
Rtoluene

 (Figure 4A). The 

interactions between the sensor arrays and vapor molecules 

lead to changes in both the carrier density and mobility. 

The conformation of the conductive polymer chains can 

also be modified owing to the strong interaction with cer-

tain organic solvents, which may lead to changes in the 

conductivity.54–56 Moreover, the diffusion of analytes into 

the composites sensor may also affect the doping activity 

of the PIL on PEDOT, thereby leading to an increase in 

the resistance.

The sensitivity of the sensors made with PEDOT–

PIL@Fe
3
O

4 
channels (Figure 4B) increased with increas-

ing amplitude. The response of the PEDOT–PIL@Fe
3
O

4
 

sensor to VOC analytes can be written in descending 

Figure 4 Sensing response of the (A) PEDOT–PIL and (B) PEDOT–PIL@Fe3O4 composite to VOC analytes.
Abbreviations: Ar, relative amplitude of the electrical signals; PEDOT, poly(3,4-ethylenedioxythiophene); PIL, polymerized ionic liquid; VOC, volatile organic compound.
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order as A
Rmethanol 

. A
Racetone 

. A
Rethanol 

. A
Rbenzene 

. A
Rtoluene

. 

The differing sensing behaviors of the PEDOT–PIL and 

PEDOT–PIL@Fe
3
O

4
 channels are indicative of the different 

molecular interaction between these sensing materials and 

the VOCs; this implies that the hybridization of Fe
3
O

4 
and 

PEDOT plays an important role in increasing the sensitiv-

ity and selectivity of the sensor. As shown in Figure S4, 

the sensitivity of the PEDOT–PIL@Fe
3
O

4
 is much higher 

than that of PEDOT–PIL for all analyte vapors used in 

this study. We interpreted this result by the fact that the 

incorporation of Fe
3
O

4
 nanoparticles affects the surface area 

and swelling behavior of channel materials in the presence 

of analyte vapors. Then, the efficient swelling can trigger 

macroscopic resistance variation as the conducting network 

is easily disconnected. In addition, compared to its PEDOT–

PIL-only counterpart, the sensor with PEDOT–PIL@Fe
3
O

4
 

channels exhibited a more stable sensing curve with lower 

levels of noise. Therefore, the PEDOT–PIL@Fe
3
O

4
 sen-

sor exhibited a better sensor response than its counterpart. 

This improved performance is likely due to an increase in 

the electroactive surface area of the PEDOT by incorpora-

tion of Fe
3
O

4
 nanoparticles, which allow for an enhanced 

charge-exchange rate and dissipation of the noise by electron 

circulation.52 It is also observed that the magnetic properties 

of Fe
3
O

4
 nanoparticles would be responsible for the reduc-

tion of noise level.57

The amplitude of the response, A
R
, depends on the 

molecular interaction between the sensing materials and the 

VOC analyte molecules, as expressed in Equation 2:

 	 A ae
R

b

= χ12 � (2)

where a and b are constants, and χ
12

 is the Flory–Huggins inter-

molecular interaction parameter derived from Equation 3:

 	 χ
δ δ

12

2

=
−V

RT
m TPol Tana

( )
� (3)

where V
m
 is the molar volume of the analyte molecules 

(cm3⋅mol-1); R =8.314 J⋅K-1⋅M-1; T is absolute temperature in 

Kelvin; δ
TPol

 is polymer global solubility parameter (J⋅cm-3)1/2; 

and δ
Tana

 is
 
analyte global solubility parameter (J⋅cm-3)1/2. 

In general, the interphase swelling of the conducting 

polymer composite increases with decreasing χ
12

, thereby 

leading to an increase in the resistance, and the relative 

amplitude A
R
.

Figure 5A shows a plot of the sensor response toward 

the concentration of acetone vapor. The chemiresistive 

response of the conductive polymer composite sensors can 

be described by the Langmuir–Henry-clustering model 

(Equation 4), which can predict different chemiresistive 

behavior in a range of vapor concentrations:58,59

	 A
b f f

b f
k f f f f

R
L

L
H

n=
−

+
+ + − ′( )

( )
″

′
1

� (4)

where b
L
 is the Langmuir affinity constant, k

H
 the Henry’s 

solubility coefficient, n′ the number of vapor molecules per 

cluster, and f the solvent fraction; f′ and f″ correspond to 

transitions between different regimes of diffusion.

In Figure 5A, the sensor gives responses proportional 

to the analyte concentration in the ppm range, suggesting 

that the dominant mode that can take place in this sensor is 

Henry’s diffusion. Figure 5B compares the response of the 

PEDOT–PIL@Fe
3
O

4 
and PEDOT–PIL sensors to the target 

VOC; ie, acetone at a concentration of 1 ppm. Acetone is a 

typical biomarker for lung cancer since, owing to metabolic 

disorders, it is found in concentrations of .1.5 ppm in the 

exhaled breath of lung cancer patients.60–63 Therefore, the 

improved sensing performance to acetone vapors is essential 

to lung cancer diagnosis. In terms of amplitude of the signal, 

the PEDOT–PIL@Fe
3
O

4 
sensor exhibited a 38.8% higher 

response to acetone vapor than its PEDOT–PIL counterpart. 

Moreover, the sensor exhibited a stable sensing curve, indica-

tive of low noise and high signal-to-noise ratio (SNR). The 

noise of the sensor can be calculated as the root-mean-square 

deviation (RMS) of the relative resistance change from the 

baseline.64 The standard deviation in the baseline resistance, 

prior to acetone exposure, was taken from ten data points, 

as shown in Figure 5C. 

A polynomial fit to the plotted data provides a curve-

fitting equation and the statistical parameters for calculating 

the data-point range:

 	 V y y
x i2

2= −∑ ( ) � (5)

where y
i
 is the measured data point and y is the corresponding 

value calculated from the curve-fitting equation. The RMS 

noise is calculated from the following equation:

 	 RMS
V

Nnoise
x= 2

� (6)

where N is the number of data points used in the curve 

fitting. 

Noise levels of 0.00240 and 0.00217 (Figure 5D) calcu-

lated for the PEDOT–PIL and PEDOT–PIL@Fe
3
O

4 
sensors, 

respectively, revealed that the PEDOT–PIL@Fe
3
O

4 
resulted 
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Figure 5 Performance of PEDOT-PIL@Fe3O4 sensor.
Notes: (A) Calibration of PEDOT–PIL@Fe3O4 sensor to concentration of acetone vapor; (B) sensing response of the PEDOT–PIL@Fe3O4-composite-based and PEDOT–
PIL sensors to acetone vapor at a concentration of 1 ppm; (C) the standard deviation in the baseline resistance after exposing to acetone; (D) comparison of the RMS noise 
of the PEDOT–PIL and PEDOT–PIL@Fe3O4 sensors.
Abbreviations: Ar, relative amplitude of the electrical signals; PEDOT, poly(3,4-ethylenedioxythiophene); PIL, polymerized ionic liquid; RMS, root-mean-square deviation; 
ppm, parts per million.

in an 11% reduction in the noise associated with the sensor 

response. Therefore, the PEDOT–PIL@Fe
3
O

4
-based sensor 

arrays exhibit more reliable response to acetone vapor at 

concentrations in the ppm range. In addition, according to 

the The International Union of Pure and Applied Chemistry 

definition, the signal is considered to be a true signal when 

its SNR equals 3.64 Thus, the detection limit (DL) can be 

extrapolated from the linear calibration curve by using the 

following equation:

	 DL (ppm) 3=
RMS

slope
� (7)

The detection limit of the PEDOT–PIL@Fe
3
O

4
-based sensor 

is estimated as 257 ppb, which is two-times lower than the 

PEDOT–PIL-only sensor (515 ppb). These results suggest 

that the PEDOT–PIL@Fe
3
O

4
-based sensor has significant 

potential for use in the detection of VOC biomarkers for 

lung cancer diagnosis.

Conclusion
We demonstrated a chemiresistive sensor based on core-

shell hybridized nanostructures of Fe
3
O

4 
and PEDOT for 

the efficient detection of VOC biomarkers. These hybrid 

nanostructures were synthesized by using PILs as surface-

functionalizing materials, which prevented the aggregation of 

Fe
3
O

4
 nanoparticles and promoted the formation of PEDOT 

on the Fe
3
O

4
 surface. The resulting PEDOT–PIL@Fe

3
O

4
 

hybrids were used as sensing channel materials to detect 

various VOC vapors such as methanol, ethanol, acetone, 

benzene, and toluene. These sensors exhibited a remarkable 

sensing response (ie, high sensitivity, selectivity, and SNR) 

to the VOC vapors. In addition, the PEDOT–PIL@Fe
3
O

4 
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sensor exhibited a significantly higher sensing response to 

1 ppm acetone vapor analyte, ie, a 38.8% higher sensitivity 

and an 11% lower noise level, than the PEDOT–PIL sensor. 

The sensor presented in this work exhibited high sensitivity 

with a detection limit in the ppb range and reliable sensing 

behavior to VOC biomarkers; this reliable sensing behavior 

is essential to the early diagnosis of lung cancer.
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Supplementary materials

Figure S1 AFM image of the PEDOT–PIL@Fe3O4, showing that the magnetic NPs are fully covered by conducting polymer, PEDOT. 
Note: The red arrows represent the position where the scan line cross the sample.
Abbreviations: AFM, atomic force microscopy; NPs, nanoparticles; PEDOT, poly(3,4-ethylenedioxythiophene); PIL, polymerized ionic liquid.

Figure S2 An X-ray diffraction pattern of the synthesized Fe3O4 nanoparticles modified with PIL.
Abbreviation: PIL, polymerized ionic liquid.
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Figure S4 Comparison of the selectivity of the PEDOT–PIL and PEDOT–PIL@Fe3O4 sensors toward a set of VOC biomarkers.
Abbreviations: Ar, relative amplitude of the electrical signals; PEDOT, poly(3,4-ethylenedioxythiophene); PIL, polymerized ionic liquid; VOC, volatile organic compound.

Figure S3 Zoom out on hysteresis loops showing the saturation of magnetization. 
Notes: Inset, top left: the magnetization curves as a function of applied magnetic field of Fe3O4@PIL; bottom right: digital photo showing magnetic response to an external field.
Abbreviation: PIL, polymerized ionic liquid.
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