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Abstract: Transgene transfection techniques using cationic polymers such as polyethylenimines 

(PEIs) and PEI derivatives as gene vectors have shown efficacy, although they also have short-

comings. PEIs have decent DNA-binding capability and good cell internalization performance, 

but they cannot deliver gene payloads very efficiently to cell nuclei. In this study, three hyper-

branched polyglycerol-polyethylenimine (PG6-PEI) polymers conjugated with myo-inositol 

(INO) molecules were developed. The three resulting PG6-PEI-INO polymers have an increased 

number of INO ligands per molecule. PG6-PEI-INO 1 had only 14 carboxymethyl INO (CMINO) 

units per molecule. PG6-PEI-INO 2 had approximately 130 CMINO units per molecule. PG6-

PEI-INO 3 had as high as 415 CMINO units approximately. Mixing PG6-PEI-INO polymers 

with DNA produced compact nanocomposites. We then performed localization studies using 

fluorescent microscopy. As the number of conjugated inositol ligands increased in PG6-PEI-INO 

polymers, there was a corresponding increase in accumulation of the polymers within 293T 

cell nuclei. Transfection performed with spherical 293T cells yielded 82% of EGFP-positive 

cells when using PG6-PEI-INO 3 as the vehicle. Studies further revealed that extracellular 

adenosine triphosphate (eATP) can inhibit the transgene efficiency of PG6-PEI-INO polymers, 

as compared with PEI and PG6-PEI that were not conjugated with inositol. Our work unveiled 

the possibility of using inositol as an effective ligand for transgene expression.

Keywords: myo-inositol, nuclear localization, biocompatibility, polyglycerol-polyethylenimine, 

hyperbranched polymers, extracellular ATP

Introduction
Gene transfection techniques have been widely used in functional genomics and gene 

therapy research.1,2 Virus-derived vectors are known for their high gene delivery effi-

ciency; however, these vectors also pose potential risks.3–5 Owing to the convenience 

in preparation and tailoring design, nonviral vectors based on natural or synthetic 

biomaterials have become highlighted.2,6–11

Various barriers, including the nuclear membrane as the main barrier, exist 

before efficient transgene expression is achieved (Figure 1). Versatile gene carri-

ers, including a class of intensively studied cationic polymers, such as branched 

polyethylenimine (PEI), poly-N-(2-hydroxypropyl) methacrylamide (poly-HPMA), 

poly(amido amine) dendrimers and chitosan, have been developed for transport of 

large nucleic acid payloads.2–8 These polymers can compact the nucleotides and help 

them escape from endosomal degradation through a “proton-sponge effect”.6,12 Gene 

vectors with reduced cytotoxicity and immune recognition can be achieved through 

various modifications, for example, with poly-HPMA, polycaprolactone (PCL), and 

polyethylene glycol (PEG).13–17 Target approaches can enhance cell internalization of 

the gene delivery systems,18–21 but the cell-membrane-targeted ligands are not ideal 
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for improving transgene expression, which is strictly limited 

by the cell-nuclear membrane (Figure 1).22,23 Just a few of 

the DNA isolates are able to enter the cell nucleus once the 

complexes are unpacked within the cell cytoplasm. A suc-

cessfully studied target ligand was the chlorotoxin (CTX) 

peptide, which targets the nanovectors to cancer cells.21 

However, in the case of tumor therapy and analysis of gene 

functions, a superhigh ratio of transfection is required. In this 

regard, study and targeting of gene vectors to cell nuclei 

remains a big challenge.

Recently, cell-nuclear transfer technology has been 

receiving much attention as a promising strategy to meet 

the increased requirement for effective transgene expres-

sion therapies.19 Frequently reported elements include 

proteins/peptides that are able to localize to mammalian 

cell nuclei, for example, nuclear localization signals 

(NLS).3,24–27 Melittin protein derived from nonviral organ-

isms was used to enhance nuclear access of nonviral gene 

delivery vectors.28 Novel approaches were developed using 

polymeric gene carriers conjugated with all-trans-retinoic 

acid (ATRA).29 Target ligands that are stable, small, and 

have cell-nuclear localization ability are of interest to 

researchers.

Myo-inositol (INO) is a biomolecule with crucial functions 

in eukaryotic cells.30–37 The H+-Myo-inositol receptors were 

reported in cancer stem cells (CSC) from various tumors.38 

The presence of free myo-inositol has been demonstrated in 

cell nuclei.39 A series of inositol-related receptors/factors were 

reported to localize on the nuclear membrane, for example, 

the inositol 1,4,5-trisphosphate-sensitive Ca2+ pool, the InsP 

receptors, and the nucleocytoplasmic shuttling protein inositol 

5-phosphatase SHIP1.40,41 Myo-inositol serves as the structural 

basis for various derivatives, including a number of essential 

secondary messengers. Myo-inositol and its derivatives, such 

as phosphatidylglycerol and phosphatidylinositol derivatives, 

inositol phosphate isoforms, and inositol polyphosphates 

had metabolism links and are involved in various metabolic 

pathways in mammalian cells.42–46 Among the inositol deriva-

tives, inositol polyphosphates (IP
2
–IP

6
) play crucial roles in 

cellular functions including cell growth, endocytosis, migra-

tion, differentiation, and apoptosis.30,31 IP
3
, IP

5
, and IP

6
 are 

also involved in gene expression. Inositol(1,4,5)P
3
 receptors 

were revealed at the nuclear envelope of mammalian cells. 

The PI3K signaling pathway has been widely found in cancer 

cells, and nuclear transportation of phosphatidylinositol 

3-kinase has been observed.32,34–37 Importantly, inositol  

Figure 1 Schematic illustration of self-protection by mammalian cells during cationic polymers-mediated transfection.
Abbreviations: CM, cell membrane; DNA, deoxyribonucleic acid.
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1,4,5-trisphosphate receptors (IP
3
R) have been shown to 

mediate extracellular adenosine triphosphate (eATP) induced 

Ca2+ transients in cell nuclei rather than in the cytosol.47

In our previous study, inositol conjugated PEI800-FA was 

detected on the cell-nuclear membrane or in cell nuclei with 

variant levels in the tested cell lines, and transfection efficiency 

of INO-PEI800 was as high as HMW PEI for some carcinoma 

cell lines.22 To consolidate INO as a biocompatible ligand for 

efficient transgene expression, increased ratios of inositols 

were conjugated to PG6-PEI25k, which is derived from the 

hyperbranched polyglycerol core and branched HMW PEI25k 

grafts. As determined, PG6-PEI25k shows enhanced transgene 

activity and biocompatibility relative to PEI25k but does not 

enter cell nuclei. The resultant vectors, PG6-PEI-INOs with 

low cytotoxicity, achieved different degrees of enhanced 

transfection activity as compared with PG6-PEI25k. For PG6-

PEI-INO 3 containing a much higher INO ratio at approxi-

mately 415 ligands per molecule, transgene expression resulted 

in 80% of EGFP-positive 293T cells, which demonstrated 

further enhancement relative to PG6-PEI-INO 1 and 2 that 

respectively contained 14 and 130 INO ligands per molecule 

only. Because some cell-nuclear activity, such as the nuclear 

Ca2+ transient, can be specifically induced by eATP,47 we then 

investigated eATP-induced inhibition on EGFP expression, 

which shows evident differences when comparing the effects 

of PG6-PEI-INO and PG6-PEI polymers.

Material and methods
Materials
Polyglycerol PG6 (M

n
 =6,170 g/mol) was obtained from 

Hyperpolymers GmbH (Freiburg, Germany). Branched 

PEI25k (M
w
 =25,100 g/mol), N-hydroxysuccinimide 

(NHS), N,N′-dicyclohexylcarbodiimide (DCC), and 

1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydro-

chloride (EDC) were from Sigma-Aldrich (St Louis, MO, 

USA). N-dimethyl-formamide (DMF) was dried over 

CaH
2
 and distilled under reduced pressure prior to use. 

4′,6-diamidino-2-phenylindole (DAPI) was purchased from 

Roche (Branford, CT, USA). 3-(4,5-dimethylthiazol-2-

yl)-2,5-diphenyltetrazolium bromide (MTT), trypsin, and 

penicillin/streptomycin were purchased from Invitrogen 

(Carlsbad, CA, USA). All other reagents were purchased 

from Sinopharm Chemical Reagent Co., Ltd (Shanghai, 

People’s Republic of China). Human embryonic kidney cell 

line 293T was purchased from the China Center for Typical 

Culture Collection (Wuhan, People’s Republic of China). 

The cells were cultivated in Dulbecco’s Modified Eagle’s 

Medium (DMEM) supplemented with 10% fetal bovine 

serum, 2 mg/mL NaHCO
3
, and 100 units/mL penicillin/

streptomycin. Cells were incubated at 37°C in humidified 

air with 5% CO
2
. The reporter plasmid pEGFP-C1 was 

obtained from Invitrogen.

Preparing plasmid
Plasmid DNA pEGFP-C1 was amplified in Escherichia coli, 

extracted with E.Z.N.A. FastFilter Endo-Free Plasmid Maxi 

Kit (Omega, Norcross, GA, USA). The purified plasmid DNA 

was stored in TE buffer (supplied with the kit) or deionized 

(DI) water at a final concentration of 1 mg/mL.

Polymer conjugation
Hyperbranched polymer PG6-PEI25k, which was derived 

from hyperbranched polyglycerol core (M
w
 =6,170 g⋅mol-1, 

had an average of 90 hydroxyl end-groups per molecule) 

and branched PEI25k grafts, was synthesized and character-

ized according to our previous method.13 INO (22.5 mg) was 

added to a 14.3 M NaOH solution (100–200 µL), and the 

mixture was stirred at room temperature (22°C) for 1 hour.  

The chloroacetic acid (CAA) (0.3 mg/mL) was added drop-

wise to the mixture, and the suspension was stirred at 60°C for 

12 hours to carboxylate hydroxyls of INO. The solution was then 

adjusted to acidic (pH 6) with HCl (1 M) to convert –COONa 

to –COOH. The product was cooled and filtrated to obtain 

INO-COOH (carboxymethyl INO [CMINO]). The CMINOs 

were washed with ethanol and distilled under reduced pressure. 

CMINO was conjugated to PG6-PEI with EDC as the coupling 

reagent (Table 1). The molar ratios of introduced CMINO to 

PG6-PEI25k units were approximately 1, 10, and 100 for the 

three reaction systems. The mixtures were dissolved in DI water, 

and pH was adjusted to 5–6. The reactions were performed at 

42°C for 18 hours, and the reaction mixtures were dialyzed with 

a dialysis membrane (MWCO: 8,000–12,000 g/mol) against DI 

Table 1 Weight ratio of the reactants and molecular weights of PG6-PEI-INO polymers

Polymer Reactants Mw (kDa) Polydispersity  
(Mw/Mn)PG6-PEI25k (mg) CMINO (mg)

PG6-PEI-INO 1 2.13 0.0355 455 1.68
PG6-PEI-INO 2 2.13 0.355 465 1.73
PG6-PEI-INO 3 2.13 3.55 542 1.86

Abbreviations: CMINO, carboxymethyl inositol; INO, myo-inositol; PEI, polyethylenimine; PG6, polyglycerol.
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water, respectively, and freeze dried under vacuum to obtain 

PG6-PEI-INO polymers.

FT-IR spectroscopy
Infrared analysis (KBr) of the samples was studied on FT-IR 

(Fourier transform infrared) spectrometer (Spectrum One; 

Perkin Elmer, Waltham, MA, USA). Spectra were run in the 

4,000–400 cm-1 region.

1H NMR spectroscopy
1H nuclear magnetic resonance (NMR) spectroscopy was 

performed on a Varian Inova 600 MHz spectrometer; the 

solvent was deuterium oxide.

Gel permeation chromatographic 
([GPC]/SEC) analysis
The molecular weights of the polymers were determined by 

combined size-exclusion chromatography and multiangle 

laser light scattering (SEC–MALLS) analysis. A dual detec-

tor system, consisting of a MALLS device (DAWN EOS; 

Wyatt Technology, Santa Barbara, CA, USA) and an inter-

ferometric refractometer (Optilab DSP, Wyatt Technology), 

was used. PG6-PEI-INO polymers were dissolved in 600 mM 

of ammonium acetate with a final polymer concentration of 

1 mg/mL, and analyzed in ammonium acetate (600 mM) 

mobile phase. The MALLS detector was operated at a laser 

wavelength of 690.0 nm. The samples were then determined 

at a flow rate of 0.3 mL/min.

Agarose gel electrophoresis retardation 
assays
PG6-PEI-INO polymers were dissolved in 150 mM (or 

0.9%) NaCl. PG6-PEI-INO/pDNA (pEGFP-C1) complexes 

were prepared by adding 10 µL of PG6-PEI-INO solutions 

at serial concentrations to 20 ng of pDNA (20 ng/μL in 

150 mM NaCl). The complexes were incubated at 37°C for 

30 minutes, and sampled for electrophoresis on the 0.7% 

(w/v) agarose gel containing GelRed™ with Tris-acetate-

EDTA (TAE) electrophoresis buffer at 80 V. Plasmid DNA 

bands were visualized on a V-transilluminator with a Vilber 

Lourmat imaging system (Marne La Valée, France).

TEM analysis of PG6-PEI-INO/pDNA 
polyplexes
PG6-PEI-INO/pDNA (pEGFP-C1) particles were com-

posited in DI water, and the morphology was determined 

by transmission electronic microscopy (TEM) on a 

JEM-100CXII transmission electronic microscope (JEOL, 

Tokyo, Japan). Aqueous suspensions (3 µL) were placed on 

copper grids with Formvar film. The samples were stained by 

phosphotungstic acid, vacuum-dried and visualized.

Cell viability measurement
Cells were seeded in a 96-well plate at a density of  

3×103 cells/well in 100 µL of DMEM culture media (10% 

serum) containing polymers or polymer/pEGFP-C1 complexes 

(1.3 μg of pEGFP-C1 per mL medium) at varied feed ratios. 

After 52 hours of cultivation, the culture media were replaced 

with fresh DMEM medium (100 μL) plus 20 μL of MTT  

(5 mg/mL), and the plate was incubated in the incubator at 

37°C for 4 hours. Then the supernatants were replaced with 

150 μL of DMSO. After incubation for 15 minutes at 37°C, 

the absorbance of 50 μL of sample solution was measured 

in a microplate reader (Bio-Rad 550; Bio-Rad Laboratories 

Inc., Hercules, CA, USA) at 570 nm. The cell viability was 

calculated as follows:

	 Cell viability =
(OD )

(OD )
%,treat

−
−

×
OD

OD
blank

control blank

100 �

where OD
treat

 was obtained from the cells treated by materials; 

OD
control

 was obtained from the untreated cells, and OD
blank 

was obtained from the media treated through the same 

procedure. Each result was obtained from three repeats and 

expressed as average ± standard deviation (SD).

In vitro transfection
293T cells were seeded in a 24-well plate at a density of  

3×104 cells/well in 1 mL of DMEM culture media (10% 

serum), followed by cultivation for 4 hours. Prior to trans-

fection, 1 μL of pEGFP-C1 solution (1.3 μg/μL in DI 

water) was mixed with 1 µL of varied concentrations of 

PG6-PEI-INO aqueous solutions and diluted with 20 µL of 

filtrated NaCl (150 mM) solution, followed by vortex and 

incubation at 37°C for 30 minutes. The complexes were 

then supplemented to the cell suspension, and coincubated 

with the cells for 52 hours. The EGFP-positive cell ratio was 

calculated on a counting chamber with fluorescent phase-

contrast microscopy (Olympus IX 70; Olympus Corporation, 

Tokyo, Japan; at 400×), after the cell suspensions were 

prepared with tryptic digestion to prevent miscounting of 

the undispersed cells.

Influence of eATP on cell viability  
and transgene expression
Optimized ratios of PEI25k/pEGFP-C1 (w/w =1.3), 

PG6-PEI25k/pEGFP-C1 (w/w =7), and PG6-PEI-INO 3/

pEGFP-C1 (w/w =7) with fixed dosage of pEGFP-C1 
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(1.3 µg per mL medium) were supplemented with serial 

concentrations of ATP, respectively, to compare the response 

of transgene activity of the materials to ATP supplements. 

The mixtures were incubated at 37°C for 30 minutes before 

transgene experiments. Detailed MTT assay and transfection 

procedure were performed in 24-well plates according to the 

descriptions above. The relative level of transgene expression 

was calculated as follows:

	 Positive ratio = 
Cell number

Cell number
positive

total

×100% �

	

Relative

expression level
=

Mean positive ratio

Mean po
material

ssitive ratio
control

×100%

�

where positive ratio
material 

was obtained from cells treated 

by materials, and positive ratio
control 

was obtained from cells 

treated by PEI/pEGFP-C1/eATP. Mean positive ratio was 

achieved by calculating the average value of positive ratios 

from three repeats.

Fluorescence tracking
The PG6-PEI-INO polymers were labeled with Rhodamine B,  

which is usually used to stain cytosol instead of cell nuclei. 

For the three PG6-PEI-INO systems with different INO 

ratios, identical numbers of amino groups per microgram 

of polymers were labeled. In brief, PG6-PEI-INO poly-

mers (0.36 mg) and Rhodamine B (2 µg) were dissolved 

in 5 mL DMF, using NHS and DCC as carboxyl activator 

and coupling reagent, respectively. The reactions were 

carried out at 45°C. The mixtures were dialyzed against 

deionized water at room temperature, and dried in a freeze 

drier (VirTis, Warminster, PA, USA) to purify PG6-PEI-

INO-Rhodamine (Rh)s.

293T cells were seeded in a 6-well plate at a density of 

8×104 cells/mL media and cultivated for 12 hours. PG6-PEI-

INO-Rh (5 µg/mL) was supplemented to the cell cultures and 

incubated with the cells for 48 hours. The cells were washed 

with PBS (pH 7.4), stained with DAPI, and washed with 

PBS. Confocal laser scanning microscopy (CLSM, Leica 

TCS SP2AOBS; Leica Microsystems, Wetzlar, Germany) 

was used to record fluorescence within the cells.

Results and discussion
Synthesis and characterization  
of PG6-PEI-INO polymers
GPC (SEC) analysis showed that PG6-PEI-INO 1, 2, and 3 

(Figure 2) had weight average molecular weights (M
w
) of 

455, 465, and 542 kDa, respectively (Table 1).

FT-IR spectrum showed the peak at 1,724.82 cm-1, 

depicting –COOH of CMINO (Figure 3A). The intensity of 

this peak declined for PG6-PEI-INOs because –COOH of 

CMINO reacted with –NH
2
 of PEI25k. With the increase 

in the grafted INO ratio, an increase in the O-H deforma-

tion vibration (1,261.96 cm-1) and the fingerprint region of 

CMINO (799.95 cm-1) was detected in the order of PG6-

PEI-INO 1, 2, and 3. The peak (1,462.87 cm-1) indicating the 

in-plane bending vibration of –CH
2
 groups from PG6-PEI and 

CMINO increased in PG6-PEI-INO 1, 2, and 3. The results 

indicated successful conjugation of INO to PG6-PEI.
1H NMR results showed the unreacted –COOH of CMINO 

units (10.8 ppm), characteristic PEI proton deviation peaks 

(2.4–3.0 ppm), and characteristic proton deviation peaks of 

PG6 and INO (3.0–4.0 ppm) (Figure 3B). With CMINO grafts 

increased, the ratio of the integral of the 3.0–4.0 ppm peak 

to that of the 2.0–3.0 ppm peak increased, indicating that an 

increased number of CMINO molecules were conjugated to 

PG6-PEI. The molar ratio of PG6 to PEI25k is 1:1, as previously 

characterized. The ratio of CMINO to PG6-PEI25k units was 

approximately 1:1, 10:1, and 35:1 in PG6-PEI-INO 1, 2, and 3,  

respectively. According to the weight average molecular 

weight (M
w
) of PG6-PEI-INOs (Table 1), a PG6-PEI-INO 1  

molecule had approximately 14 PEI25k and 14 CMINO 

units; PG6-PEI-INO 2 had approximately 13 PEI25k and 

130 CMINO units; PG6-PEI-INO 3 had approximately 

12 PEI25k and 415 CMINO units.

PG6-PEI-INOs composite DNA 
efficiently
Gel electrophoresis retardation of pEGFP-C1 demonstrated 

the DNA-binding activity of PG6-PEI-INOs (Figure 4A). 

TEM analysis showed that all PG6-PEI-INO polymers could 

compact plasmid DNA to polyplexes with a diameter of less 

than 30 nm (Figure 4B). This compacted nanostructure could 

protect DNA against enzyme degradation and meanwhile 

benefit cell internalization. With respect to the small particle 

sizes, it has been reported that the diameter of the nuclear pore 

complex (NPC) was up to 120 nm and permitted molecules 

or complexes with diameters of 39 nm to pass through.34,48 

Therefore, we subsequently determined the transgene 

expression mediated by PG6-PEI-INO polymers and the 

cell-nuclear localization of the PG6-PEI-INOs.

Inositol improves biocompatibility  
of HMW PEI-based vectors
Viability assays showed that both PG6-PEI-INOs/pDNA 

(w/w =5–9) (Figure 5A) and an identical weight of PG6-

PEI-INOs (Figure 5B) achieved decent biocompatibility 
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(70%–80%) when they were used at high dosage. A previ-

ous study indicated that the 293T cell viability was much 

lower when using an identical dosage of PG6-PEI/pDNA or  

PG6-PEI.15 Instead, cells treated with an identical dosage of 

PEI25k/pEGFP-C1 or unmodified PEI25k had a viability of less 

than 10% or 8%, respectively. These results demonstrated that 

INO could further enhance biocompatibility of PG6-PEI25k.

When the weight ratio of PG6-PEI-INO/DNA is 9, the 

corresponding N/P ratio for PG6-PEI-INO 1, 2, and 3 to 

DNA has reached 53, 44, and 35, respectively, which is far 

higher than the permitted dose range of HMW PEI25k/DNA.  

These results offer an explanation for why PG6-PEI-INO has 

good biocompatibility. To the question of potential toxicity at 

the higher doses, for example, whether they produce toxicity 

after partial degradation, and how organisms respond, will 

be addressed by in vivo experiments in future.

Using inositol as efficient ligands  
for transgene expression
The ability of PG6-PEI-INOs to mediate transgene expres-

sion was evaluated in 3D 293T cells because they are 

sensitive indicators. Results showed that the PG6-PEI-INO 

polymers-mediated EGFP expression effectively without 

causing cell injury (Figure 6). The expression level was 

higher with the increase of PG6-PEI-INOs. Generally, 

PG6-PEI-INO 3 containing the highest INO component 

achieved the highest transgene expression level, as compared 

with PG6-PEI and PG6-PEI-INO 1 and 2. PG6-PEI-INO  
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Figure 2 Synthesis route of PG6-PEI-INO polymers.
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3/pEGFP-C1 at w/w of 5 and 7 achieved 75% and 82% of 

positive cells, respectively, which was approximately 19% 

and 23% higher than that achieved with PG6-PEI/pEGFP-C1 

at identical weight ratios, and was 27% and 34% higher than 

that achieved by PEI25k/pEGFP-C1 at the optimal ratio 

(w/w =1.3 or N/P =10).15,49 For PEI25k/pEGFP-C1 at weight 

ratios exceeding 6, cells were severely distorted and/or  

detached. PG6-PEI-INO 1 with only one INO moiety per 

molecule showed similar activity as compared with PG6-

PEI in general. Compared with PG6-PEI-INO 1/pEGFP-C1, 

PG6-PEI-INO 2/pEGFP-C1 with more INO grafts achieved 

more EGFP-positive cells.
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Figure 3 Characterization of the PG6-PEI-INO polymers.
Notes: (A) FT-IR spectra of PG6-PEI-INO 1, PG6-PEI-INO 2, and PG6-PEI-INO 3. (B) 1H NMR spectra of the polymers. Deuterium oxide was used as the solvent.
Abbreviations: CMINO, carboxymethyl inositol; CMPG6, carboxymethyl polyglycerol; FT-IR, Fourier transform infrared spectroscopy; INO, myo-inositol; NMR, nuclear 
magnetic resonance; PEI, polyethylenimine; PG6, polyglycerol.
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Figure 4 DNA-binding ability of PG6-PEI-INO polymers.
Notes: (A) Agarose gel electrophoresis of PG6-PEI-INOs/pEGFP-C1 complexes at varied weight ratios. (B) Morphologic study of PG6-PEI-INO/pEGFP-C1 (w/w =5) complexes 
using transmission electron microscopy.
Abbreviations: INO, myo-inositol; PEI, polyethylenimine; PG6, polyglycerol.
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When the weight ratios to DNA were 1 and 3, the transfec-

tion activity increased in the order of PG6-PEI  PG6-PEI-

INO 1  PG6-PEI-INO 2. When the weight ratios were 5 and 

7, no apparent increase was observed among the three systems. 

Compared with PG6-PEI-INO 3, which had approximately 

12 PEI25k and 415 CMINO units and showed the highest 

transfection activity, a PG6-PEI-INO 1 molecule had approxi-

mately 14 PG6, 14 PEI25k, and only 14 CMINO units, and 

PG6-PEI-INO 2 had approximately 13 PG6, 13 PEI25k, and 

130 CMINO units. Conjugation with INO will reduce –NH
2
 

termini of PEI25k and therefore lower the DNA-binding ability 

of PEI25k. On the other hand, conjugation with INO increases 

biocompatibility of PEI25k and accumulation of PG6-PEI-

INOs in cell nuclei, as will be illustrated in the subsequent 

experiment. Therefore, we deem that a balance exists between 

the two aspects. When the number of INO is high enough to 

achieve a high accumulation of gene vectors in cell nuclei and 

meet the requirement for DNA binding/protection simultane-

ously, then transgene expression levels tended to increase 

as a result of transcription from DNA within cell nuclei and 

the subsequent translation from mRNA in cytoplasm. From 

these results, we observed that as the proportion of the INO 

increased, the efficiency of identical dosages of PG6-PEI-INOs 

to composite DNA was similar (Figure 4), indicating that 

DNA-binding ability might be primarily related to polymer 

structure. PG6-PEI-INO 3 at identical dosages with the lowest 

N/P ratios showed the highest transgene expression efficiency 

at most tested weight ratios to DNA, without obvious impair-

ment in cell viability, demonstrating the potentiality of using 

inositol as an efficient ligand for transgene expression.
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Figure 5 Biocompatibility of the PG6-PEI-INO/plasmid or PG6-PEI-INO polymers.
Notes: (A) MTT analysis of cell viability was performed after 293T cells were cocultivated for 52 hours with PG6-PEI-INOs/plasmid (pEGFP-C1), which had weight ratios of 
5 (a), 7 (b), and 9 (c), respectively. (B) MTT analysis of cell viability was performed after 293T cells were cocultivated with identical dosages of PG6-PEI-INOs for 52 hours. 
Cells were treated with PEI25k/pEGFP-C1 at a weight ratio of 6, or with an identical dosage of PEI25k as the control. DNA was used at 1.3 μg of pEGFP-C1 per mL medium.
Abbreviations: INO, myo-inositol; PEI, polyethylenimine; PG6, polyglycerol; p, plasmid (pEGFP-C1).
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Figure 6 Transfection activities of PG6-PEI-INO polymers.
Notes: (A) Transgene expression reported by protein EGFP in 293T cell line treated with (a) PG6-PEI-INO 1/pEGFP-C1, (b) PG6-PEI-INO 2/pEGFP-C1, and (c) PG6-PEI-INO 3/
pEGFP-C1 complexes at weight ratio of 7, respectively. Plasmid pEGFP-C1 was used at 1.3 μg per mL culture medium. The cells were cultivated for 52 hours. The adherent cells 
and the cell suspensions achieved with trypsin treatment were analyzed by phase-contrast fluorescent microscopy. Scale bar: 15 μm. (B) EGFP-positive cell ratios achieved by 
transgene expression mediated by PG6-PEI-INO polymers. The 293T cells were transfected using the following agents: (a) PG6-PEI-INO 1, (b) PG6-PEI-INO 2, (c) PG6-PEI-
INO 3, (d) PG6-PEI at varied weight ratios to pEGFP-C1, and (e) the PEI25k control at its optimal weight ratio (1.3) to pEGFP-C1 (1.3 μg of pEGFP-C1 per mL cell culture).
Abbreviations: INO, myo-inositol; PEI, polyethylenimine; PG6, polyglycerol; EGFP, enhanced green fluorescent protein.
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In our previous studies, INO-PEI800-FA was constructed 

and demonstrated efficient transgene activity. However, on 

the basis of low molecular weight PEI without any transgene 

activity, the transfection should still be limited. Partially 

attributed to the greatly enhanced biocompatibility compared 

with PEI25k, PG6-PEI-INO developed in this study can be 

used at high dosages without apparent injury to 293T cells, 

and this may allow the consequent generation of much higher 

transgene expression levels in the 293T cell line. It has been 

revealed that PEI800-INO performs better in carcinoma 

cells than in 293T. The performance of PG6-PEI-INO in 

carcinoma cells is the goal of our next study.

It is noteworthy that, along with the increase in 

myo-inositol from 1 to 35 per PEI25k unit within polymeric 

molecule, PG6-PEI-INO polymers showed a corresponding 

increase in the transgenic efficiency. As compared with 

the current commercial reagent Lipofectamine (20%–60% 

transfection rate depending on cell types),50,51 PG6-PEI-INO 

polymers based on HMW PEI can obtain a higher transgene 

expression rate in the presence of serum and antibiotics. 

For 293T cell lines, this high transfection rate (80%) 

achieved with PG6-PEI-INO 3 is higher than commercial 

Lipofectamine, and the efficiency can be realized in a con-

siderably higher and wider range of dosages with reason-

able viability. Lipofectamine can achieve higher efficiency 

when used for transient RNA delivery. This is because the 

RNA does not need to pass through the nuclear membrane. 

Whether the myo-inositol group can improve the transfection 

activity of vectors like Lipofectamine 3000, Fugene 6, and 

chitosan-based vectors is a topic worthy of study, and this 

work is currently ongoing in our laboratory.

Extracellular ATP increases viability of 
cells treated with PG6-PEI-INOs/pDNA
Since eATP can influence cell-nuclear activity and transport 

(including transmembrane or transnuclear transport) and 

because the metabolism of inositol and its derivatives are 

related to ATP in some essential aspects,31,47,52–54 we investi-

gated the influence of eATP on cell viability and transgene 

expression with PG6-PEI-INO 3 containing the highest 

contents of INO as a representative medium for transfection. 

PEI25k and PG6-PEI without nuclear entrance ability were 

set as negative controls.

Results indicated that eATP clearly stimulated propagation 

of 293T cells transfected with PG6-PEI-INO 3/pEGFP-C1, 

compared with those transfected with PEI25k/pEGFP-C1 

or PG6-PEI/pEGFP-C1 (Figure 7). PG6-PEI/pEG-

FP-C1 transfected cells doubled in growth at 3.3 µg/mL of 

eATP, and then decreased with further increases in eATP. 

The viability of PEI25k/pEGFP-C1 treated cells was not 

significantly affected by eATP. Therefore, with respect to 

cell viability, response levels to eATP differed because of 

the biocompatible PG6 and INO moieties. Since polyglycerol 

and inositol can be metabolized more efficiently when ATP 

is increased, this may increase the cell viability. In addition, 

derivatives of the INO ligands may also participate in PI3K 

signaling pathways that are required by ATP-stimulated cell 

proliferation.55

Extracellular ATP inhibited transgene 
activity of PG6-PEI-INO
The influence of eATP on transfection with PG6-PEI-INO 3/ 

pEGFP-C1, PG6-PEI/pEGFP-C1, and PEI25k/pEGFP-C1 at 

optimized weight ratios was analyzed. With the supplemen-

tation of eATP, cells transfected with the PG6-PEI-INO 3/ 

pEGFP-C1 reagent declined to 1%. Transfection with 

PEI25k/pEGFP-C1 was not apparently influenced by eATP 

(Figure 8). Compared with PG6-PEI-INO, the influence of 

eATP on PG6-PEI was much smaller. Since eATP did not 

reduce the transfection activity of PEI25k or PG6-PEI appar-

ently, we deduced that the transgene activity of PG6-PEI-INO 

3 should be related to certain intracellular pathways, rather 

than weakening of DNA-binding activity.

Distribution of PG6-PEI-INO in  
cell nuclei
By 48 hours of incubation, all the INO conjugated vectors 

were internalized by 293T cells at high frequencies. Results 

Figure 7 Effect of extracellular ATP on the growth rate of 293T cells transfected 
with various polymer/complexes (at optimal weight ratio for transfection).
Notes: MTT analyses of cell viability were performed after the 293T cells were 
cocultivated with the materials for 44 hours. About 1.3 μg of plasmid pEGFP-C1 was 
used per microliter of cell culture.
Abbreviations: ATP, adenosine triphosphate; INO, myo-inositol; PEI, polyethy
lenimine; PG6, polyglycerol.
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of the MTT analysis indicated high viability of the cells. 

Compared with PG6-PEI-INO-Rh 1 with approximately 

one INO moiety grafted per PEI unit, PG6-PEI-INO-Rh 2 

and 3 with increased number of INO grafts had increased 

accumulation within the cell nuclei (Figure 9). More than 

80% of the 293T cells showed distinct nuclear access of the 

PG6-PEI-INO-Rh 3 polymers. Of note, PG6-PEI-INO-Rh 3  

polymers were concentrated to cell nuclei from the cyto-

plasm. We believe that this difference between PG6-PEI-

INO-Rh 1, 2, and 3 should be related to the mechanisms 

relevant to the transport of nanoparticles mediated by the 

NPC. As reported, this NPC-mediated transport of various 

large molecules (such as DNAs, RNAs) is related to the 

Ca2+ pump.56 In some mammalian cell nuclei, extracellular 

ATP activates purinergic receptors such as P2Y2 and P2X4, 

which induces an increase in the free Ca2+ concentration in 

the cell nuclei. To balance the Ca2+ transient, cADP-ribose 

and the intracellular messenger, inositol 1,4,5-triphosphate 

[Ins(1,4,5)P
3
, IP

3
], can trigger the release of partial nuclear 

Ca2+ through the actions of inositol 1,4,5-trisphosphate 

receptors (IP
3
R), indicating a role for extracellular ATP 

in regulating nuclear function, by increasing nuclear  

Ca2+ concentrations.47,56–60 Since inositol is metabolically 

linked to IP
3
 within mammalian cells,42–46 this course may 

consume INO ligands in the PG6-PEI-INO vectors and 

result in unpacking of vector/pDNA complexes, and fur-

ther inhibit transgene expression. Relevant mechanisms 

were predicted and shown in Figure 10. This was further 

demonstrated by the less negative influence of eATP on 

PEI25k or PG6-PEI-mediated EGFP expression (Fig-

ure 8). Although cells treated with PG6-PEI/pEGFP-C1 

were inhibited by eATP more apparently than PEI25k/

pEGFP-C1-treated cells, their variance is considerably 

smaller compared with cells treated with PG6-PEI-INO 3/ 

pEGFP-C1, which approaches complete inhibition.

It is known that PEIs can help nucleotides escape 

from endosomal degradation through the “proton-sponge 

effect”.6,12 However, the ability of PEIs to mediate transgene 

expression was limited. LMW PEIs lack transfection activ-

ity, whereas mid-to-high concentration of HMW PEIs can 

damage cell membranes.61 In general, current gene vectors 

lack the ability to locate in cell nuclei, and it was deemed 

that nuclear import of therapeutic DNA or RNA occurred 

after they were released from the PEI transgene systems.62–64 

Figure 8 Inhibition of extracellular ATP on transgene activity of PG6-PEI-INO.
Notes: (A) The 293T cells were treated with (a) PEI25k/pEGFP-C1 (w/w =1.3), (b) PG6-PEI/pEGFP-C1 (w/w =7), and (c) PG6-PEI-INO 3/pEGFP-C1 (w/w =7) for 96 hours, 
respectively. Extracellular ATP was used at 1.7 μg per mL culture medium. Scale bar: 10 μm. (B) EGFP-positive 293T cell ratios mediated by polymers/DNA/ATP. Plasmid DNA 
(pEGFP-C1) was used at 1.3 µg per mL culture medium. The cells were treated with the polymers/DNA/ATP for 44 hours (a) and 96 hours (b), respectively.
Abbreviations: ATP, adenosine triphosphate; INO, myo-inositol; PEI, polyethylenimine; PG6, polyglycerol.
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Figure 9 Fluorescence tracking of PG6-PEI-INO polymers in 293T cell nuclei.
Notes: Fluorescence was analyzed after the 293T cells were cocultivated for 48 hours with (A) PG6-PEI-INO-Rh 1, (B) PG6-PEI-INO-Rh 2, and (C) PG6-PEI-INO-Rh 3, 
which had increased inositol ligands per molecule (1:1, 1:10, and 1:35, respectively). Accumulation of PG6-PEI-INO-Rhs in cell nuclei was indicated with arrows. Scale bar in 
magnified images: 15 µm. Red fluorescence shows Rhodamine B (Emission: ∼572 nm) labeled polymers. Blue fluorescence shows the cell nuclei stained with DAPI (Emission: 
∼461 nm when bound with DNA). Merged images in purple color show the PG6-PEI-INO-Rh polymers in cell nuclei.
Abbreviations: DAPI, (4′,6-diamidino-2-phenylindole); INO, myo-inositol; PEI, polyethylenimine; PG6, polyglycerol; Rh, Rhodamine.

As commonly accepted, the barrier of nuclear membrane can 

largely limit transgene expression. Therefore, researchers 

are currently interested in investigating cationic gene vec-

tors that can locate in cell nuclei.29,63,64 Using PG6-PEI25k 

as the platform, the ability of the PG6-PEI-INO polymers to 

enter cell nuclei and to mediate efficient transgene expres-

sion was found to increase with their INO moiety numbers, 

as reported by fluorescent tracking and EGFP expression. 

Therefore, the INO might be a potential ligand for efficient 

transgene expression.

As compared with PEI800-INO-FA, the higher frequency 

exhibited by PG6-PEI25k-INO of entering cell nuclei of 

293T should be related to the enhanced water solubility and 

improvement in cell internalization.22

Conclusion
HMW PEI has high transfection activity, but its cytotoxicity 

and inability to pass through the nuclear barrier are deemed 

as shortcomings. In our previous studies based on LMW 

PEI without transfection activity but possessing good cell 

compatibility, myo-inositol was introduced. The resultant 

polymers (PEI-INOs) have obvious transfection activity, 

and in some experimental cell lines, they exhibit transfection 

activity near HMW PEI. In order to explore myo-inositol as 
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Figure 10 Prediction of eATP function during the delivery of plasmid DNA with PG6-PEI-INO as mediator.
Abbreviations: eATP, extracellular adenosine triphosphate; INO, myo-inositol; IP, inositol polyphosphate; IP3R, inositol 1,4,5-trisphosphate receptor; PEI, polyethylenimine; 
PG6, polyglycerol.

a potential ligand for enhancing transfection efficiency and 

improving cell compatibility, and to further expand the range 

of applications for HMW PEI, we studied PG6-PEI. PG6-PEI 

was synthesized by grafting HMW PEI to the functional 

hydroxyl termini of the branched biocompatible polyglycerol, 

as a platform in this report. Previous research showed that 

LMW PEI conjugated with inositol can partially enter cell 

nuclei, and, therefore, the properties of myo-inositol with 

nuclear localization capability are a major topic of attention 

for our group.

Since INO is a natural biomolecule that impacts many 

important physiological activities, it was introduced as a 

potential biological moiety to PG6-PEI in this study through 

covalent reaction. The resultant polymers, PG6-PEI-INO 

macromolecules, were characterized by FT-IR spectrometry, 
1H NMR spectroscopy, and combined SEC-MALLS analysis. 

Gel electrophoresis retardation and TEM analysis demon-

strated the DNA-binding activity of PG6-PEI-INOs, and 

all the polymers could compact plasmid DNA and generate 

nanoparticles with diameters of less than 30 nm. Enhance-

ment of effective transgene reported by EGFP expression was 

achieved in an actively propagating 3D 293T cell line using 

PG6-PEI-INO systems as mediators. Meanwhile, PG6-PEI-

INO polymers presented reduced cytotoxicity when com-

pared with PG6-PEI and PEI25k polymers. In the presence 

of eATP, the transgene expression level was inhibited, while 

cell growth was stimulated. CLSM analysis demonstrated the 

ability of PG6-PEI-INO polymers to enter the cell nuclei of 

3D 293T cells. With an increase in conjugated INO, both the 

level of transgene activity and the accumulation of the PG6-

PEI-INO polymers in the cell nuclei were elevated.

In conclusion, this work showed the potentiality of INO to 

be used as a ligand for efficient transgene expression applied 

in a wide area including transgene therapy and phenotypic 

analysis of a cell population.
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