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Introduction: Dipeptidyl peptidase-4 (DPP-4) inhibitors are a class of oral antidiabetic agents 

for the treatment of type 2 diabetes mellitus, which lower blood glucose without causing severe 

hypoglycemia. However, the first cardiovascular (CV) safety trials have only recently reported 

their results, and our understanding of these therapies remains incomplete. Using clinical trial 

simulations, we estimated the effectiveness of DPP-4 inhibitors in preventing major adverse 

cardiovascular events (MACE) in a population like that enrolled in the SAVOR-TIMI (the 

Saxagliptin Assessment of Vascular Outcomes Recorded in Patients with Diabetes Mellitus – 

Thrombolysis in Myocardial Infarction) 53 trial.

Methods: We used the Archimedes Model to simulate a clinical trial of individuals (N=11,000) 

with diagnosed type 2 diabetes and elevated CV risk, based on established disease or multiple 

risk factors. The DPP-4 class was modeled with a meta-analysis of HbA
1c

 and weight change, 

pooling results from published trials of alogliptin, linagliptin, saxagliptin, sitagliptin, and 

vildagliptin. The study treatments were added-on to standard care, and outcomes were tracked 

for 20 years.

Results: The DPP-4 class was associated with an HbA
1c

 drop of 0.66% (0.71%, 0.62%) and a 

weight drop of 0.14 (-0.07, 0.36) kg. These biomarker improvements produced a relative risk 

(RR) for MACE at 5 years of 0.977 (0.968, 0.986). The number needed to treat to prevent one 

occurrence of MACE at 5 years was 327 (233, 550) in the elevated CV risk population.

Conclusion: Consistent with recent trial publications, our analysis indicates that DPP-4 

inhibitors do not increase the risk of MACE relative to the standard of care. This study provides 

insights about the long-term benefits of DPP-4 inhibitors and supports the interpretation of the 

published CV safety trial results.
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Introduction
Regulatory agencies, such as the US Food and Drug Administration’s Center for Drug 

Evaluation and Research, require that drugs be established as safe and effective prior 

to approval. The approval process relies on the evidence-based medicine hierarchy 

of evidence quality, in which the randomized controlled clinical trial (RCT) is the 

gold standard method for quantifying the efficacy and safety of therapeutic agents.1 In 

recent years, regulatory agencies have taken a more conservative position on approv-

ing new medicines that potentially have negative effects on cardiovascular (CV) risk. 

For example, the approval of antidiabetic agents now often requires a large CV safety 

trial,2 creating a substantial barrier to the development of new therapies. Prospective 

RCTs are considered to be the only approach that is “hypothesis validating”,3 thus the 

only way to establish safety and efficacy. However, in practice, RCTs can be used to 
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test only a limited number of hypotheses because they are 

expensive and time-consuming to perform.

Clinical trial simulation represents a complementary, 

“hypothesis generating”, approach for forecasting the find-

ings of RCTs yet to be completed, and exploring the possible 

drivers of RCT results.4 Clinical trial simulation cannot 

replace the RCT, but could be valuable in disease areas such 

as type 2 diabetes and cardiovascular disease (CVD), where 

trial protocols are often complex, and powering trials require 

large populations with multiyear follow-up. These critically 

important trials sometimes yield results that are challenging 

to interpret.

A number of clinical trial simulation methods have been 

used to predict or interpret the results from trials of type 2 

diabetes and CVD. Individual-level Markov models are the 

least mathematically complex technique for clinical trial 

simulation, and have been applied to problems in health 

care for over four decades.5 In a simple Markov model, an 

individual’s health is categorized by discrete states, and 

individuals move from state to state with invariant prob-

abilities at fixed time intervals. However, describing an 

individual’s health with a small number of discrete states 

is a coarse approximation because human physiology is 

complex and continuous in nature.6 A related limitation 

of simple Markov models is the invariant state transition 

probability. In reality, an individual’s health evolves con-

tinuously over time, but the time evolution of risk is lost in 

the Markov framework.

These limitations have been addressed by extending the 

Markov model framework with tracker variables (such as 

glycated hemoglobin [HbA
1c

]) that evolve over the course of 

a simulation and disease submodels that capture a richer rep-

resentation of comorbidities. The United Kingdom Prospec-

tive Diabetes Study (UKPDS) outcomes model7 is one of the 

more commonly used examples of this class of model. The 

UKPDS model is an individual-level state transition model 

with annual cycles, functionalized transition probabilities 

based on disease status, four biomarkers as continuous vari-

ables (HbA
1c

, blood pressure, total cholesterol, high-density 

lipoprotein cholesterol [HDL-C]), and a discrete smoking 

status risk factor. The risks of adverse events during each 

1-year period are computed as functions of the individual’s 

disease status and biomarkers.

The UKPDS model has a number of strengths. The 

UKPDS outcomes model is based on the UKPDS, the 

longest follow-up study of patients with type 2 diabetes. 

Hayes et al have recently published the UKPDS outcomes 

model 2,8 based on an updated data set with more data from 

the subjects followed up after the clinical trial period had 

ended. Thus, UKPDS provides a data set of exceptional 

quality, spanning several diabetes-related comorbidities. 

Including tracker variables in the model provides time-

varying risk and some measure of disease “history”. To 

a degree, the inclusion of second events improves the 

applicability of the model to higher-risk diabetic cohorts, 

as these cohorts often have substantial prevalence of prior 

CV events at baseline. The UKPDS model is available to 

researchers in easy-to-use forms (such as an Excel file) and 

is broadly accepted. That said, this class of model’s repre-

sentation of health by a limited number of discrete health 

states and rigidly defined annual event cycles remains a 

coarse approximation. Also, the model is based exclusively 

on the UKPDS trial, and as such, the model is confined 

by the parameters collected by the UKPDS protocol. For 

example, the model cannot be used to study important, 

related problems such as diabetes onset, and it cannot cap-

ture a second recurrent event (such as a third myocardial 

infarction [MI]). Further, the UKPDS cohort was recruited 

between 1977 and 1991, so aspects of the population do not 

represent modern patients duly (eg, rising body mass index 

and evolving standards of care). Finally, some investiga-

tors have observed that the UKPDS risk equations are not 

accurate for ethnically diverse populations, which could be a 

consequence of the model’s dependence on one trial cohort.9 

The CORE Diabetes Model10,11 and the Michigan model 

for diabetes12,13 are also examples of Markov models with 

tracker variables and disease submodels, with strengths and 

limitations similar to those of the UKPDS outcomes model, 

and some even borrow from the UKPDS risk equations. It 

is noteworthy that the CORE model group has published 

some trial validations.14

Meta-simulation of clinical trials using observational 

patient records represents a novel approach to clinical 

trial simulation. Chan et al employed meta-simulation of a 

published landmark clinical trial and compared the meta-

simulation and trial results.4 The meta-simulated trial rep-

licated the protocol of the Die Deutsche Diabetes Dialyse 

Studie (The German Diabetes Dialysis Study, 4D Study),15 

and estimated the effectiveness of statins in preventing CV 

outcomes among dialysis patients. By mimicking the protocol 

of the 4D Study, the investigators vetted their approach by 

comparing their findings to those from a published RCT. In 

the meta-simulation, the cohort was constructed by applying 

the inclusion criteria of the 4D Study to a large observational 

data set containing longitudinal records for 115,000 patients 

with end-stage renal disease. The investigators allocated 
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individuals who began taking statins at some point during 

their dialysis treatment to a hypothetical intervention arm. 

Individuals who never took statins in the database were 

matched to individuals in the intervention arm, on the basis 

of similar risk factors, forming a matched control arm.

The Chan study demonstrates that meta-simulation can 

produce treatment effect hazard ratios that are numerically 

similar to those of a prospective RCT. Further, the 4D 

Study’s findings for the primary outcome were not statisti-

cally significant, whereas the meta-simulation findings were 

significant due to a sample size nearly ten times larger than 

that of the RCT. This underscores the strength of leverag-

ing large observational data sets.16 The apparent simplicity 

of the approach is attractive when communicating results, 

as a “simulated trial” based on observed real individuals is 

intuitive.

Observational studies are at risk of selection bias, because 

the subjects are not randomized to the control and interven-

tion groups as they are in an RCT. Indeed, in the Chan study, 

simulated statin users were found to have a nonsignificant 

15% increase in nonfatal angina or revascularization. 

This suggests that there may be residual confounding not 

addressed by the propensity scoring methods used by the 

investigators. A related challenge is database availability 

and suitability. For example, the 4D Study ran in a German 

setting, yet the simulated trial cohort was extracted from the 

US database, and the implication of a US versus European 

setting is difficult to fully quantify. Further, approaches based 

on observational data are less applicable to simulating trials 

with complex treatment protocols (eg, crossover designs) 

and novel therapies (eg, a new compound not present in 

observational data).

The aforementioned clinical trial simulation methods 

have been used with some success. However, their limitations 

motivate a model-based simulation methodology that sup-

ports a richer representation of human physiology, that can 

accurately forecast the impact of novel interventions, and that 

is less prone to the biases of observational data. In the present 

analysis, we applied the Archimedes Model to prospectively 

simulate the SAVOR-TIMI (The Saxagliptin Assessment 

of Vascular Outcomes Recorded in Patients with Diabetes 

Mellitus [SAVOR]–Thrombolysis in Myocardial Infarction 

[TIMI]) 53 trial.17 Our objective was to explore how the 

simulation approach may improve trial planning and support 

the interpretation of trial results. In the present case, the trial 

findings were published shortly following our simulation 

work. (Our simulation results were submitted to the 16th 

Annual European Congress on June 25, 2013. The outcomes 

from the SAVOR-TIMI 53 trial were published in the New 

England Journal of Medicine on September 2, 2013.18)

Materials and methods
The Archimedes Model
The Archimedes Model is a rigorously validated simulation 

model of human physiology, chronic disease, and health care 

delivery systems.19,20 The model is based on a set of coupled 

mathematical equations that represent the physiological 

pathways of chronic diseases and their complications. The 

model includes CVDs, diabetes, respiratory conditions, and 

a number of cancers. One unique feature of the Archimedes 

Model is that it spans multiple diseases and captures the 

linkages between diseases and disease outcomes. Within this 

framework, interventions are modeled so as to operate on both 

the disease pathways and long-term health outcomes. Being 

an integrated system, the Archimedes Model is suitable for 

addressing diseases and syndromes that span multiple organ 

systems, drugs that have complex effects, and combinations 

of drugs. Within the simulated health care system, care is 

delivered according to guidelines (National Cholesterol 

Education Program Adult Treatment Panel III, Joint National 

Committee on Prevention, Detection, Evaluation, and Treat-

ment of High Blood Pressure, etc). Further, the quality of care 

delivered and rates of treatment are calibrated to align with 

US statistics, and a full report is available on the Archimedes 

website (http://www.archimedesmodel.com). The model also 

provides a suitable platform for simulating clinical trials 

with complex protocols and subtle interactions with routine 

health care delivery.

The Archimedes Model is well suited to simulating clini-

cal trials because simulated patients are based on the profiles 

of real people and, consequently, have correlated risk fac-

tors and biomarkers that evolve continuously over the trial 

period. A simulated cohort of individuals generated with the 

Archimedes Model has distributions and correlations of risk 

factors, medication usage, and medical histories reflective of 

real populations. The model provides facilities for selecting a 

cohort of simulated subjects meeting trial inclusion/exclusion 

criteria and then simulating each subject’s life for the duration 

of the trial according to the specified trial protocol.

The Archimedes Model has been extensively validated, 

using more than 50 epidemiological and clinical studies. The 

model has been validated against clinical trials conducted 

in US, European, and multinational settings, and a detailed 

report of the validations is provided on the Archimedes 

website.21 Of note is the fact that some of the validations were 

performed prospectively (meaning the model predictions 
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were finalized before the trials were completed). One pro-

spective validation of the Archimedes Model was the Col-

laborative Atorvastatin Diabetes Study which enrolled a UK 

population with type 2 diabetes. Further descriptions of the 

Archimedes Model are available on the Archimedes website 

and in prior publications.20,22–24

Clinical trial simulation methods
We simulated a virtual clinical trial reflective of the SAVOR-

TIMI 53 trial that was underway at the time of the analysis.17 

Virtual subjects were eligible for inclusion if they had been 

previously diagnosed with type 2 diabetes, had an HbA
1c

 of 

at least 6.5% but not exceeding 12%, and had elevated CV 

risk. Elevated CV risk was defined as one or more of the 

following: at least 40 years of age and having had a previ-

ous MI or stroke; or at least 55 years old (male) or 60 years 

old (female) and having one of the following additional risk 

factors: low-density lipoprotein cholesterol over 130 mg/dL or 

HDL-C less than 40 mg/dL for men or less than 50 mg/dL for 

women, blood pressure .140/90 mmHg or .130/80 mmHg 

if on antihypertensive agent(s); or currently smoking.

The simulated trial cohort matched the published mean 

baseline risk factors: age, rising body mass index, blood 

pressure, HbA
1c

, male fraction, smokers, subjects with prior 

MI, hypertension prevalence, as well as aspirin, insulin, and 

statin usage.25 These risk factors were selected for matching 

from the randomization publication because they are direct 

drivers of CV risk in the Archimedes Model.25

In the treatment arm, the trial DPP-4 inhibitor, represen-

tative of the class-level effects, was added on to standard 

diabetes care. In the comparator arm, standard diabetes care 

was delivered. However in all arms, no incretin-based thera-

pies other than the target DPP-4 inhibitor were permitted. 

The target treatment was initiated immediately after baseline, 

and subjects were 100% adherent throughout the simulation. 

Individuals were tracked for 20 years. No loss to follow-up 

or other censoring was assumed, except for that due to 

mortality.

The trial simulations were designed and analyzed using 

the ARCHeS suite, version 2.4, which provides a Web-based 

interface for setting up and analyzing Archimedes Model 

simulations.21 The simulated population consisted of a sample 

of 11,000 patients, which is the prespecified sample size of 

the ARCHeS platform. The same sample of patients is run 

through each trial arm, substantially reducing the stochastic 

variability between arms; thus, this sample size was more 

than sufficient to derive statistically sound estimates of the 

primary end point.

DPP-4 inhibitor model
The trial DPP-4 inhibitor was a class-level treatment model, 

based on a meta-analysis of biomarker effects reported in 

the studies identified in a recent systematic review.26 Studies 

were eligible to be included in the analysis if they were RCTs 

published in a peer reviewed journal and met the following 

criteria:

•	 Report data on nonpregnant participants aged 18 years 

and older with type 2 diabetes

•	 Report the effect of the addition of any noninsulin diabetes 

medication on the HbA
1c

 level in subjects who were either 

drug naive or on background therapy with other agents

•	 Include at least 30 subjects in each arm

•	 Report the effect of therapy on the HbA
1c

 levels after a 

minimum of 12 weeks

RCTs were excluded if:

•	 They reported data on subjects who did not have type 2 

diabetes

•	 The intervention included the initiation of two agents at 

the same time

•	 The doses of any antidiabetic drug, except insulin, were 

different from the maximum dose currently recommended 

in clinical practice.

These criteria corresponded to the following compounds 

and doses: alogliptin 25 mg QD, linagliptin 5 mg QD, 

saxagliptin 5 mg QD, sitagliptin 100 mg QD, and vildagliptin 

50 mg BID and 100 mg QD. In the meta-analysis, stud-

ies were weighted by the inverse of the sample variance. 

Absolute HbA
1c

 change from baseline was analyzed with 

a mixed effects model including a moderator for baseline 

HbA
1c

. A random effects analysis was employed for absolute 

weight change from baseline. Meta-analyses were performed 

with the package metafor and R version 2.13.0.

We found that effects on lipids were not consistently 

reported and were often not statistically significant in 

literature. Effects on triglycerides were the most consistently 

statistically significant in the trials examined. However, the 

direct lipid CV risk factors in the Archimedes Model are total 

cholesterol and HDL-C. Therefore, effects on lipids were not 

included in the primary analysis, but were explored in the 

sensitivity analysis.

Efficacy outcomes
The primary study outcome was the occurrence of MACE, 

defined as the first occurrence of MI, stroke, or death from 

CV causes. The cumulative incidence of the first occurrence 

of MACE in each trial arm was reported as a Kaplan–Meier 

survival estimate, starting from study initiation. The relative 
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effectiveness of each treatment scenario was evaluated using 

relative risk (RR), and the absolute benefit was evaluated 

using the number needed to treat (NNT) to prevent one 

additional event over 5 years of follow-up. The RR estimates 

were computed as the ratio of the number of events in the 

intervention scenario by the number of events in the standard 

of care scenario. The standard error of the RR was estimated 

accounting for the correlation between arms due to the fact 

that identical sets of patients were simulated in each arm. 

This leads to smaller confidence intervals and P-values than 

might be expected for a similar RCT in which the arms are 

independent. The NNT values were derived from the Kaplan–

Meier survival estimates using the method of Altman and 

Andersen,27 comparing add-on DPP-4 inhibitor to standard of 

care. Standard error computations for comparative statistics 

also took into account correlation between trial arms. All 

confidence estimates reflect the statistical uncertainty result-

ing from the stochastic nature of the Archimedes Model. 

The uncertainty associated with the modeling assumptions 

is explored through sensitivity analyses.

Sensitivity analyses
In the sensitivity analysis, we explored the impact of varia-

tions on key modeling assumptions and meta-analysis results. 

The base case model for the DPP-4 inhibitor followed from 

the point estimate obtained in the meta-analysis. As sensitiv-

ity analyses, we also simulated DPP-4 inhibitor treatment 

scenarios corresponding to the upper and lower limits of the 

95% confidence intervals around the HbA
1c

 and weight effects 

obtained from the meta-analysis. We also examined the weight 

and HbA
1c

 effects individually. Finally, we explored the base 

case model with the addition of effects on lipids, based on the 

estimates reported in the meta-analysis by Monami et al.28

Results
Modeled interventions
Our meta-analysis yielded an estimate of the DPP-4 inhibitor 

class effect on HbA
1c

 of -0.66% (-0.71%, -0.62%), for a popu-

lation with a baseline HbA
1c

 of 8.0% (τ2=0.02). The estimated 

effect on weight was -0.14 (-0.36, 0.07) kg (I2=90). A list of the 

studies included in the meta-analysis is provided in Table S1. 

These effects were used as the base case DPP-4 inhibitor class 

treatment model in the subsequent clinical trial simulations.

Simulation results
The baseline characteristics of the simulated cohort reflected 

those of the actual SAVOR-TIMI 53 cohort, as shown 

in Table S2. Treatment with the DPP-4 inhibitor class was 

associated with an HbA
1c

 drop of 0.66% (0.71%, 0.62%) and 

a weight reduction of 0.14 (0.36, -0.07) kg at 1 year, consis-

tent with the meta-analysis and simulated study design.

At 5 years, the cumulative number of MACE was 1,507 

(1,355, 1,658) and 1,467 (1,319, 1,616) in the comparator 

and intervention arms, respectively. At 5 years, the incidence 

of MACE was 0.134 (0.128, 0.141) and 0.131 (0.125, 0.138) 

in the comparator and intervention arms, respectively, as 

shown in Figure 1. This corresponded to a 5-year RR for 

MACE of 0.977 (0.968, 0.986). The CV neutrality of the 

DPP-4 inhibitor was fairly consistent with a 20-year RR for 

MACE of 0.982 (0.977, 0.986). The modest effect of the 

DPP-4 inhibitor on the primary end point yielded a 5-year 

NNT of 327 (233, 550).

Simulation sensitivity analysis
Results from the sensitivity analyses quantifying how our 

modeling assumptions impacted the simulation results are 

presented in Table S3. Each sensitivity analysis constituted 

an alternate treatment scenario. The sensitivity of the results 

to variations in the assumptions was evaluated based on the 

absolute change in the cumulative incidence of MACE at 

5 years.

Discussion
Four decades ago, researches began to employ state transition 

models to better understand the most complex processes in 

health care.5 Today, the planning, execution, and interpreta-

tion of the clinical trials required to establish drug safety and 

efficacy stand as one of the major barriers to improving the 

treatment of chronic diseases such as diabetes. The potential 
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Figure 1 The Kaplan–Meier cumulative incidence of MACE.
Notes: The solid black and dashed gray lines correspond to the standard of care 
and DPP-4 inhibitor treatment arms, respectively. MACE was defined as the first 
occurrence of MI, stroke, or cardiovascular death.
Abbreviations: MACE, major adverse cardiovascular events; MI, myocardial 
infarction.
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health benefits associated with new therapeutics for diabetes 

and CVD, as well as the staggering resource consumption 

associated with bringing new compounds to market, motivate 

advancements in simulation methods for clinical trials.

The restrictions imposed by the Markov modeling 

framework limit their utility for clinical trial simulation, 

particularly when predictions are needed over longer time 

scales and in cases of interacting diseases, such as diabetes 

and CVD, which cannot be represented effectively with a 

limited number of “states”. Meta-simulation based on obser-

vational data represents an emerging area of clinical trial 

simulation. If suitable observational data sets are available, 

then this approach is an attractive option due to the simplic-

ity of the methodology (both in statistical modeling and in 

communication). However, conclusions obtained with this 

approach can be biased, as with all observational studies.

The Archimedes Model, a continuous-time/discrete-

event simulation model, can provide a rich representation 

of human physiology and health care systems. However, the 

model is more complex than most other methods, and thus is 

best suited to research problems where accuracy and clinical 

detail are required. One such application is simulating the 

outcomes of trials where the underlying disease evolution is 

complex, such as the present analysis of diabetes and CVD. 

For this application, the Archimedes Model is unique in its 

ability to capture trial protocols and forecast event rates in 

the high-risk populations typical of CV safety RCTs.

In this analysis, we simulated the SAVOR-TIMI 53 study, 

prospectively, and first reported our results at the International 

Society for Pharmacoeconomics and Outcomes Research 

Annual European Congress (abstract with findings submitted 

on June 25, 2013). Our simulated study suggests that DPP-4 

inhibitors do not increase the risk of MACE relative to the stan-

dard of care in a population with elevated CV risk. These find-

ings agree with the CV neutral findings of the SAVOR-TIMI 

53 (hazard ratio for treatment with saxagliptin of 1.00 [95% 

CI, 0.89–1.12]) and those of the EXAMINE trials (hazard 

ratio for treatment with alogliptin, 0.96; upper boundary of the 

one-sided repeated confidence interval, 1.16)29 for the respec-

tive primary composite CV end points. Further, our analysis 

estimates the clinical impact of DPP-4 inhibitor treatment over 

a time horizon of 20 years, which is substantially longer than 

the trial follow-up times. Both of these trials reported their 

results after our simulation work was complete.

The agreement between the simulations and trial findings 

suggests that the benefits of DPP-4 inhibitors are largely 

consistent with the traditional linkages between HbA
1c

, 

weight, and CV outcomes captured in the Archimedes Model. 

Our sensitivity analyses explored the potential variability of 

our findings to alternate DPP-4 inhibitor modeling assump-

tions, and all sensitivity analyses lead to the conclusion that 

DPP-4 inhibitors are CV neutral.

Clinical trial simulations, like the present analysis, are 

valuable, yet they do have limitations and cannot yet replace 

RCTs. First, models that are largely statistical in nature, like 

the Archimedes Model, cannot predict intervention effects 

that have not yet been observed. In particular, the approach 

we have employed did not consider the occurrence of serious 

adverse drug events. Our simulation would not have been 

consistent with the SAVOR-TIMI 53 trial results, should 

there have been a substantial additional CV effect of DPP-4 

inhibitors (beneficial or harmful) beyond those previously 

associated with HbA
1c

 and weight changes. In fact, in the 

SAVOR-TIMI 53 trial, more patients in the saxagliptin 

group than in the placebo group were hospitalized for 

heart failure (HF) (hazard ratio, 1.27; 95% CI, 1.07–1.51; 

P=0.007), yet our simulations forecast lower rates of HF 

in the DPP-4 inhibitor group in sharp contrast to the trial 

findings. Additionally, a recent retrospective analysis of 

claims data found that sitagliptin use was associated with an 

increased risk of HF-related hospitalizations among patients 

with type 2 diabetes with preexisting HF.30 Resolving 

this possible association between some DPP-4 inhibitors 

and HF will require additional trials and potentially more 

simulations. In such cases, clinical trial simulation may still 

be valuable, quantifying the magnitude of newly discovered 

effects, versus those associated with traditional risk factor 

changes. Second, clinical trial simulation depends on data 

inputs typically obtained through evidence synthesis and 

meta-analysis. In the present analysis, we observed sub-

stantial heterogeneity between the trials. We used standard 

meta-regression techniques to mitigate the heterogeneity, 

but the presence of heterogeneity suggests some uncertainty 

in the magnitude of the DPP-4 class effects on biomarkers, 

which propagates through to our final event rate estimates. 

Third, our simulation does not account for secular trends 

in either the impact of DPP-4 inhibitors or in the treatment 

guidelines that determine standard of care.

All told, this study provides insights about the long-term 

benefits of DPP-4 inhibitors for individuals with diabetes 

and supports the interpretation of the CV safety trial results 

now available.
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Table S2 Baseline characteristics of the simulated cohort, based 
on the actual SAVOR-TIMI 53 cohort

Characteristics CV safety trial 
population

N 11,000
Age (years) 65.0 (8.67)
Male 0.67
SBP (mmHg) 137 (19.76)
DBP (mmHg) 79 (9.417)
TC (mg/dL) 187.7 (37.8)
HDL (mg/dL) 49.2 (14.16)
LDL (mg/dL) 100.4 (29.25)
TG (mg/dL) 191.7 (121.3)
HbA1c (%) 8.0 (1.23)
BMI (kg/m2) 31.2 (5.02)
Smoker (fraction) 0.13
Prior MI 0.38
Prior stroke 0.09
Stage 3 CKD and above 0.29
ESRD 0.02
CHF 0.10

Notes: Values are means with standard deviations in parentheses unless otherwise 
indicated.
Abbreviations: N, number in sample; BMI, body mass index; TC, total cholesterol; 
HDL, high-density lipoprotein cholesterol; LDL, low-density lipoprotein cholesterol; 
TG, triglycerides; SBP, systolic blood pressure; DBP, diastolic blood pressure; MI, 
myocardial infarction; CKD, chronic kidney disease; ESRD, end-stage renal disease; 
CHF, chronic heart failure; CV, cardiovascular; HbA1c, glycated hemoglobin; SAVOR-
TIMI, the Saxagliptin Assessment of Vascular Outcomes Recorded in Patients with 
Diabetes Mellitus – Thrombolysis in Myocardial Infarction.
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Table S3 Sensitivity of the absolute MACE risk reduction 
associated with the DPP-4 inhibitor class, at 5 years, to different 
effect assumptions

Intervention sensitivity analysis Absolute MACE incidence 
reduction at 5 years

DPP-4 inhibitor class (base case) -0.0027 (-0.0038; -0.0016)
DPP-4 inhibitor class with HbA1c  
effect only (no weight effect)

-0.0027 (-0.0038; -0.0016)

DPP-4 inhibitor class + lipid effects -0.0035 (-0.0047; -0.0022)
DPP-4 inhibitor class based on lower  
95% confidence limit effects from  
meta-analysis

-0.0026 (-0.0037; -0.0015)

DPP-4 inhibitor class based on upper  
95% confidence limit effects from  
meta-analysis

-0.0030 (-0.0041; -0.0018)

Notes: For reference, in the standard of care arm the incidence of MACE at 5 years 
was 0.1253 (0.1189; 0.1316). MACE was defined as the first occurrence of MI, 
stroke, or cardiovascular death.
Abbreviations: MACE, major adverse cardiovascular events; DPP-4, dipeptidyl 
peptidase-4; HbA1c, glycated hemoglobin; MI, myocardial infarction.
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