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Abstract: Conventional in vitro culture studies on flat surfaces do not reproduce tissue 

environments, which have inherent topographical mechanical signals. To understand the impact 

of these mechanical signals better, we use a cell imprinting technique to replicate cell features 

onto hard polymer culture surfaces as an alternative platform for investigating biomechanical 

effects on cells; the high-resolution replication of cells offers the micro- and nanotopography 

experienced in typical cell–cell interactions. We call this platform a Bioimprint. Cells of an 

endometrial adenocarcinoma cell line, Ishikawa, were cultured on a bioimprinted substrate, in 

which Ishikawa cells were replicated on polymethacrylate (pMA) and polystyrene (pST), and 

compared to cells cultured on flat surfaces. Characteristics of cells, incorporating morphology 

and cell responses, including expression of adhesion-associated molecules and cell prolifera-

tion, were studied. In this project, we fabricated two different topographies for the cells to 

grow on: a negative imprint that creates cell-shaped hollows and a positive imprint that recre-

ates the raised surface topography of a cell layer. We used two different substrate materials, 

pMA and pST. We observed that cells on imprinted substrates of both polymers, compared to 

cells on flat surfaces, exhibited higher expression of β1-integrin, focal adhesion kinase, and 

cytokeratin-18. Compared to cells on flat surfaces, cells were larger on imprinted pMA and 

more in number, whereas on pST-imprinted surfaces, cells were smaller and fewer than those 

on a flat pST surface. This method, which provided substrates in vitro with cell-like features, 

enabled the study of effects of topographies that are similar to those experienced by cells 

in vivo. The observations establish that such a physical environment has an effect on cancer 

cell behavior independent of the characteristics of the substrate. The results support the concept 

that the physical topography of a cell’s environment may modulate crucial oncological signaling 

pathways; this suggests the possibility of cancer therapies that target pathways associated with 

the response to mechanical stimuli.

Keywords: surface characteristics, cell culture platforms, physical microenvironment, cell 

response, drug targets, mechanical forces

Introduction
The involvement of physical forces across a range of tissues has been recognized in 

physiology for some time. For example, mechanical stimulation can influence fracture 

healing and bone repair, although the mechanisms are still uncertain,1,2 and forces 

associated with tonic hydrostatic distension and cyclic mechanical deformation are 

necessary for normal fetal lung development.3 In addition, several cancer-related studies 

under reduced gravity or aboard a space station have observed a distinct cell behav-

ior compared to that of cells in normal gravity.4 There were, eg, differences in gene 

expression, cell signaling, and microtubule reorganization of Jurkat human leukemia 
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cells and CaSki cervical carcinoma cells.5,6 With particular 

relevance to the understanding of cancer proliferation, it has 

been noted that mechanical forces also exert control during 

the cell cycle.7

More recent evidence suggests that a deficiency in cancer 

treatments is the absence of attention to the physical environ-

ment of cells.8 The cells attach in vivo to their neighbors and 

are incorporated into an environment of three dimensions 

influenced by the extracellular matrix (ECM). There have 

been studies observing ECM remodeling in wound healing,9 

interactions of breast cancer cells with ECM,10 and ECM 

mediation of the activity of nicotine during lung cancer 

development.11 However, those discussions include limited 

acknowledgment of the possible contributions of mechani-

cal forces on the full process. It is becoming an increasingly 

attractive hypothesis that a physical and mechanical network 

involving cells and the physical microenvironment oper-

ates to regulate cell behavior in parallel to the well-known 

biochemical processes. In other words, the structure of the 

neighborhood, as distinct from its composition, can affect 

cell functioning.12,13 It is already known that tumors are often 

stiffer than healthy tissues,14 thereby providing a different 

mechanical environment. Therefore, consideration of this 

aspect15 is crucial in defining tumor development.

In this study, we explored the biological impact of physi-

cal topography on endometrial cancer cells. Previously, we 

developed a bioimprinting methodology using soft lithog-

raphy to replicate biological cells on hard polymer.16–18 This 

technique can produce two different surfaces for the cells to 

grow on: a negative imprint that creates cell-shaped hollows, 

or a positive imprint that recreates the raised surface topog-

raphy of a cell layer. We used the technique (Bioimprint) to 

form negative-imprinted polymethacrylate (pMA) substrates 

for cell culture and both negative and positive polystyrene 

(pST) imprints. The behaviors of the cells cultured on these 

surfaces were compared to those on nonimprinted, flat sur-

faces of the respective polymer.

It has been observed that there is dynamic communication 

between cells and the structured microenvironment,19,20 which 

in vivo consists of neighboring cells and ECM. Cells on pat-

terned elastomer substrates experience forces that have depen-

dency on the area and intensity of focal adhesions formed 

between cells and substrate surface.21 These cell–substrate 

forces are modulated by geometrical alteration of the adhesion 

site, which acts through distribution of cell stress fibers.19,22 

Therefore, in this study, the substrates imprinted with cell-like 

features will provoke mechanical forces on the cells according 

to the nature of the adhesion site formation. Thus, we study 

cancer cells when they are cultured in a physical environment 

that, importantly, has features similar to themselves, and we 

compare cell growth and aspects of metabolism with those 

of cells grown on a conventional flat surface. Here, we report 

the results of our studies of cells cultured on these surfaces 

in terms of, first, differences in cell preferential adhesion on 

either imprinted or flat surface. Next, we assess the expression 

of β1-integrin because it is a major mediator of the interac-

tion between a cell and its microenvironment;23,24 then, we 

report the downstream expression of focal adhesion kinase 

(FAK), an effector enzyme in the complex that is linked to 

integrin receptor; and next, we describe the characteristics of 

the cytoskeleton as reflected in the expression and structure 

of actin and cytokeratin.

Materials and methods
Cell maintenance
Cells of human Ishikawa endometrial cancer cell line (a gift 

from Dr Mishato Nishida, Ibraki-ken, Japan) and C2C12 

murine myoblast cells (a gift from collaborative partners at 

Plant and Food Research, Hamilton, New Zealand) were 

cultured at 37°C in 5%/95% CO
2
/air in Dulbecco’s Modified 

Eagle’s Medium (DMEM)-F12 supplemented with 10% (v/v) 

fetal bovine serum (FBS), penicillin (100 units/mL), strep-

tomycin (100 μg/mL), Fungizone™ (1 μg/mL), and Gluta-

MAX™ (2 mM) (Gibco Thermo Fisher Scientific, Waltham, 

MA, USA). All experiments were conducted according to the 

regulations and guidelines that pertain to biological studies in 

the University of Otago.

Antibodies
Antibodies for Western blotting and immunofluorescence 

staining, β1-integrin, cytokeratin-18, actin, FAK and phos-

phorylated FAK (pFAK), and glyceraldehyde 3-phosphate 

dehydrogenase (GAPDH) were purchased from Santa Cruz 

Biotechnology Inc. (Dallas, TX, USA). Texas Red®-X 

Phalloidin was purchased from Invitrogen (Thermo Fisher 

Scientific, Waltham, MA, USA).

The Bioimprints
Two polymers were used in this study: pMA and pST. To 

make Bioimprints, a glass microscope slide was attached 

to a polydimethylsiloxane (PDMS) sheet with three round 

wells cut in it (diameter: 15 mm) using a cork borer. Cell 

suspensions were added to the wells and cultured and fixed 

with IC Fixation Buffer (Invitrogen).

Flat and bioimprinted pMA culture disks
pMA polymer was prepared from a 6:3:1 mixture of ethylene 

glycol dimethacrylate (EGDMA) (Sigma Aldrich, St Louis, 
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MO, USA): methacrylic acid (Acros Organics, Thermo Fisher 

Scientific): Irgacure® 2022 (Ciba Specialty Chemicals, Basel, 

Switzerland). Next, the EGDMA mixture was cured rapidly 

(240 seconds) under 40% ultraviolet (UV) light (Omnicure 

S2000; EXFO, Toronto, ON Canada). Next, the EGDMA 

mixture was pipetted over the fixed cells, which formed an 

imprinted disk; the surface of the pMA disk captured the 

impression of the cells. On the other hand, flat pMA was made 

by curing the same mixture on cell-free glass slides.

Disks of pMA Bioimprint and flat disks were cleaned by 

sonication in 10% sodium dodecyl sulfate (SDS), followed 

by shaking with trypsin (0.05%) for at least 40 minutes. The 

disks were then soaked in double-distilled water overnight, 

followed by sterilization in absolute ethanol and washing 

with DMEM-F12 without FBS. Prior to cell seeding, disks 

were fitted into 24-well plates and cells were grown on their 

surfaces.

pST Bioimprint
For the pST Bioimprint, the imprint was of two forms. 

One was “negative” and the features comprised hollows 

below the horizontal plane. The second was “positive” 

and the features were of humps above the horizontal plane 

(Figure 1).

PDMS master molds
pST Bioimprint was made from PDMS master molds. 

First, cells were cultured and fixed on a glass slide, fol-

lowed by washing with phosphate-buffered saline (PBS) 

and distilled water. Then, PDMS was poured on top and 

rapidly cured at 34°C for 2 minutes, followed by 2 hours’ 

curing at 80°C. This PDMS with negative cell impressions 

was peeled off the glass slide, cleaned with 10% SDS and 

trypsin, and was ready for use as the mold for positive 

pST Bioimprint.

Positive pST Bioimprint
pST Bioimprint was made from PDMS master molds. To 

make the pST Bioimprint, a pST slide (Ted Pella Inc, CA, 

USA) was pressed against a PDMS mold and the imprint was 

transferred onto pST slides at 180°C for 15 minutes.

Figure 1 A schematic illustration of the bioimprinting processes that result in polystyrene culture substrates with cell-like topographies.
Abbreviations: (-), negative imprint; (+), positive imprint; (f), flat substrate; pST, polystyrene.
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Negative pST Bioimprint
To make positive PDMS molds, a PDMS negative Bioimprint 

prepared as described in the section on “PDMS master 

molds” was treated in 0.1% hydroxypropyl methycellulose 

(HPMC) (Sigma Aldrich, St Louis, MO, USA) for 10 minutes 

on a shaker, followed by washing thoroughly with distilled 

water. This treatment prevents sticking between two PDMS 

layers. A positive PDMS Bioimprint was then made by pour-

ing another layer of PDMS onto this HPMC-treated PDMS 

and cured at 80°C. This is the positive PDMS mold for the 

negative pST Bioimprint. To make pST Bioimprint, a pST 

slide was pressed against the PDMS mold and the imprint 

was transferred onto pST slides at 180°C.

Preferential attachment of cells
To study the cell attachment and localization on substrates, 

cells were seeded on low-density Bioimprint so that cells had 

a chance to deposit either on Bioimprint or flat surface. Then, 

the “before” pictures of pST Bioimprint and “after” images 

of cells on the platform were taken; the areas of Bioimprint 

surface and flat surface were measured. Next, the coverage 

by cells was determined and the relative percentage cover-

age was calculated.

RGDS and RGES treatment
Ishikawa endometrial cancer cells were premixed with 

100 µM RGDS (Arg-Gly-Asp-Ser) or RGES (Arg-Gly-Glu-

Ser) before seeding on flat and Bioimprint pST substrates. 

After 3 hours’ incubation time, adherent and nonadherent 

cells were counted and the percentage of adherent cells was 

calculated.

Western blotting
Cells lysate was prepared using RIPA buffer containing pro-

tease inhibitor cocktail tablets (Complete Mini, Hoffman-La 

Roche Ltd., Basel, Switzerland) and was analyzed for total 

protein concentration using BCA Protein Assay Kits (BioRad, 

Hercules, CA, USA). Then, 10 μg of protein was run through 

SDS polyacrylamide gel electrophoresis under nonreducing 

conditions and was then transferred onto a polyvinylidene 

difluoride membrane, blocked, and incubated with primary 

antibodies overnight at 4°C. On the following day, the mem-

brane was washed with 0.1% Tween-20 Tris-buffered saline 

before and after incubation with secondary antibody. The 

membrane was then analyzed using ECL Plus (GE Health-

care UK Ltd, Little Chalfont, UK) with Alliance 4.7 imaging 

system (Unitec, Cambridge, UK). Densitometric analysis of 

bands of each sample was carried out using ImageJ.25

Some commonly used reference proteins, eg, actin, 

cytokeratin, and GAPDH, were sensitive to the physical envi-

ronment on which the cells were grown. Therefore, Western 

blot data for cells on pMA substrates are presented using the 

same sample loading, ensured by total protein measurement, 

and the Western blotting was repeated at least six times.

Immunofluorescence staining
Cells were grown on respective substrates until 70%–80% 

confluent and were fixed as described in the section “The 

Bioimprints”. For cytokeratin-18 staining, cells were per-

meabilized with cold methanol for 10  minutes at -20°C 

and, for actin, β1-integrin, and pFAK staining, cells were 

permeabilized with Triton X for 5 minutes at room tempera-

ture. After permeabilization, cells were washed four times 

with cold PBS, each of 5 minutes’ duration. Then, samples 

were blocked with 5% w/v bovine serum albumin in PBS for 

60 minutes at room temperature, followed by washing with 

PBS (pH 7.4). Then, cells were incubated with mouse anti-

cytokeratin-18 (Santa Cruz Biotechnology Inc.) for local-

ization of cytokeratin-18 or Texas Red-X Phalloidin (Life 

Technologies Thermo Fisher Scientific) for actin filament 

staining or with both anti-β1 integrin and anti-pFAK (Santa 

Cruz Biotechnology Inc.) at 4°C overnight. After primary 

antibody incubation, cells were washed with cold PBS prior 

to secondary antibody incubation. After washing with cold 

0.1% v/v PBS–Tween 20, samples with antifading solution 

were visualized with Zeiss Axio Imager epifluorescence 

microscope (Carl Zeiss Meditec AG, Jena, Germany).

Cell morphology and size
Cells were cultured on substrates and were immunofluo-

rescently stained for cytokeratin-18 and were examined 

under an epifluorescence microscope. The shapes of cells 

were observed using optical microscopy, and the sizes were 

measured using ImageJ.

Cell number
The number of cells was estimated using a standard curve 

that related the level of Coomassie Blue staining to cell 

number. Cells were grown on different substrates, and then 

cell culture media were removed and cells were washed with 

PBS, followed by cell fixing with IC Fixation Buffer for 

15 minutes. After washing off the excess fixation buffer, cells 

were stained with Coomassie Blue for 5 minutes. The stained 

cells were washed with distilled water three times.

To make a standard curve, a cell suspension was prepared 

and after cell counting, serial dilutions were made and stained 
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with Coomassie Blue for 5 minutes. The stained samples 

were washed with distilled water three times and air-dried. 

The stains of this standard curve, together with the stained 

experimental samples, were dissolved in 10% SDS in 0.1 N 

HCl for 10 minutes. Absorbance at 595 nm was obtained and 

the cell number was calculated from the standard curve.

Results
Substrate resolution
Our previous studies have shown that imprints obtained using 

UV-curable pMA can replicate cell features of Ishikawa cells 

derived from endometrial cancer down to the nanoscale.16–18 

We chose this polymer as a cell substrate because it satis-

fied the criteria for a successful bioimprint process, namely, 

nanoscale resolution, fast curing time, and low temperature 

process, in addition to biocompatibility. Here, we also 

produced imprints with a polymer that is commonly used 

in studies of cell behavior, namely, pST. The results dem-

onstrated that pST imprints were also capable of very high 

resolution and were observed to capture a cell’s fine features 

such as cell filopodium (Figure 2). The fidelity was observed 

in negative imprints and retained during the later steps to 

produce a positive imprint.

Preferential substrate for growth
Previously, we observed that there was preferential cell 

growth on imprinted areas on negative pMA relative to 

flat areas.26 Here, we undertook quantitative cell popula-

tion analysis. Using imaging and counting described in 

the “Materials and methods” section, the fraction of cells 

that could potentially have adhered to the flat area or to the 

imprinted area on each slide was calculated. It can be seen 

that the Ishikawa cells selectively grew on a pST substrate 

negatively imprinted with Ishikawa cells (Figure 3A). No 

selective presence was observed on the substrate that was 

positively imprinted (Figure 3A).

To investigate the possibility that the preference was 

a result of a nonspecific effect of surface patterning, a 

different cell line, namely C2C12 mouse myoblast cells, 

was used to make Bioimprints. The same procedure was 

performed using an imprint of C2C12 cells as substrate 

for the endometrial cancer cells (Figure 3B). In contrast to 

Ishikawa cells cultured on Ishikawa cell imprints, Ishikawa 

cells cultured on a substrate negatively imprinted with 

C2C12 cells showed no selective presence. Further, there 

was again no selection on a substrate positively imprinted 

with C2C12 cells.

Cell morphology
We investigated the area of cells as an indication of cell 

response to the imprinted surface (Figure 4). Cells on  

(-)pMA imprint had bigger areas (590.1±56.7  μm2) than 

cells on flat surface (f)pMA (323.2±31.0 μm2) (Figure 4A). 

In contrast, cells on both (-)pST (947.5±39.6  μm2) and  

(+)pST (772.9±74.2 μm2) imprints were smaller than on (f)

pST (1,002.0±37.5  μm2) (Figure 4B). The cells on pMA 

substrates had smaller surface area than cells on pST surfaces. 

This was due to the hydrophobicity of pMA substrates, which 

limited cell spreading. In this context, the contact angle (CA) 

of pMA is 65°–80°27 and that of pST is 58.89°.26

Figure 2 Scanning electron microscope images of bioimprints of Ishikawa endometrial cancer cells.
Notes: (A) A negative polystyrene imprint and (B) a positive polystyrene imprint. The images illustrate the retained fidelity of the fine features of cells during fabrication 
of the imprints.
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Beta-1 integrin expression
The influence of flat and imprinted pMA and pST substrates 

on β1-integrin expression, an important mediator of signals 

between the external environment of a cell and its cytoplas-

mic interior, was examined.

Compared to cells on flat pMA substrate, cells on (-)pMA  

had higher expression of β1-integrin (Figure 5A). Cells on 

(-) and (+)pST also had higher expression of β1-integrin 

than those on (f)pST (Figure 5B).

Integrin is known to bind to RGD (Arg-Gly-Asp) moieties 

in the surrounding ECM. Demonstration that β1-integrin 

expression was sensitive to the topography of the substrate 

suggested that there was β1-integrin involvement in the 

cell’s responses to the physical environment. Therefore, to 

confirm the role of β1-integrin in cell adhesion on pST, we 

investigated the effect of RGDS, a tetrapeptide that inhibits 

binding of β1-integrin to relevant (fibronectin) substrates. 

The initial binding of cells to pST substrate was indeed 

blocked by RGDS (Figure 6). Control peptide (RGES) had 

no effect on adhesion, which is consistent with the early 

involvement of β1-integrin in the differential interaction of 

cells with distinct topographies.

Figure 3 Preferential growth on polystyrene Bioimprint.
Notes: Ishikawa cells were cultured on polystyrene imprints of (A) Ishikawa cells and (B) C2C12 cells. The fractions of cells that could potentially have adhered to the flat 
area or the imprinted area on each slide were calculated. Data are presented as mean ± SEM of measurements from 25 grid areas on each of 4 incubations per substrate 
topography (**P,0.01).

Figure 4 Effects of Bioimprint substrate on Ishikawa cell size.
Notes: Effects on (A) (f)pMA and (-)pMA imprint; and (B) (f)pST, (-)pST, and (+)pST imprints. Cells were grown on (A) flat and negative-imprinted pMA substrates; and 
(B) flat, negative-, and positive-imprinted pST substrates; and were stained for cytokeratin-18; images of cells were taken using epifluorescence microscopy. ImageJ software 
was used to measure each parameter from the images taken. Data are presented as mean ± SEM of measurements from at least 25 cells from five different images (**P0.01; 
paired t-test).
Abbreviations: (-), negative imprint; (+), positive imprint; (f), flat substrate; pMA, polymethacrylate; pST, polystyrene; SEM, standard error of the mean.
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Focal adhesions
Next, we studied FAK, which is an important component 

of the focal adhesion complex that forms downstream of 

β1-integrin as part of the response to biomechanical forces.28 

Our immunofluorescence staining results demonstrated that 

pFAK was expressed with β1-integrin (Figure 7), indicating 

functional colocalization.

Western blotting revealed that cells cultured on (-)

pMA imprint exhibited higher mean FAK expression than 

cells on the flat polymer (Figure 8A, left panel). Moreover, 

activated pFAK was expressed at similar levels on (-)pMA 

as on f(pMA) (Figure 8B, left panel). Additionally, on pST 

substrates, higher expression of FAK was observed in cells 

cultured on (-)pST and (+)pST imprints relative to those 

cultured on (f)pST (Figure 8A, right panel).

We also found that the ratio of pFAK to total FAK was 

significantly lower (P0.01) in cells cultured on bioim-

printed pMA than in cells grown on flat substrate. The ratio 

was also lower in cells grown on (+)pST than on (f)pST 

(P0.05).

Actin
Actin is recruited to focal adhesions in response to biome-

chanical force stimulation,28 and actin has been observed in 

some cells to modify its structure to subsequently transmit 

information for relevant gene activation. In cells cultured on 

pMA Bioimprint (Figure 9), the actin filaments were more 

elongated than actin filaments in cells cultured on flat surfaces 

(cell circularity, determined by ImageJ, on (f)pMA: 0.72; 

cell circularity on (-)pMA: 0.64; P0.05). These observa-

tions were distinct from those observed in cells cultured on 

pST. There was no observable difference in actin arrange-

ment between cells cultured on (-)pST and (+)pST surfaces 

Figure 5 Effects of Bioimprint on expression of β1-integrin.
Notes: Densitometry results of β1-integrin bands formed after Western blotting of lysates of cells cultured on (A) flat and negative-imprinted pMA substrates and (B) flat, 
negative-, and positive-imprinted pST substrates. Data are presented as mean ± SEM from at least six tests (*P0.05; **P0.01, paired t-test).
Abbreviations: GAPDH, glyceraldehyde 3-phosphate dehydrogenase; SEM, standard error of the mean; pMA, polymethacrylate.

Figure 6 Effects of blocking β1-integrin on initial cell adhesion.
Notes: Cells were grown on respective substrates with either no treatment or with 
treatments consisting of RGDS alone, RGES alone, or RGDS + RGES for 3 hours 
and were stained with Coomassie Blue. The number of adherent cells was quantified 
from a Coomassie Blue staining standard curve. Data are presented as mean ± SEM 
of measurements from at least three samples, each in triplicate (*P0.05; **P0.01; 
paired t-test).
Abbreviations: RGDS, Arg-Gly-Asp-Ser tetrapeptide; RGES, Arg-Gly-Glu-Ser 
tetrapeptide; SEM, standard error of the mean.
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Figure 7 Colocalization of β1-integrin and pFAK. 
Notes: Immunofluorescence staining of β1-integrin of cells cultured on (A) (f)pMAand (B) (-)pMA imprint; and on (C) (f)pST, (D) (-)pST, and (E) (+)pST imprints. β1-
integrin was localized using mouse anti-β1-integrin, and pFAK was localized with rabbit anti-pFAK, which were then imaged with AlexaFlour 488 (green) and Atto 594 (red), 
respectively. Colocalization of β1-integrin and pFAK is indicated by the arrows, where merging of green and red tags to yellow coloration occurs. Cell nuclei were stained 
with Hoechst 33342 (blue) (original magnifications: ×20).
Abbreviations: (-), negative imprint; (+), positive imprint; (f), flat substrate; pFAK, phosphorylated focal adhesion kinase; pMA, polymethacrylate; pST, polystyrene.

Figure 8 Effects of Bioimprint on FAK and pFAK expression.
Notes: Densitometry results of (A) FAK and (B) pFAK bands formed after Western blotting of lysates of cells cultured on (left panel) flat and negative-imprinted pMA substrates 
and (right panel) flat, negative-, and positive-imprinted pST substrates. Data are presented as mean ± SEM from at least six tests (*P0.05; **P0.01; paired t-test).
Abbreviations: FAK, focal adhesion kinase; GAPDH, glyceraldehyde 3-phosphate dehydrogenase; pFAK, phosphorylated FAK; pMA, polymethacrylate; pST, polystyrene; 
SEM, standard error of the mean.

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


International Journal of Nanomedicine 2015:10 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

4891

Behavior of Ishikawa cancer cells on different topographies

relative to those on (f)pST. Levels of actin expression were 

similar on the three pST substrates (Figure 10).

Cytokeratin-18
Cytokeratin-18 is a cytoskeleton intermediate filament that 

functions to maintain the structure of cells and plays a role in 

adhesion and spreading.29,30 After immunofluorescence stain-

ing, cytokeratin-18 was observed to exhibit more elongated 

distribution in cells grown on (-)pMA imprint compared to 

the distribution in cells grown on (f)pMA, which was different 

from the responses to cells on pST, wherein there was no clear 

difference observed between cytokeratin-18 arrangements 

(Figure 11). Cytokeratin-18 has higher expression in cells cul-

tured on (-)pMA imprint than in cells on (f)pMA (Figure 12).  

Additionally, the expression on both (-)pST and (+)pST 

imprints was higher than on (f)pST substrates.

Cell number
The parameters examined, including cell size,31–33 have been 

observed to be associated with cell growth and we looked 

at cell number after culture (Figure 13). Cultures on (-)

pMA imprint had a larger population of cells than those on  

(f)pMA. On the other hand, there were fewer cells on (+)pST 

than on (f)pST and (-)pST.

Figure 9 Actin distribution.
Notes: Immunofluorescence staining of actin in cells cultured on (A) (f)pMA, (B) (-)pMA imprint; and on (C) (f)pST, (D) (-)pST, and (E) (+)pST imprints. Cells grown on 
different surfaces were fixed with 4% paraformaldehyde and permeabilized using Triton X; then actin was probed using Texas Red-X Phalloidin red) (original magnifications: ×20).  
In cells cultured on pMA Bioimprint the actin filaments were more elongated than in cells cultured on flat pMA. There was no observable difference in the arrangement of 
actin in cells cultured on (-)pST or (+)pST surfaces relative to actin in cells on (f)pST.
Abbreviations: (-), negative imprint; (+), positive imprint; (f), flat substrate; pMA, polymethacrylate; pST, polystyrene.

Figure 10 Effects of Bioimprint on expression of actin.
Notes: Densitometry results of actin bands formed after Western blotting of lysates of cells cultured on (A) flat and negative-imprinted pMA substrates and (B) flat, 
negative-, and positive-imprinted pST substrates. Data are presented as mean ± SEM from at least five tests (*P0.05; paired t-test).
Abbreviations: GAPDH, glyceraldehyde 3-phosphate dehydrogenase; pMA, polymethacrylate; pST, polystyrene; SEM, standard error of the mean.
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Figure 12 Effects of Bioimprint on cytokeratin-18 expression.
Notes: Densitometry results of cytokeratin-18 bands formed after Western blotting of lysates of cells cultured on (A) flat and negative-imprinted pMA substrates and  
(B) flat, negative-, and positive-imprinted pST substrates. Data are presented as mean ± SEM from at least 12 tests (*P0.05; **P0.01; paired t-test).
Abbreviations: GAPDH, glyceraldehyde 3-phosphate dehydrogenase; pMA, polymethacrylate; pST, polystyrene; SEM, standard error of the mean.

Figure 11 Effects of Bioimprint on expression of cytokeratin-18.
Notes: Immunofluorescence staining of cytokeratin-18 in cells cultured on (A) (f)pMA and (B) (-)pMA imprint; and on (C) (f)pST, (D) (-)pST, and (E) (+)pST imprints. Cells 
grown on different surfaces were fixed with 4% paraformaldehyde and permeabilized using cold methanol; then cytokeratin-18 was probed using mouse anti-cytokeratin-18 
that was labeled with AlexaFluor 488 (green). Cell nuclei were co-stained with Hoechst 33342 (blue) (original magnifications: ×20).
Abbreviations: (-), negative imprint; (+), positive imprint; (f), flat substrate; pMA, polymethacrylate; pST, polystyrene.

Discussion
We report the influence of cell culture platform topography on 

cancer cells’ biological characteristics. A method was devel-

oped for providing a substrate in vitro with cell-like features, 

thereby enabling the study of the effects of a topographic 

surface that is similar to that experienced by cells in vivo. The 

observations we report in this project establish that the physi-

cal environment has an effect on part of cancer cell behavior 

independent of the inherent characteristics of the substrate.

We investigated the effect of incubation of cells on two 

different polymers, pMA and pST. Both pST and pMA were 

biocompatible and cells were able to grow and proliferate, 

although there was a detectable difference in percentage 

initial adherence on pMA relative to that on conventional 

pST culture surfaces (approximately 89% on (f)pMA com-

pared to approximately 95% on (f)pST; P0.01). The dif-

ferences in cell morphology and growth rates that occurred 

between polymers were likely to be partly associated with 

the biophysical properties of cell membrane interactions 

with the substrate surface as reflected by, eg, the water CA 

(for pST, the angle is 59°, whereas for pMA, the CA is 73°).  

The observation that cells cultured on pMA surfaces form 
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Figure 13 Effects of Bioimprint on cell number after 60-hour culture.
Notes: Cells were grown on (A) flat and negative-imprinted pMA substrates and (B) flat, negative-, and positive-imprinted pST substrates for 60 hours and were stained 
with Coomassie Blue. The number of cells was quantified from the standard curve of cell staining with Coomassie Blue. Data are presented as mean ± SEM of measurements 
from at least three samples, each as triplicate cultures (**P0.01; *P0.05; paired t-test).
Abbreviations: pMA, polymethacrylate; pST, polystyrene; SEM, standard error of the mean.

smaller populations is consistent with the sparing use of 

pMA in in vitro culture studies and the correspondingly 

wider use of pST, for which cell growth and maintenance 

are well characterized.

The behavior of cells on pMA was modified if the MA 

polymer was imprinted with shapes resembling the cells 

themselves.16,17 Cells on the imprint expressed higher levels 

of β1-integrin, FAK, and cytokeratin-18 compared to cells 

on (f)pMA. In addition, cultures on pMA Bioimprint had 

a bigger area (600 μm2, compared to 300 μm2) and had 

higher cell numbers. These results using pMA indicated 

that behavior and characteristics of cancer cells may be 

altered by the topography of the microenvironment alone. 

The observations point to the substantial potential for these 

substrates to assist in studies using a cell-like topography 

aimed at, for instance, cell regulation of signaling molecules 

and molecular target drug specificity.15,34 Because expression 

of signaling molecules is modified by the physical nature of 

a cell’s environment, it is important that we reach a greater 

understanding of the effects of these interactions on the 

development of cancers.35–37 In addition, we also noted, by 

using a similar topography with a different polymer, pST, 

that the topographical environment combines with polymer 

characteristics to have an important role in influencing the 

cell behavior through the physical characteristics. Further, 

cells cultured on imprinted pST had smaller area and slower 

rate of proliferation compared to cells on (f)pST – the 

converse to the relationship of cells on pMA. The results 

with pMA compared to pST confirm that topography itself 

is not the only factor in the microenvironment that affects 

behavior and indicate that polymer characteristics (ie, non-

ECM-related factors) are also influential. Where the surface 

is not favorable for growth (ie, the pMA condition in which 

rounded cells suggest low adherence), cells cultured on an 

imprinted surface responded by inducing enhanced activity of 

signaling pathways and increased proliferation. On the other 

hand, pST platforms with imprints had fewer cells than those 

that were flat, which indicated that certain modifications of 

substrate characteristics may alter cell signaling in a manner 

that suppresses tumor development.

In a number of studies, a link between integrins and cell 

signaling pathways has been observed.28 Here, we hypoth-

esized that the physical environment would be detected by 

the integrin receptor. Indeed, cells on (-)pMA imprint and 

both (-) and (+)pST imprint exhibited a higher expression of 

integrin than cells on flat surfaces. The interaction with RGD 

(Arg-Gly-Asp) moiety during adhesion was demonstrated. 

In this study, the effect of blocking on phosphorylation 

of integrin was not evaluated. Secreted ECM components 

from nonstromal (Ishikawa) cells38–42 or soluble factors3,43 

may be partly responsible for the interface effect. Physical 

signaling is complex, and a number of relevant signaling 

molecules and transcription factors have been identified,43,44 

but their roles are not fully defined.45 Here, eg, we observed 

that a reduction in the ratio of pFAK/FAK accompanied an 

increase in β1-integrin expression, suggesting activation by 
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the cell topography interaction of a pathway that inhibited 

phosphorylation.

The connections between topography and cytoskeleton 

were also investigated and quantitative polymer-dependent 

differences in actin and cytokeratin-18 were observed. 

Cells on all imprints showed a higher expression of 

cytokeratin-18, but not actin, than the cells on flat surfaces. 

This may indicate that the signaling in the context of these 

studies was more prominently mediated by cytokeratin-18 

than actin. Alternatively or additionally, changes in 

actin might have been occurring in parallel but were  

not detected.

An effect of substrate topography on cell behavior has 

been previously reported46,47 but with only sparse attention 

to cancer cells.48,49 Our study is a major advance in that 

features similar to cells themselves are used in the sub-

strates. Cells on both (-) and (+)pST indeed showed lower 

growth rate than on flat pST, in parallel with occurrences 

in cells cultured in 3D models.50,51 However, biophysi-

cal properties favored preferential adherence to (-)pST 

but not to (+)pST substrate, revealing that the details of 

topography were also important. This study is the first to 

develop a method in which the imprinted substrate has a 

cell’s physical shapes but without differential cell secre-

tion and surface chemistry complexities that are present 

in cell cluster models.

The results have implications for enhancing conventional 

cell culture practice because a positively imprinted pST 

provides a more tissue-like topography than does flat pST. 

It is clear that flat surface is not physiological but has been 

used widely to investigate cancer cell behavior and is now 

suggested to often induce nonrelevant behavior. There is an 

implication in our observations that there is an association 

between physiological-like topography and control over can-

cer development. The results together therefore indicate that 

cancer cells respond to the physical microenvironment, and 

the response is a result of an interaction between topography 

and substrate surface characteristics. The potential may be 

significant both for designing and for more relevant testing 

of drugs in development.

We investigated whether topography has a role in regulat-

ing the behavior of Ishikawa endometrial cancer cells. We 

demonstrated a link between structure of the microenviron-

ment and activities of the cancer cells. The results are con-

sistent with the concept that the mechanical environment is 

a vital influence on gene expression.45,52,53 Our observations 

indicate that increased understanding of the interactions may 

signal potential for treatment aimed directly at altering the 

physical environment or, alternatively, at components of the 

associated signaling pathways.
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