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Abstract: MYC is a transcription factor that is involved in the expression of many genes. 

Deregulated MYC is found in about half of human tumors, being more prevalent in hematologi-

cal neoplasms. Deregulation mechanisms include chromosomal translocation (particularly in 

lymphoma), amplification, and hyperactivation of MYC transcription. Here we review MYC 

involvement in the major types of leukemia and lymphoma. MYC rearrangements appear in all 

Burkitt lymphomas and are common in other lymphoma types, whereas in acute lymphoblastic 

leukemia, acute myeloid leukemia, lymphoproliferative, and myeloproferative diseases, they are 

less frequent. However, MYC overexpression is present in all types of hematological malignancies 

and often correlates with a worse prognosis. Data in leukemia-derived cells and in animal models 

of lymphomagenesis and leukemogenesis suggest that MYC would be a good therapeutic target. 

Several MYC-directed therapies have been assayed in preclinical settings and even in clinical 

trials. First, peptides and small molecules that interrupt the MYC–MAX interaction impair MYC-

mediated tumorogenesis in several mouse models of solid tumors, although not yet in lymphoma 

and leukemia models. Second, there are a number of small molecules inhibiting the interaction of 

MYC–MAX heterodimers with DNA, still in the preclinical research phase. Third, inhibitors of 

MYC expression via the inhibition of BRD4 (a reader of acetylated histones) have been shown 

to control the growth of MYC-transformed leukemia and lymphoma cells and are being used in 

clinic trials. Finally, we review a number of promising MYC-mediated synthetic lethal approaches 

that are under study and have been tested in hematopoietic neoplasms.
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Introduction
Hematological neoplasms are the result of the malignant transformation of a hematopoi-

etic cell at a specific stage of differentiation. Morphologic characterization has tradi-

tionally been the gold standard technique for the identification of the different types, 

but improvement on the molecular methodologies revealed that those subtypes are 

composed of many different molecular subtypes. In fact, many malignancies are nowa-

days classified based on a specific genetic abnormality or a transcriptional signature.1 

There are, however, other nonspecific genetic aberrations, associated with particular 

biological and clinical implications. Such is the case of MYC, which is deregulated 

in many different subtypes of lymphoma and leukemia, sometimes as a primary event 

(eg, Burkitt lymphoma [BL]) or as a secondary event that usually implies aggressive-

ness and poor prognosis.

MYC (also called c-Myc) is an oncogenic transcription factor of the helix-loop-

helix-leucine zipper family. MYC is deregulated in half of the human tumors, including 
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leukemia and lymphoma.2–5 MYC forms dimers with MAX 

through the leucine zipper (LZ) domain. The MYC–MAX 

heterodimer is the active form which binds to specific DNA 

sequences (E-boxes, canonical sequence CACGTG) in the 

regulatory regions of target genes. The number of MYC-

binding sites revealed by genome-wide technologies ranks 

between 7,000 and 15,000 in different models. Indeed, MYC 

is bound at one or more sites of the regulatory regions of 

10%–15% of human genes and, as expected, there is a large 

number of MYC-regulated genes, reaching the staggering 

number of 1,000 genes in most models.6–8

The mechanism for MYC-mediated transactivation 

depends on the recruitment of complexes containing 

histone acetyltransferases.7,9 Recent work has shown that 

MYC is present at the promoter of nearly all active genes 

acting as an “amplifier” of the transcription intensity of 

genes already engaged in transcription.10 The mechanism 

is not well known, but the activating interaction of MYC 

with P-TEFb (positive transcription elongation factor b) 

likely plays an important role.11,12 However, the extent of 

MYC binding to chromatin depends on the level of MYC in 

the cell, and MYC overexpression provokes an “invasion” 

of new E-boxes, either in proximal promoters or at distal 

enhancers, so that a new set of genes are overexpressed. 

It is still unclear to what extent MYC contributes to the 

overexpression of these new “invaded” genes,13,14 but it is 

established that upon MYC induction or activation, the 

expression of a series of “MYC target genes” become 

overexpressed with respect to most other genes of the 

cell, whereas others (eg, the genes of cell cycle inhibitors 

CDKN1A and CDKN2B) are downregulated.14,15

In agreement with the large number of regulated genes, 

overexpression of MYC impinges on a series of functions 

that confer ample competitive advantages to the cell, such as 

cell cycle stimulation, nucleotide biosynthesis, differentia-

tion impairment, energy production, protein synthesis and 

ribosome genesis, genomic instability, immortalization, and 

telomere maintenance or block of differentiation.3,7,8,15,16 All 

these combined functions contribute to – or trigger – the 

development of hematological neoplasia (Figure 1). Indeed, 

MYC oncogene was originally discovered as the oncogene 

carried by retroviruses that induced a myeloid neoplasm in 

chicken, ie, myelocytomatosis, and MYC was named after 

this tumor.17 Moreover, BL was the first human tumor where 

MYC deregulation was identified, due to a chromosomal 

translocation as described in “Neoplasms of mature B 
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Figure 1 Major biological activities elicited by deregulated MYC that contribute to the development and progression of leukemia and lymphoma.
Note: Data from multiple sources.3,7,8,15,16
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cells” section. In this review, we will first summarize MYC 

involvement in the major lymphoid and myeloid neoplasms 

and then the different approaches using MYC as a target in 

these neoplasms.

MYC and lymphoid neoplasms
The first animal model generated for MYC-driven cancer was 

the Eµ-Myc transgenic mouse, in which MYC expression 

is targeted to the lymphoid compartment by the immuno-

globulin (Ig) heavy chain gene promoter and enhancer.18,19 

The model demonstrated the ability of MYC to transform B 

cells in mice, although, as discussed in “Burkitt lymphoma” 

section, the tumors do not faithfully reproduce BL.

MYC plays key roles in different stages of the antigen- 

dependent B-cell differentiation process. On encounter with 

the antigen-dependent T-cell, the naïve B-cell moves to a fol-

licle where it intensely proliferates to form a germinal center. 

MYC upregulation is essential to induce this migration, and 

indeed, MYC-deficient mice lack the ability to induce these 

germinal center reactions. Those lymphocytes that enter the 

dark zone of the germinal center start expressing BCL6, 

which in turn represses MYC expression. Once the somatic 

hypermutation (SHM) process is complete, those cells move 

to the light zone and are selected for the production of high 

affinity antibodies. Those B-cells that fail selection die by 

apoptosis, whereas those producing high affinity antibod-

ies, will either return to the dark zone for a further round of 

SHM, which requires MYC expression, or exit the germinal 

center, either as an antibody producing cell (plasma cell) or 

as a memory B-cell (schematized in Figure 2). Germinal 

centers, therefore, contain highly proliferating B-cells that 

are undergoing mutations mediated by activation-induced 

deaminase (AID), and thus they might be predisposed to 

malignant transformation. In fact, a significant number of 

B-cell aggressive lymphomas emerge from these areas,20 

and a considerable proportion of those will show MYC 

translocation. Interestingly, mice lacking AID do not develop 

IGH–MYC translocations.21 MYC involvement in lymphoid 

neoplasms is summarized in Table 1.

Neoplasms of lymphoid precursors
Neoplasms of T-cell precursors
Adult T-cell acute lymphoblastic leukemia (T-ALL) is asso-

ciated with poor prognosis with standard chemotherapy-

based regimens. MYC translocations are detected in 6% of 

T-ALLs, usually as secondary events, and associated with 

induction failure and relapse.22 Notch signaling pathway, 

which is deregulated in more than 50% of T-ALL, has been 

shown to directly upregulate MYC. Also, MYC binding 

to a NOTCH1-enhancer is required for NOTCH1-induced 

T-ALL.23 In vitro treatment of T-cell lines with valproic acid 

(a histone deacetylase inhibitor) led to downregulation of 

MYC in a dose-dependent manner and, specific inhibition 

of MYC function was shown to further increase cell death in 

those cell lines.24 Xenograft models have also demonstrated 

that MYC inhibition eliminates the leukemia-initiating cells 

(LICs) and inhibits growth of pediatric T-ALL cells.25 This 

effect might be more efficient when MYC inhibitors are 

used in combination with either chemotherapy regimens26 

and/or with inhibitors of other pathways such as PI3K.27 

Nevertheless, those combinations are yet to be assayed in 

specific subtypes.

Neoplasms of B-cell precursors
Pediatric B precursor acute lymphoblastic leukemia (ALL) is 

in most cases a curable disease with intensive  chemotherapy. 

Still, 20%–30% of patients will undergo induction failure 

or relapse. Also, adult ALLs, usually associated with mixed 

lineage leukaemia (MLL) or BCR–ABL rearrangements, 

have a poor expectancy even with allogenic bone marrow 

transplantation. Approximately 2%–5% of ALLs show 

MYC rearrangements,28 and a number of B-cell acute lym-

phoblastic leukemia (B-ALL), while not having MYC gene 

abnormalities show high MYC expression.29 Cell cycle arrest 

is achieved using bromodomain and extra-terminal (BET) 

inhibitors in variety of MYC-expressing ALLs in vitro (see 

“Epigenetic-based MYC therapy: anti BRD4 drugs” section). 

Also, in vivo responses were observed in ALL xenograft 

models when BET inhibitors were used alone or in combina-

tion with dexamethasone.29

Neoplasms of mature B-cells
MYC deregulation may be observed in any type of mature 

lymphoid neoplasm, although it is more frequently observed 

in the aggressive lymphoma types. It may act as a driver 

abnormality such as in BL, but in many cases, appears as a 

secondary event, indicating clonal evolution and/progression. 

MYC is a frequent target of chromosomal translocations in 

lymphomas with different partners, the immunoglobulin 

heavy chain locus being the most common. As a result of 

these rearrangements, transcription of the unaltered MYC 

coding region is controlled by the regulatory sequences of 

the partner gene (promoter substitution), leading to deregu-

lated MYC expression. Other mechanisms involved in MYC 

deregulated expression in neoplasms include amplification, 

insertional mutagenesis, and upregulation of certain signaling 
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pathways that impinge in the hyperactivation of MYC pro-

moter. Although MYC amplification has been described in 

many tumors and is often related to tumor progression, it must 

be noted that recent reports show that the coamplification of 

the adjacent gene PVT1, coding for a lncRNA, cooperates 

with MYC-driven tumorigenesis.30

Burkitt lymphoma
Animal models have shown us the relevance of MYC deregu-

lation in B-cell malignancies. The lymphomas generated in the 

original Eµ-Myc transgenic mice (the first model for MYC-

induced cancer) do not reproduce BL well,18,19 but additional 

transgenic mouse cell lines have been generated that better 

reproduce BL. These models for BL include models of mice 

carrying a single copy of the 240-kb IgH/c-Myc translocation 

region,31 mice carrying the murine Myc cDNA inserted in 

the IgH locus in a site that correspond to the human t(8;14) 

translocation break,32 mice with MYC linked to the 3′ IgH 

locus control region (3′ LCR),33 or mice with combined MYC 

overexpression and constitutive activation of the PI3K.34
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Figure 2 MYC roles in lymphoid differentiation and in lymphoid neoplasms.
Notes: (A) MYC is required for correct self-renewal/differentiation balance of LT-HSC. (B) MYC is required for the expansion of pro-B cells to pre-B cells. (C) MYC is 
expressed in B cells after interaction with antigens, being essential for GC formation. BCL6 upregulation on germinal center cells will inhibit MYC expression. (D) MYC is 
re-expressed in a subset of cells of the light zone, due to NFκB-iRF4 upregulation, that will reenter into the dark zone to undergo a second round of somatic hypermutation. 
(E) MYC is also required for DN expansion to DP lymphocytes. The cellular origin of the main lymphoid neoplasms is indicated.
Abbreviations: ALL-B, B-acute lymphocytic leukemia; T-ALL, T-cell acute lymphoblastic leukemia; ALCL, anaplastic large cell lymphoma; BCLU, B-cell lymphoma 
unclassifiable; BL, Burkitt lymphoma; GC, germinal center; GCB,  germinal center B-cell; CLL, chronic lymphocytic leukemia; DLBCL, diffuse large B-cell lymphoma; BCLU, 
B-cell lymphoma unclassifiable with features intermediate between DLBCL and BL; DZ, dark zone; LZ, light zone; LT-HSC, long-term hematopoietic stem cells; MCL, mantle 
cell lymphoma; MM, multiple myeloma; DN, double negative; DP, double positive; FL, follicular lymphoma; PBL, plasmablastic lymphoma.
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Although BL is the most frequent subtype of lymphoma in 

children, in terms of total number of cases is more common 

in adults. IG–MYC rearrangements, while not being specific, 

constitute the hallmark of this lymphoma, being detected in 

more than 90% of cases, frequently as a single anomaly. More 

than 80% of cases will show a t(8;14)(q24;q32) (IGH-MYC), 

and the remaining cases will present either a t(8;22)(q24;q11) 

(IGL-MYC) or a t(2;8)(p12;q24) (IGK-MYC).35,36 Cases with 

no detectable translocation might represent failure to detect 

small rearrangements, but it is still a matter of debate whether 

true BL without MYC translocation exists. A non-rearranged-

MYC-endemic BL type has been proposed to be the result of 

downregulation of a microRNA (hsa-mir-34b) that silences 

MYC expression.37 Recently, some atypical BL cases lacking 

MYC-rearrangement have been shown to present a peculiar 

pattern of chromosome 11q aberrations.38

Three subtypes of BL showing different clinical and 

biological features have been described: endemic, sporadic, 

and immunodeficiency-associated. The endemic is the most 

frequent type of lymphoma in children in Africa, and IGH–

MYC in this subtype arise from either aberrant hypermutation 

process or might occur during the VDJ (variable, diverse, and 

joining gene segments) recombination process. In contrast, 

in sporadic and immunodeficiency-associated types, gene 

breakpoints generally affect the IGH switch regions.39

MYC deregulation is known to be necessary but not suf-

ficient to induce the complete BL phenotype. While inducing 

proliferation, MYC also promotes apoptosis mainly through 

activation of both the p53 pathway and by inducing the 

expression of the proapoptotic gene BIM. BL cells have 

been shown to develop different mechanisms to counteract 

these MYC proapoptotic stimuli, such as the impairment 

of BIM function through direct and indirect mechanisms 

including p53 mutations, upregulation of MDM2, or p14ARF 

loss. Another mechanism to elude MYC-induced apoptosis 

is downregulation of the p27Kip mediated by LMP2A, an 

Epstein–Barr virus (EBV) protein.40 Sequencing analysis of 

BL patients have shown a low rate of mutations, but MYC 

is the most frequently mutated gene (up to 70% of cases).41 

Approximately 60% of these mutations result in increased 

stability of the protein via reduced ubiquitin-mediated 

proteolysis.41–43

Additional transforming mechanisms have been described 

to contribute to the pathogenesis of the different subtypes of 

BL. EBV genome is detected in all endemic patients and has 

been shown to cooperate with MYC in the pathogenesis of 

this subtype.44 However, viral infection is only detected in 10% 

and 30% of sporadic and immunodeficiency-associated cases, 

respectively. In contrast, sequencing analysis have encoun-

tered mutations of the PI3K pathway (more frequently ID3/

Table 1 MYC in lymphoid neoplasms

Neoplasm MYC involvement References

Precursor lymphoblastic leukemia
 B-ALL MYC levels predict response to BeT inhibitors (5% and 2%–5% in adults and children, respectively) 24,25,28,29
 T-ALL MYC amplification in 6% of cases 

MYC essential for NOTCH1-mediated leukemogenesis
25,156,157

Mature B neoplasms
 BL MYC translocations in .90% cases and mutations in 60%–70% of cases, targeting amino-terminal  

transactivation domains
35,36,41,42,43

 DLBCL MYC translocations in 5%–14% 
MYC amplification in 2% usually as secondary event. Frequently associated to BCL2 and or BCL6  
rearrangements (“double hit” lymphomas)

43,45,46,47

 BCLU MYC translocations, 32%–78% cases, frequently associated to BCL2 and or BCL6 rearrangements 43,46,47
 PBL MYC translocations in 40%–50% cases 

MYC counteracts the antiproliferative BLiMP1 effect
42,158

 FL increased MYC expression, commonly observed in transformed FL to DLBCL (occurring in  
30%–40% of FL)

42,159

 MCL Rare MYC translocations and as secondary events 49
 CLL MYC downregulation in peripheral blood CLL 

MYC translocation and amplifications in ,3% cases 
MYC frequently upregulated in Richter syndrome

52 
53–55 
54,56

 MM Translocated in 15%–50% of cases. in many cases involved in complex rearrangements 64,160,161
Mature T neoplasms
 ALCL High levels of MYC, not due to translocations but due to stimulation of the STAT3 pathway 65

Abbreviations: B-ALL, B-cell acute lymphoblastic leukemia; BeT, bromodomain and extra-terminal; T-ALL, T-cell acute lymphoblastic leukemia; BL, Burkitt lymphoma; 
DLBCL, diffuse large B-cell lymphoma; BCLU, B-cell lymphoma unclassifiable with features intermediate  between DLBCL and BL; PBL, plasmablastic lymphoma; FL, follicular 
lymphoma; MCL, mantle cell lymphoma; CLL, chronic lymphocytic leukemia; MM, multiple myeloma; ALCL, anaplastic large cell lymphoma.
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TCF3 mutations) in 70% of sporadic and immunodeficiency-

associated BL, suggesting that this pathway plays key roles 

in those subtypes of BL. Interestingly, mice models, with 

constitutive activation of both MYC and PI3K, develop a 

lymphoma which morphologically and clinically resembles 

human BL.34

MYC in other aggressive mature B-cell lymphomas
Classification of aggressive lymphomas is becoming very 

complex, since many entities that in the past were thought to 

be single diseases are in reality composed of different types. 

We will now review MYC involvement in the major types 

of aggressive lymphomas.

Diffuse large B-cell lymphoma (DLBCL) is the most fre-

quent subtype of mature B-cell lymphoma in western countries. 

MYC expression is detected in virtually all DLBCLs, but the 

number of positive cells vary from one case to another. Cells 

carrying rearrangements or amplifications of MYC frequently 

show a high fraction of MYC-expressing cells (∼70%), whereas 

only 30% of the lymphomas with less positive cells (30%–40%) 

present MYC gene alterations. Overall, MYC gene rearrange-

ments constitute the third most common aberrancy in this type 

of lymphoma (6%–15% of cases) and confer a bad prognosis.42,45 

They are usually secondary events that appear in the context 

of complex karyotypes and are more frequently detected in 

DLBCL with a germinal center B-cell (GCB) phenotype.45,46

B-cell lymphoma unclassifiable (BCLU) with features 

intermediate between DLBCL and BL is a provisional entity 

described in the latest version of the WHO classification to 

designate those cases that share both clinical and biological 

characteristics between DLBCL and the BL, but that can-

not be clearly assigned to any of those categories.1 Those 

lymphomas frequently resemble BL, have been proven to 

be very aggressive, and show poor response to conventional 

treatments. MYC rearrangements have been reported in 

30%–70% of BCLU cases.47,48

Double hit/triple hit lymphomas refers to those aggres-

sive lymphomas which have simultaneous MYC with BCL2 

and/or BCL6 rearrangements. The phenotype of these 

lymphomas is heterogeneous, sometimes having a DLBCL 

appearance (2%–12%) while others have a BCLU pheno-

type (32%–78%),47 but they all show an aggressive course 

and appear to be resistant to conventional chemotherapy 

regimens. New therapeutic approaches using small molecule 

inhibitors that target MYC and BCL2 are currently under 

investigation.46 MYC rearrangement predicted an inferior 

outcome in aggressive lymphomas in most studies, but it is 

not yet entirely clear if this is due to the MYC rearrangement 

itself or because 50%–80% of MYC-translocated DLBCL 

cases harbor dual or even triple translocations also targeting 

BCL2 and/or BCL6.45–47 The prognostic implication of MYC 

in those patients is difficult to establish since the diagnostic, 

phenotypic, and cytogenetic criteria, together with thera-

peutic approaches are very heterogeneous in the different 

published series.47

An increasing interest on the “double-expressor” (DE) 

large B-cell lymphomas, defined by most groups to have 

approximately 40% MYC and 50%–70% BCL2 cells by 

immunohistochemistry has been recently described. These 

lymphomas have more frequently a non-GCB phenotype and 

whether the identification of these lymphomas helps to prog-

nostically stratify aggressive lymphomas is not clear yet.47

Lymphomas with plasmablastic differentiation include a 

variety of lymphomas which show a plasmatic gene expression 

profiling (with upregulation of PRMD1/BLIMP1 and XBP1). 

All of these together constitute aggressive lymphomas with very 

poor response to conventional treatments. Among these cases, 

plasmablastic lymphoma shows MYC rearrangement in up to 

50% of cases, frequently with the IGH and in context of com-

plex karyotypes. MYC rearrangements have been shown to be 

involved in the pathogenesis of the disease maybe by repressing 

the antiproliferative effect of BLIMP1.42 Plasmablastic lympho-

mas have been proven to respond poorly to conventional CHOP 

(rituximab–cyclophosphamide, doxorubicin, vincristine, and 

prednisone). Whether these types of lymphomas might benefit 

by adding MYC inhibitors requires to be investigated.

MYC in low-grade mature B-cell neoplasms
Mantle cell lymphoma (MCL) is a lymphoproliferative 

disease characterized by a monoclonal proliferation of lym-

phocytes that usually bears an IGH–CCND1 translocation. 

Deregulation of CCND1 (cyclin D1) has been shown not to 

be sufficient to induce lymphomas, and cooperation with 

other oncogenes as MYC is linked to the pathogenesis of 

MCL. MCL blastoid variants frequently show p16INK4a dele-

tion and overexpression of CDK4 and MYC. Consistently, an 

animal model expressing MYC and a mutant CDK4, which 

is resistant to p16 inhibition, develops a lymphoproliferative 

disease with overexpression of CCND1 that resemble MCL, 

including CCND1 overexpression.49

Transformation of follicular lymphoma (FL) to a higher 

grade DLBCL occurs in 10%–60% of the cases. One of 

the genetic abnormalities involved in this process is MYC 

deregulation.50

Regarding MYC expression, chronic lymphocytic leukemia 

(CLL) is an exception in human cancer. Although there are 
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conflicting reports as to the mRNA expression,51,52 our labora-

tory showed that MYC protein expressions in peripheral blood 

of CLL are clearly below that of healthy lymphocytes from 

blood or tonsils, and the small fraction of cases with detectable 

MYC (less than 20%) do not show a difference in the course 

of the disease.52 Amplification and rearrangements of MYC are 

rare in CLL (less than 3%), but when they occur, they correlate 

with a poor prognosis and aggressive disease.53–55 Also, in CLL 

transformation to high-grade lymphoma, known as Richter 

syndrome, MYC upregulation is frequent, similar to other 

aggressive lymphomas.54,56 Thus, MYC gene abnormalities 

in low-grade lymphomas are usually secondary events that 

frequently appear in an event of progression or transformation, 

and thus are associated with an adverse prognosis.

Multiple myeloma
Rearrangements of the MYC oncogene are present in 

15%–50% of primary human multiple myelomas (MMs), 

in many cases involved in complex rearrangements,57,58 

and its activation seems to play a role in the progression 

of plasma cell neoplasms, particularly from monoclonal 

gammopathy of undetermined signif icance (MGUS) 

to plasma cell myeloma. Indeed, MYC rearrangements 

and overexpression are more frequent in MM than in 

MGUS57,59,60 and mark a more aggressive disease.57,61 Fre-

quent upregulation of MYC is also observed in plasma cell 

leukemia, a monoclonal gammopathy which can evolve 

from MM.62 The involvement of MYC in MM is supported 

by the Vk*MYC transgenic mouse, that recapitulate the 

biological and clinical features of human MM. In these 

mice, MYC is under the control of the κ light chain gene.63 

Moreover, MM is one of the neoplasms that respond to 

treatment with BRD4 inhibitors (see “MYC as a target 

in leukemia and lymphoma” section), leading to MYC 

downregulation.64

Neoplasms of mature T-cells
Anaplastic large cell lymphoma (ALCL) is a T-cell neoplasm 

that can be classified into two groups based on the presence 

or absence of ALK gene rearrangements. Both subtypes are 

known to express high levels of MYC, not due to transloca-

tions but due to stimulation of the STAT3 pathway. Moreover, 

pharmacologic inhibition of MYC induced ALCL cell apop-

tosis, and therefore, MYC inhibitors might be an effective 

treatment for ALCL.65

MYC and myeloid neoplasms
As compared to lymphoid neoplasms, MYC involvement in 

myeloid leukemia has been less studied. However, a myeloid 

tumor (myelocytomatosis) was the original tumor caused by 

MYC retroviruses in chicken, and the inhibition of myeloid 

cell differentiation was one of the first biological effects 

described for MYC.16 Moreover, MYC transgenic mice 

models reveal that MYC is an efficient oncogene inducing 

Table 2 MYC in myeloid neoplasms

Neoplasm MYC involvement Reference

AML
MYC amplification (in dmin) 
MYC mRNA overexpression by microarrays analysis 
MYC mRNA overexpression by microarrays (20%) in AML without translocations 
MYCN overexpression (24%–40%) in pediatric AML 
MYC mRNA overexpression (therapy-related AML) 
MYC protein elevated in AML cells cocultured with stroma 
MYC mRNA overexpression induced resistance to chemotherapeutic drugs

162–164 
165 
166 
167,168 
169 
126 
72

MPN
 CML MYC mRNA overexpression over healthy cells 

High MYC mRNA and protein at diagnosis correlated with poor response to imatinib 
MYC protein elevated at diagnosis associated to progression. Altered MYC phosphorylation 
MYC ubiquitination in CML LiCs homeostasis

82,83 
81 
84 
85

 essential thrombocythemia MYC mRNA overexpression 170
 MPNs progression Trisomy 8 or amplification of 8q24 (MYC) detected in JAK2v617F(–) cases with MPN-blast phase 171
MDS

MYC mRNA upregulation by microarrays or RT-PCR 
MYC amplification (in dmin and hsr) 
Highest MYC expression in AML and in higher-MDS (prognosis marker) 
MYC overexpression associated with adverse outcome and poor response to azacitidine

88 
71,162,163 
172 
173

Abbreviations: dmin, double minute; hsr, homogeneous staining regions; AML, acute myeloid leukemia; MPN, myeloproliferative neoplasm; CML, chronic myeloid leukemia; 
LiCs, leukemia-initiating cells; MDS, myelodisplastic syndrome; RT-PCR, real-time polymerase chain reaction.
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acute myeloid leukemia (AML),66,67 and mice with bone 

marrow repopulated with Myc overexpressing cells develop 

an AML-like disease.67 MYC deregulation has been found in 

most types of human myeloid neoplasms, and is reviewed in 

the following section and summarized in Table 2.

Acute myeloid leukemia
AML is a heterogeneous group of neoplasms affecting the 

myeloid lineage. MYC amplification and overexpression 

have been reported in AML. MYC rearrangements are rare 

in AML, and the mechanisms of MYC overexpression are 

not well known. Some leukemogenic transcription factors 

such as RUNX1-RUNX1T1 and PML-RARα induce MYC 

expression.68,69 MYC amplification in AML is infrequent, 

although double minute (dmin) chromosomes and homo-

geneous staining regions (hsr) including the region 8q24, 

where MYC maps, have been described in AML.70,71 MYC 

overexpression in AML induced resistance to chemothera-

peutic drugs.72 Increased MYC levels were correlated with 

decreased microRNA-29 family expression in AML.73

Chronic myeloid leukemia
Chronic myeloid leukemia (CML) is a proliferative clonal 

disorder of hematopoietic stem cells that results in the 

expansion of mature myeloid cells that retain a capacity for 

differentiation. CML, in the absence of treatment, will prog-

ress from the initial chronic phase, to a blastic crisis phase, 

which is a secondary acute leukemia. BCR–ABL kinase has 

a central role in CML etiology.74,75 BCR–ABL upregulates 

MYC expression, which cooperates with BCR–ABL in 

transformation. Consistently, imatinib and other BCR–ABL 

inhibitors provoke downregulation of MYC.76–79 MYC mRNA 

levels are elevated in CML–blastic crisis80,81 and in chronic 

phase CML compared to healthy bone marrow samples.81–83 

Our laboratory showed that MYC is upregulated during CML 

progression.81 High MYC expression correlates with poorer 

response to imatinib and progression to blastic crisis.81,84 

MYC also induces genetic instability and blocks erythroid 

differentiation mediated by imatinib in CML-derived cells77,81 

suggesting that MYC contributes to CML by acting at least 

at those two levels.

In the hematopoietic stem cells population, MYC controls 

the balance between hematopoietic stem cell self-renewal 

and differentiation.5 MYC also plays an important role in 

the establishment and maintenance of LICs. The interaction 

between the ubiquitin ligase Fbw7 and its substrate MYC 

controls the CML LIC homeostasis and has a role in CML 

initiation and progression.85,86

Myelodysplastic syndrome
The myelodysplastic syndromes (MDSs) are characterized 

by both an aberrant differentiation process with morphologic 

evidence of marrow dysplasia and an increased ineffective 

proliferation of the myeloid precursors in bone marrow, with 

enhanced risk of transformation to an AML. Gene expression 

profiles of CD34+ cells from MDS patients showed MYC 

as one of the most upregulated genes in these patients.87 In 

agreement, CD34+ cells from patients with trisomy 8 MDS 

showed upregulation of MYC mRNA.88 MYC amplification 

has also been found in MDS, but with low frequencies.

MYC as a target in leukemia and 
lymphoma
Given its pervasive involvement in leukemogenesis and lym-

phomagenesis, MYC would be an ideal oncoprotein target for 

therapy. The “oncogene addiction” is defined as the phenom-

enon by which some tumors exhibit a dependence on a single 

oncogenic protein or pathway for sustaining growth and 

proliferation.89 MYC addiction was demonstrated in animal 

models for lymphoma and myeloid leukemia, showing that 

inactivation of MYC results in sustained tumor regression.90 

This fact and the overexpression found in many hematologi-

cal neoplasms suggest that silencing or inactivation of MYC 

may be a sensible therapeutic strategy. Indeed, early studies 

established that genetically targeting MYC could control 

leukemogenesis. These studies showed that antisense-MYC 

oligonucleotides reduced the leukemia induced in vivo by 

cell lines derived from BL, CML, and AML.91,92 This was 

confirmed in different reports. In a recent report, MYC sup-

pression by siRNA or pharmacologic approaches was shown 

to prevent leukemia initiation in mice by eliminating LICs of 

human T-cell ALL.25 Importantly, despite widespread expres-

sion of MYC in normal cells and its involvement in many 

biological processes, recent studies have demonstrated that 

long-term, whole-body inactivation of MYC in mouse models 

by expression of a dominant negative MYC form (Omomyc, 

see “MYC as a target in leukemia and lymphoma” section)93,94 

or by treatment with a compound that repress MYC expres-

sion (JQ1)95 only provokes mild side effects.

Altogether, the data suggest that MYC inhibition could 

be a clinically feasible strategy for leukemia and lymphoma 

therapy. However, there also are some drawbacks when target-

ing MYC. First, no adverse effects of MYC inactivation have 

been detected in mouse models studied so far. Second, MYC 

being a transcriptional factor and not an enzyme, it lacks a 

pocket where small molecules can fit. Thus, like many other 

transcription factors, MYC has the reputation of being a 
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“nondruggable” target. Despite that, several approaches have 

targeted MYC, either as a direct target or as an indirect target 

via synthetic lethal approaches. We will briefly review these 

approaches, which are also summarized in Table 3.

epigenetic-based MYC therapy: anti 
BRD4 drugs
Epigenetic mechanisms include histone postranslational 

modifications. Histone N-ter tails are rich in lysine residues 

which can be acetylated by histone lysine acetyltransferases. 

Acetylation neutralizes the positive charge of lysines and 

decreases the interaction between histones and DNA giv-

ing rise to a more open chromatin conformation, which is 

often associated to transcription factor accessibility and 

transcriptional activation. Acetyltransferases are forming 

part of large multiprotein complexes, and most of them have 

been implicated in cancer.96,97 Lysine acetylation is read by 

proteins containing specific interacting domains termed 

bromodomains (BRDs). BRD is a motif of 110 amino acids 

that binds the ε-aminoacetyl groups of nucleosomal histone 

lysines.98,99 The BRD and extraterminal (BET) proteins 

(BRD2, BRD3, BRD4, and BRDT) contain a double BRD 

in the N-terminal region and an extraterminal (ET) protein–

protein interaction domain in the C-terminal region. BRD4 

interacts and recruits P-TEFb to the core promoter of the 

active genes. P-TEFb is composed of cyclin T1 and CDK9, a 

kinase that phosphorylates the C-terminal domain (CTD) of 

the RNA polymerase II to allow transcription elongation11,100 

(Figure 3). BRD4 aberrant expression or translocation has 

been found in different tumor types including AML.97 BRD2 

Table 3 Myc synthetic lethal interactions

MYC-SL SMIs Hematological disease Reference

Aurora kinase panAKi AS703569 eµ-Myc lymphoma cells 134
Aurora kinase vX-680 Mouse models of T-cell and B-cell lymphoma 136
CHK1 Chekin B-cell lymphoma cell lines 

eµ-Myc lymphoma cells 
λ-Myc lymphoma cells

137

CDK1 Purvalanol eµ-Myc lymphoma cells 
BL and MM cell lines

141

PiM1 SGi-1776 CLL primary patients lymphocyte 151
PiM1 SMi-4a Human pre-T-LBL cell lines 150
PiM1 Pimi Mouse B-cell lymphomas 147
Pi3K/mTORC1 BEZ235 eµ-Myc lymphoma cells 152
ATR No SMi (ATR hypomorphic × eµ-Myc) eµ-Myc lymphoma cells 

Human Burkitt lymphoma
142

wRN No SMI (WRN-deficient × eµ-Myc) eµ-Myc lymphoma cells 
Xenograft and autochthonous tumor models

145

MAPK1 No SMI (KSR1-deficient × eµ-Myc) eµ-Myc lymphoma cells 155
BeTa JQ1 AML mouse model 

AML primary patients samples 
AML cell lines 
BL and AML cells xenografted

111,112

BeTa JQ1 MM mouse model 
Patient-derived MM cells 
MM human cell line

95,109

BeTa JQ1 DLBCL and BL cell lines 
DLBCL xenografted into mouse 
ALL cell lines

114

BeTa JQ1 ALL bone marrow xenografted into mouse 43 
29

BeTa JQ1/RvX2135 eµ-Myc lymphoma cells 
λ-Myc lymphoma cells

105,106

BeTa JQ1 Primary mouse and T-ALL cell lines 25
BeTa OTX015 DLBCL cell lines 

DLBCL xenografted into mouse
103,104

Notes: aBeT proteins act upstream of MYC and thus BeT inhibition is not a canonical MYC synthetic lethal approach. They are included in the table for comprehensiveness.
Abbreviations: SMis, small molecule inhibitors; BeT, bromodomain and extra-terminal; BL, Burkitt lymphoma; MM, multiple myeloma; CLL, chronic lymphocytic 
leukemia; pre T-LBL, precursor T-cell lymphoblastic leukemia/lymphoma; AML, acute myeloid leukemia; DLBCL, diffuse large B-cell lymphoma; ALL, acute lymphocytic 
leukemia; T-ALL, T-cell acute lymphoblastic leukemia.
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and BRD4 have crucial roles in the control of cell cycle 

control in mammalian cells;101 thus, they have a promising 

potential as anticancer agents.

It has been demonstrated that MYC expression can be selec-

tively regulated with BET inhibitors. The first one was JQ1, 

which shows strong affinity for the BRD4 family member thus 

inhibiting its activity.102 Other BET inhibitors such as OTX015 

have shown their antiproliferative effects on lymphoma cells103 

and have entered clinical trials.104 Lucas et al105 have described 

the inhibitor XD14, which shows a potent antiproliferative 

effect in leukemia cells. Another BET inhibitor RVX2135 

inhibits proliferation of lymphoma cells from Eµ-Myc mice in 

vitro and in vivo.106 There are other BET inhibitors in preclini-

cal studies, such as I-BET151, active against JAK2-dependent 

myeloproliferative neoplasms,107 but that those drugs truly target 

MYC has not been demonstrated.108

Recent studies in MM indicate that BET inhibitors are 

able to cause MYC downregulation in the context of trans-

located, amplified, or wild-type (WT) MYC alleles.109,110 

Other reports show that the expression of MYC decreases in 

AML-derived cell lines with WT MYC, whereas cells with 

MYC amplification display relative resistance to the effect 

of BET inhibitors.111 Several studies have been performed 

on inhibiting BRD4, and hence MYC, in a range of hema-

tological malignancies as AML,112 MLL-fusion leukemia;113 

MM,95,109 ALL,43 B-cell lymphomas,106 BL,111 DLCBCL,114 

and T-ALL.25 The most common biological effects of MYC 

downregulation upon BET inhibition is cell cycle arrest in G
1
 

phase and apoptosis or senescence, but other effects such as 

terminal myeloid differentiation and elimination of leukemic 

stem cells have also been reported.95,109,114

One of the challenges is to understand how the inhibition 

of the activity of a general regulator such as BRD4 results in a 

selective effect on the expression of a small number of genes 

in specific cells.42,43,111 Several groups have demonstrated 

that in the case of MYC and other transcription factors, the 

specific effect is achieved because the BET inhibitor causes 

a depletion of BRD4 at the enhancers and superenhancers 

that drive the oncogene expression.95,109,114

inhibition of MYC–MAX dimerization
In parallel to the repression of MYC expression with the 

BET inhibitors, other approaches specifically targeting MYC 

transactivation activities are under study (summarized in 

Figure 4). As noted earlier, MYC is only active when forming 

a dimer with MAX, suggesting that blocking the dimeriza-

tion between MYC and MAX would be a good approach 

for inhibiting MYC function. Soucek et al115 constructed a 

MYC mutant, known as Omomyc, after identification of the 

molecular recognition site and induction of mutation of four 

amino acids at the LZ. Omomyc was able to sequester MYC 

and formed complexes with low binding efficiency to DNA, 

preventing the binding with MAX and inhibiting the function 

of MYC as a transcription factor (Figure 4B). Thus, Omomyc 

impairs MYC binding to E-boxes and changes MYC-depen-

dent expression profile toward gene repression.116 Moreover, 

studies carried out in mouse models for some solid tumors 

(pancreas, skin, lung, and glioblastoma) reveal that MYC 

is required for full tumor development, even when tumor is 

triggered by other oncogenes.93,94,117,118 No data on Omomyc in 

lymphoma or leukemia model are available yet. As Omomyc 

is a peptide, its application in clinic might be difficult due 

to low biodisponibility and penetrance into the target cells. 

These problems will more likely be overcome with small 

molecules. However, the design of small molecules targeting 

the MYC–MAX interaction site is difficult due to the large 

interface between both proteins and because of the lack of 

structural “pockets” where small molecules could bind.

Despite these difficulties, attempts have been made to 

design small molecules which would inhibit MYC–MAX 

heterodimers (Figure 4C). In a screen of approximately 7,000 

small organic molecules using FRET, two compounds were 

discovered to specifically inhibit MYC–MAX dimeriza-

tion. These compounds Mycmycin-1 and Mycmycin-2 did 

not inhibit Jun dimerization and were a proof of concept 

to develop other molecules that specifically inhibit MYC-

induced oncogenic transformation.119

A new series of compounds, 10058-F4 and 10074-G5, were 

discovered using a two-hybrid system.120 These compounds 

P-TEFb
Cyc.T

CDK9
JQ1

OTX-015

RVX2135

XD14
AcAc

K K

P Ser2

Ser2P

RNA
Po lII

MYC

BRD4

Figure 3 Scheme of the mechanism of action of BRD4 inhibitors as anti-MYC 
drugs. BRD4 is a reader of acetylated histones and promotes the activity of P-TeFb 
complex, composed by CDK9 and cyclin T1 (“Cyc.T” in the Figure).
Notes: P-TeFb phosphorylates the C-terminal domain (CTD) of RNA polymerase ii 
to trigger elongation. This process is impaired by BeT inhibitors. MYC would be one of 
the genes which transcription is more dependent on BRD4 and P-TeFb activity. Some 
BeT inhibitors that inhibit leukemia or lymphoma cell growth are shown at the left.
Abbreviation: BeT, bromodomain and extra-terminal.
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were able to inhibit both the growth of fibroblasts in vitro and 

growth of tumors in mice. The clinical applicability is still 

limited due to its low potency and its rapid degradation.121 The 

specificity of 10058-F4 and 10074-G5 was further corrobo-

rated by using a series of deletion and point mutations within 

the MYC bHLH-ZIP domain that resulted in the disruption of 

the heterodimer.122 Moreover, these compounds do not inhibit 

MAX  homodimerization. Improvements of these drugs were 

achieved by adding chemical modifications and, as a result, 

they have enhanced growth inhibition of MYC-expressing 

cells in a manner that generally correlates with the compound 

ability to disrupt MYC–MAX association and DNA bind-

ing.123 Another study in nontransformed embryonal stem cells 

showed that these latter compounds results in loss of expres-

sion of MYC target genes but not of non-MYC target genes.124 

The effect of 10054-F4 has been tested in AML cells, inhibit-

ing leukemic proliferation, and inducing apoptosis through 

the mitochondrial pathway. Importantly, these effects were 

reproduced in primary AML cells.125 However, AML cells are 

partially resistant to 10054-F4 when they are in contact with 

bone marrow stroma.126 Another good model to test the effect 

of 10054-F4 is MM, which shows high deregulation of MYC 

as shown earlier. The MYC–MAX inhibitor 10054-F4 was 

effective on human MM cell lines and samples from patients 

and, although there was not a good correlation between sen-

sitivity and MYC levels, cells expressing the highest levels of 

MYC tended to be more resistant to the treatment.64 All these 

results support the idea that targeting MYC dimerization is 

feasible. However, it may have the drawback that not all MYC 

functions depend on MAX.127–129

inhibitors of the binding of MYC–MAX 
to DNA
Mo et al130 performed a cellular screening to identify sub-

stances that could be used to interfere with the MYC pathway 

(Figure 4D). Using cells with inducible MYC expression and 

MAX
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MYC
LZ

TAD

LZ

OmomycMAX

LZ
MYC

LZ

TAD

LZ

MAX

LZ

10058-F4

MYC
LZ

TAD
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MYRA

MYC
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Figure 4 MYC inhibition strategies based on the interruption of the MYC–MAX dimerization.
Notes: (A) MYC–MAX heterodimer in gene transactivation. (B) Blocking MYC–MAX interaction with Omomyc. (C) Blocking MYC–MAX interaction with small molecules 
as 10058-F4. (D) Blocking the binding of MYC–MAX to DNA with small molecules as MYRA.
Abbreviations: LZ, leucine zipper of MAX and MYC; TAD, N-ter transactivation domain of MYC.
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WT expression, they found two compounds that selectively 

affected cell viability in MYC-overexpressing cells. They 

called the two compounds MYRA-A and MYRA-B (for 

MYC pathway response agents). MYRAs were more effective 

in human BL cells compared with other lymphoblastoid cell 

lines. Using three human cell lines with different levels of 

MYC (WT, null, or overexpressed), they found that MYRAs 

induced a high apoptotic state in cells overexpressing MYC, 

indicating that the effects of the compounds on cell viability 

is MYC-dependent.

MYRA-A interfered with the DNA binding of MYC–

MAX (by electrophoretic mobility shift assays) but not 

with another E-box binding factor, USF, demonstrating that 

the inhibition was specific. Furthermore, they showed by 

coimmunoprecipitation that the MYC–MAX heterodimer 

remained intact after the treatment with MYRA-A. Recently, 

a new series of molecules interrupting the binding of MYC–

MAX to DNA have been reported.131 These compounds 

inhibit MYC-dependent transactivation (by luciferase 

assays) in the µM range although MYC–MAX heterodimers 

remained intact.

MYC-mediated synthetic lethality
An alternative approach to target MYC is based on “synthetic 

lethality”. Synthetic lethal screens have been used to identify 

genes and pathways that are selectively activated by MYC in 

tumors, but not in nontumorigenic cells. Thus these molecules 

can be targeted with inhibitors to control MYC-driven malig-

nancies. As expected from the multiplicity of the pathways 

in which MYC is involved, large series of putative synthetic 

lethal genes have been identified.132,133 We will review some 

of the MYC synthetic lethal interactions assayed in leukemia 

and lymphoma, which are also summarized in Table 3.

Aurora kinase inhibitors
MYC regulates aurora kinase A (AURKA) and B (AURKB) 

in the Eµ-Myc mouse model.134 Both kinases play a pivotal 

role in mitosis. Expression of MYC, but not other oncogenes, 

made the cells much more sensitive to Aurora kinase inhibi-

tors (eg, AS703569), AURKB being the central target in this 

model. Another aurora kinase inhibitor, VX-680, was demon-

strated to selectively kill the cells that overexpress MYC.135 

Indeed, MYC expression levels may provide a biomarker 

to identify tumors that may be respond to aurora kinase B 

inhibitors. Moreover, the drug inhibited AURKB in vivo in 

mouse models that develop either B-cell or T-cell lymphomas 

in response to MYC overexpression.136 Furthermore, the lethal 

response is independent of p53-p21 pathway.136 This fact is 

relevant since TP53 is frequently mutated in different tumors 

and usually confers an adverse prognosis.

Chk1 inhibitors
One of the effects of MYC overexpression is to induce DNA 

replicative stress, which in turn activates CHK1 (checkpoint 

kinase 1). In cells from human and murine B-cell lympho-

mas, there is a correlation between MYC and CHK1 levels, 

although CHK1 seems to be an indirect target of MYC.137 

Silencing of CHK1 with siRNA technology or inactivation 

with a small molecule (Chekin) results in selective death of 

MYC-overexpressing cells. These evidences turned CHK1 

into an attractive therapeutic target. When tested in the 

λ-Myc mouse model, Chekin was able to induce a signifi-

cantly slower disease progression followed by death in this 

lymphoma model.137

CDK1 inhibitors
The CDKs together with the cyclins form complexes that 

regulate cell cycle, both in neoplastic and normal cells. CDK1 

is essential for mammalian cell division,138 and, as a matter 

of fact, is the only CDK required for cell cycling.139 Small 

molecule inhibitors have been developed against CDKs which 

induce cell cycle arrest in G
2
 phase.140 However, in MYC over-

expressing cells, these drugs induce apoptosis,141 indicating 

that CDK1 inhibition is synthetically lethal on MYC express-

ing cells. Accordingly, a CDK1 inhibitor induces cell death in 

BL and MM cell lines depending on MYC levels, and CDK1 

inhibition in Eµ-Myc mice results in extended survival.141

ATR inhibitors
Like CHK1, ATR kinase plays a pivotal role in replicative 

stress response. Myc-induced lymphomas in the Eµ-myc 

mice show a high level of replicative stress. The synthetic 

lethality between ATR and MYC has been demonstrated in 

a model of Eµ-myc mice crossed with mice with low ATR 

expression. In these mice, MYC-driven lymphomagenesis 

was suppressed.142 Preclinical data with highly specific ATR 

inhibitors have opened up the possibility of using them in 

synthetic lethality approaches.143

wRN inhibitors
WRN is a gene encoding a RecQ DNA helicase that is a direct 

transcriptional target of MYC. Even though WRN mutations 

have not been found in tumors, it has been reported that WRN 

is overexpressed in cancer cell lines from BL.144 Also, in BL 

cells, knock down of WRN impairs cell proliferation and 

increases apoptosis.144 In the same line of evidence, muta-
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tion of WRN in Eµ-Myc mouse models results in an increase 

in tumor-free survival and a delay in emergence of lethal 

lymphomas.145 These results demonstrate that using WRN 

as a target could result in an effective strategy not only to 

treat MYC-associated hematological diseases but also other 

MYC-associated cancers.

PiM kinases inhibitors
PIM kinases (1, 2, and 3) are involved in B-cell development 

and in hematologic malignancies.146,147 The PIM kinases, 

when coexpressed with MYC, provoke an acceleration of 

tumorigenesis.147 Given the fact that PIM1148 and MYC are 

overexpressed in lymphomas and that PIM1 is a coactivator 

of MYC,149 there has been an interest in developing PIM 

kinase inhibitors. A PIM kinase inhibitor (SMI-4a) kills sev-

eral myeloid and lymphoid cell lines, with higher activity on 

T-cell lymphoblastic leukemia/lymphoma.150 Another inhibi-

tor (SGI-1776) induces cytotoxicity in primary lymphocytes 

from CLL patients.151 Finally, a pan-Pim kinase inhibitor 

(Pimi) causes a reduction in mouse BL cell lines proliferation 

and a reduction in MYC-regulated transcripts.147

Pi3K/TORC1 inhibitors
MYC-driven lymphomas demonstrate activation of mTORC1 

and an endogenous DNA damage response. The small mol-

ecule BEZ235 inhibits both the PI3K-related DNA damage 

response kinases and mTORC1. This inhibitor shows a 

potent cytotoxic activity against Myc-driven B-cell lym-

phomas and BL-derived human cell lines bearing IG-cMYC 

translocations.152

MAPK inhibitors
The activation of the RAS-MEK-MAPK pathway results in 

MYC protein stabilization, which is mediated by the MAPK-

dependent phosphorylation of a Ser residue in the MYC 

N-terminal region.153 Some reports suggest that MAPK inhi-

bition may induce a synthetic lethal interaction with MYC. 

Indeed, the first example of oncogenic cooperation reported was 

that of MYC and RAS in the transformation of primary mouse 

fibroblasts.154 More recently, it has been shown that the impair-

ment of RAS–MAPK pathway in mice deficient for KSR1 gene 

(encoding a scaffold protein of MAPK) results in a decrease in 

Myc-induced lymphomagenesis in a murine model.155

Conclusion
Deregulation of MYC oncogene is a pervasive finding in 

leukemia and lymphoma, in many cases inducing tumor 

progression and conferring poor prognosis. Cell culture 

studies and mouse transgenic models have shown that MYC 

plays a pivotal role in initiation and development of many 

types of hematological neoplasms. Thus, MYC would be a 

good therapeutic target in leukemia and lymphoma. As is 

the case for other transcription factors, the development of 

small molecules inhibiting MYC activity has been difficult. 

However, in recent years, different approaches targeting MYC 

have been described. These are based on the impairment of 

MYC expression (BET inhibitors), small molecules blocking 

MYC transactivation function, or synthetic lethal approaches. 

Altogether, the data suggest that MYC inhibition could be 

a clinically feasible strategy for leukemia and lymphoma 

therapy and that therapies targeting MYC are in sight.
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