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Abstract: The zoonotic disease brucellosis, a chronic condition in humans affecting renal and 

cardiac systems and causing osteoarthritis, is caused by Brucella, a genus of Gram-negative, 

facultative, intracellular pathogens. The mode of transmission and the virulence of the pathogens 

are still enigmatic. Transcription regulatory elements, such as rho proteins, play an important 

role in the termination of transcription and/or the selection of genes in Brucella. Adverse 

effects of the transcription inhibitors play a key role in the non-successive transcription chal-

lenges faced by the pathogens. In the investigation presented here, we computationally pre-

dicted the transcription termination factor rho (TtFRho) inhibitors against Brucella melitensis 

16M via a structure-based method. In view the unknown nature of its crystal structure, we 

constructed a robust three-dimensional homology model of TtFRho’s structure by compara-

tive modeling with the crystal structure of the Escherichia coli TtFRho (Protein Data Bank 

ID: 1PVO) as a template in MODELLER (v 9.10). The modeled structure was optimized 

by applying a molecular dynamics simulation for 2 ns with the CHARMM (Chemistry at 

HARvard Macromolecular Mechanics) 27 force field in NAMD (NAnoscale Molecular 

Dynamics program; v 2.9) and then evaluated by calculating the stereochemical quality of 

the protein. The flexible docking for the interaction phenomenon of the template consists 

of ligand-related inhibitor molecules from the ZINC (ZINC Is Not Commercial) database 

using a structure-based virtual screening strategy against minimized TtFRho. Docking 

simulations revealed two inhibitors compounds – ZINC24934545 and ZINC72319544 –  

that showed high binding affinity among 2,829 drug analogs that bind with key active-site 

residues; these residues are considered for protein-ligand binding and unbinding pathways 

via steered molecular dynamics simulations. Arg215 in the model plays an important role in 

the stability of the protein-ligand complex via a hydrogen bonding interaction by aromatic-π 

contacts, and the ADMET (absorption, distribution, metabolism, and excretion) analysis of best 

leads indicate nontoxic in nature with good potential for drug development.

Keywords: brucellosis, rho proteins, transcription inhibitors, SMD simulations, ADMET 

analysis, therapeutics

Introduction
“Rho proteins” are molecular switches in systemic transcription regulation, and the 

resulting translated products assist in bacterial survival. “Rho” is a hexameric protein 

that causes transcription termination and it binds to the nascent RNAs. By analogy 

with quite similar sequences of Escherichia coli, Mycobacterium tuberculosis, and 

Rickettsia prowazekii Rho factors, the binding should include up to four ionic (largely 

basic) and hydrophobic motifs, effecting release of nascent messenger RNA (mRNA). 

Rho proteins contain distinct binding domains – that is, adenosine triphosphate (ATP) 
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and guanosine-5′-triphosphate (GTP) binding regions – 

which regulate the bacterial transcription by binding the 

corresponding ATP or GTP analogs.1 In prokaryotes, two 

commonly used types of transcription termination are rho 

dependent and rho independent. Rho plays a regulatory role 

in bacterial transcription. Rho terminates the synthesis of 

mRNA for a significant number of operons. Rho dissociates 

RNA polymerase from the DNA template to release RNA, 

deriving energy by hydrolyzing ATP through its RNA-

dependent ATPase activity.2

As a prerequisite of rho-dependent termination by cis-

acting and trans-acting elements, the cis-acting elements are 

the main regulators of the rho protein when observed in C-rich 

transcribed RNA genomes where the Brucella facilitates rho-

dependent termination.3 The ring-shaped hexameric protein 

rho possesses the helicase activities where C-rich coding 

sequences are good candidates for binding. A rho protein 

plays a successive role in the regeneration of bacteria through 

the mitosis of cells. The three-dimensional (3D) crystal struc-

ture of the rho protein contains the hexamer, which inhibits 

elongation during transcription. The rho protein contains the 

two domains of activities proteins with ATPase and helicase, 

which are required for additional factors such as N utiliza-

tion substance protein A (nusA), which has been reported as 

a potential drug target in Brucella melitensis 16M with an 

important role in the release of the terminated transcripts.4,5 

The rho GTPase activity most likely allows bacteria to invade 

epithelial cells that also become resistant to apoptosis and thus 

provide a safe spot, inaccessible to the host defenses.6

This translational antagonism of bacterial operons can 

be suppressed by rho or by its inhibitors. Transcription 

terminator rho proteins are among the best novel therapeutic 

drug targets and play an important role in the inhibition of 

bacterial pathogens, and the rho-dependent targeting analogs 

that mislead their successive operons misguide the proteins 

involved in invading the pathogens in the host environment. 

These rho proteins, coupled with G proteins, act as molecular 

regulators for various metabolic pathways. Rho proteins are 

highly conserved, and essential for the regulation of various 

gene clusters in bacteria.7

Brucella is a genus of Gram-negative facultative 

intracellular pathogens that cause immediate miscarriage 

in pregnant women and also cause arthritis and cardiac 

problems, among other issues. The Brucella genome has a 

high guanine-cytosine content, which links to an elevated 

average content of acidic and neutral hydrophobic amino 

acids in the expressed proteins (including rho).

Rho across bacterial species appears to have sev-

eral RNA binding sites, and shares at least two basic 

polynucleotide-binding, carrier-protein-binding, nuclear-

translocation-helping (PCN) motifs that have at least 

three (and at least 50%) basic residues, such as K[R]

AKR and RPKR. The transcription terminator rho has 

two nucleic-acid binding sites and one ATP binding site 

for ATP hydrolysis and the translation action of RNA.8 

Functional-based drug discovery against rho protein is one 

promising approach to treating brucellosis. The present 

computational approach helps in drug design, which can 

helps in the identification process of new lead molecules, 

and provides the most effective target-based treatment 

against human brucellosis strains like B. melitensis 16M, 

Brucella suis, Brucella abortus S19, and Brucella canis. 

Due to the nonavailability of the crystal structure of the 

rho protein in Brucella, the investigation presented here 

aimed to proceed with homology modeling, a molecular 

dynamics (MD) simulation technique that reveals the opti-

mal reliable modeled protein structure in the surrounding 

solvent environment, and docking studies were performed 

to predict the inhibitors to rho by computational methods 

and validate protein inhibition in the presence of lead 

molecules by MD simulations.

Materials and methods
Molecular characterization and 
crystallizability
The protein sequence of the B. melitensis 16M transcription 

termination factor rho (TtFRho) was obtained from the 

NCBI (National Center for Biotechnology Information) 

protein sequence database with the accession number 

NP_538921.1.9 Crystallizability and molecular features 

were predicted by the XtalPred server.10 This server provides 

several publicly available programs for the calculation and 

prediction of protein features, including physicochemical 

properties (molecular weight [MW], theoretical isoelectric 

point [pI], amino-acid length, instability index) and grand 

average of hydropathicity (GRAVY), expert pool crystal-

lization classes, random forest crystallization classes by 

biochemical and biophysical features with correspond-

ing probability distributions obtained from TargetDB,11 

and other features such as coiled-coil regions, longest 

disorder regions, transmembrane helices, signal peptides, 

low-complexity regions, and secondary structure, from the 

COILS,12 DISOPRED2,13 TMHMM (v 2.0),14 RPSP,15 SEG,16 

and PSIPRED (v 3.3)17 servers, respectively. The protein 

subcellular localization and secretory signal peptides and 

their cleavage sites were predicted by the Cell-PLoc package 

fusing gene-ontology information,18 PSORTb (v 3.0),19 and 

SignalP (v 4.0) servers, respectively.20
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Homology search, modeling, refinement, 
and evaluation
The primary amino-acid sequence was used to search for 

a suitable template, which was carried out by a homology 

search via a position-specific iterative Basic Local Alignment 

Search Tool algorithm (PSI-BLAST)21 against the Protein 

Data Bank (PDB)22 to generate a 3D coordinate structure. 

The homology search showed the crystal structure coordi-

nates of the E. coli TtFRho complex with a single-stranded 

RNA (ssRNA) substrate and phosphoaminophosphonic acid-

adenylate ester (ANP) (PDB ID: 1PVO),23 which was found 

to be the best hit based on query coverage, identity, E-value, 

and high similarity with the “A” chain, so was therefore 

considered as the template for homology modeling.

The initial alignment of target and template was gener-

ated using the ALIGN2D module, and then the 3D structure 

of the target protein was generated using a restrained-based 

approach in MODELLER (v 9.12) using a model-single 

module.24,25 Initially, we developed 100 3D structures; among 

those, the best ones were judged by low discrete optimized 

protein energy (DOPE) because this was a standard scoring 

function in MODELLER. The final model geometry was 

regularized by energy minimization – to satisfy the restraints 

on bond distances and dihedral angles of each amino acid – by 

changing the default optimization and refinement protocols –  

that is, variable target function method, optimization with 

conjugate gradients (CGs), and refinement using MD with 

simulated annealing.24

The final model was evaluated, before refinement and after, 

by calculating the stereochemical quality via PROCHECK,26 

ERRAT (v 2.0),27 and Verify3D environment profile analysis 

methods28 by submitting to the SAVES (Structural Analysis 

and Verification Server). ProSA (Protein Structure Analysis) 

was also used to evaluate the final 3D structure for probable 

errors.29 The root mean square deviations (RMSDs) between 

the target model and template were calculated by structural 

superimposition with the Swiss-PdbViewer (v 4.10) and 

SuperPose (v 1.0) programs.30 Based on the results, the pro-

tein structure was refined to obtain reliable scores and low 

error values, and then the obtained structure was submitted 

to the Protein Model DataBase (PMDB).31

Pocket binding site and ligand predictions
Protein structure and function relevance were illuminat-

ing in regards to the ligand bindings to its active site and 

their specificity.32 We identified the protein-ligand binding 

domain by searching in the CASTp (Computed Atlas of the 

Surface Topography of Proteins) server33 and visualizing 

with PyMOL CASTp. Rho transcription termination factor 

(PDB ID: 1PVO) consist ligand, ie, phosphoaminophospho-

nic acid-adenylate ester (ANP) – was considered a template 

for the structure-based virtual screening study. A canonical 

simplified molecular-input line-entry system (SMILES) 

search for similar ligand molecules with 70% identity was 

performed, and the results were retrieved in the Mol2 format 

from the ZINC (ZINC Is Not Commercial) small-molecule 

database.34 These predicted structures were optimized in 

the Open Babel package (v 2.3.2) for refinement and repair 

of hydrogen and bonds through minimization by applying 

CGs with a united force field through 500 steps/cycles.35 

The final optimized leads were prepared as Dataset A  

for docking studies.

Virtual screening and flexible docking 
approaches
The Dataset A molecules from the described approaches 

were used to virtually screen against the pocket site of protein 

with functional residues for molecular-docking simulations. 

AutoDockTools was used to establish the autogrid points via 

AutoGrid (v 4.0) by selecting active-site residues.36 The grid 

dimensions were predicted as per the domain area by the center 

x, y, and z coordinates. The Lamarckian geometric algorithm 

was used for the docking parameter for AutoDock Vina (v 2.0)37  

in the PyRx (v 0.8) virtual screening software with 50-ligand 

exhaustiveness.38 The virtual screening results comprise the 

best molecules – those having a higher binding affinity with 

the receptor binding domain with functional residues than 

the positive control (ie, ANP) and separate them out. The top 

scoring 10% of molecules were selected for further flexible 

docking simulations by AutoDock (v 4.2).36 AutoDock was 

used to perform docking using flexible conformations of lead 

and protein molecules. A docking grid from the autogrid with 

a size of 25×25×25 Å was used. Center coordinates of the grid 

were obtained from the flexible atoms of the described virtual 

screening complex – 15 Å in each direction from the center x, 

y, and z coordinates. AutoDock shows the docking scores as 

the free energy of binding (kcal/mol). The best binding affinity 

leads were selected for toxic evaluation.

Protein-ligand interaction analysis
The hydrogen bond and hydrophobic interactions of protein-

ligand complexes were analyzed by LigPlot+ (v 1.4.5)38 and 

PyMOL. “LigPlot+” is a graphical system that generates 

multiple two-dimensional (2D) diagrams of ligand–protein 

interactions from docked complexes. In the described 

investigation, the LigPlot+ program was used to discover 

the interacting residues, hydrogen bonds, and hydrophobic 

interactions of ligands in docked complexes. “PyMOL” is 
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a widely used tool for biomolecular visualization. In the 

present study, the PyMOL program was used to analyze the 

protein-ligand interactions along with bond angle and bond 

distance, functional atoms involved in ligands, and protein 

functional amino-acid residues.

In silico toxicity and bioactivity prediction
In the drug-discovery process, prediction of drug toxicity 

is essential because unacceptable toxicity is still a major 

bottleneck.39 Hence, as an additional in silico investigation, 

for all the molecules, the rule of five, drug likeness, toxicity, 

and relationships with other proteins were investigated. The 

Lipinski rule, drug likeness, and molecular properties were 

calculated by the Molinspiration and MolSoft programs. These 

servers provide the ligand consists drug likeness properties 

like logP, MW, number of hydrogen-bond acceptors (HBA), 

number of hydrogen-bond donors (HBD) and other molecular 

properties such as molecular topological polar surface area 

(tPSA), number of rule of five violations, number of rotatable 

bonds, number of non-hydrogen atoms and molecular volume 

calculated by the method of contributions and correction 

factors were predicted for each lead molecule. The toxicity 

and drug-relevant properties of ligands were predicted by the 

OSIRIS Property Explorer (v 2.0).40 This program depicts the 

molecule toxicity (mutagenicity, tumorigenicity, irritating 

effect, and reproductive effect) for respective drawing ligands. 

The molecules selected from the described approaches, and 

all those that exhibited unfavorable features, were removed 

from the final set of ligands. The similarity ensemble approach 

(SEA) was applied to the ligands that passed the toxicity 

analysis to identify the relationships between the ligand-related 

proteins based on the chemical similarity of their specific 

ligands determined by searching with SEArch (SEA Search 

Tool; http://sea.bkslab.org/search/).41

Molecular dynamics simulations
Preliminary MD simulations for the modeled protein 

were performed using the program NAMD (NAnoscale 

Molecular Dynamics program; v 2.9),42 and all files were 

generated using visual molecular dynamics (VMD).43 The 

protein was solvated with a TIP3P water box with a 2.5 Å 

layer of water for each direction of the coordinate structure 

and a CHARMM (Chemistry at HARvard Macromolecular 

Mechanics) 22 parameter file for proteins and lipids; phi 

and psi cross-term map correction were used in the force 

field for proteins with similar chemical structures.44 For the 

minimization and equilibration of TtFRho in the water box, 

we assumed force-field parameters excluding scaling of 1.0 Å  

and a cutoff of Coulomb forces with a switching function 

starting at 12 Å, reaching zero at a distance of 10 Å, ending at 

14 Å with a margin of 3.0 Å, and all atoms, including those of 

hydrogen, were illustrated explicitly. The hydrogen atom coor-

dinates of TtFRho were generated using the VMD Tk-Console 

salvation command.42 Integrator parameters also included 2 

fs/step for all rigid bonds and nonbonded frequencies were 

selected for 1 Å and full electrostatic evaluations for 2 Å were 

used, with ten steps for each cycle. The particle mesh Ewald 

method was used for electrostatic interactions of TtFRho 

system periodic boundary conditions with grid dimensions of 

1.0 Å.45 The 3D structure of TtFRho contains 421 amino-acid 

residues and 8,828 water molecules; to eliminate bad water 

constraints, the protein preliminary energy was minimized via 

1,000 steps of the Powell algorithm at constant temperature 

(310 K), followed by simulation of an additional 500,000 runs  

for 2 ns with Langevin dynamics to control the kinetic energy, 

temperature, and/or pressure of the system without a binding 

pocket, and the applying parameters do not change the protein 

conformation during the ligand unbinding.46 The method used 

Langevin dynamics via the following equation:

	 mi
d x

dt
F x t i

d

dt
m R ti

i i
i

i i

2

2

( )
( )

( )
( )

t x t
= +{ } − γ � (1)

After the completion of primary simulations of the target 

protein, the protein-ligand complexes were thoroughly ana-

lyzed with selected inhibitors by MD simulations. The pro-

tein-ligand complexes containing flexible functional residues 

and ligand atoms were selected, and then parameterization of 

the protein and ligands was performed in Chimera (v 1.8.1)47 

and SwissParam servers.48 The parameterized ligands were 

inserted into the protein and saved in the form of a protein-

ligand complex by VMD with the binding pocket residues, 

and then the protein-ligand complex was immersed in the 

center of a 50 Å box of water molecules49,50 where all water 

molecule atoms (H-O-H) were closer than 1.5 Å. Finally, 

the solvated protein-ligand complex system was equilibrated 

with 1,000 minimization steps, 200,000 runs for 2 ns with 

velocity recycling every 2.0 ps, and each trajectory was saved 

at 100 ps for further analysis.

Steered molecular dynamics simulations
Ligand free energy calculations
Ligand binding free energies were calculated based on the 

Jarzynski equality.51 Steered molecular dynamics (SMD) 

simulations of the described complexes were conducted at 

constant velocity (cv) using the approach implemented in 

NAMD.52 For the initial simulated complexes, water was 

removed, and then the functional residue atom moving 
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direction in the grid was measured; next, the atoms’ moving 

directions were fixed and saved as a reference file gener-

ated by VMD. These atoms were harmonically restrained 

to moving directions from the selected point with cv and 

constant forces (cf). The ligands were consequently pulled 

out of the protein. The external force applied to the ligands 

was calculated using the following equation:

	


 

F k vt x= −( ) , � (2)

in which “ x


” is the dissociation of the controlled atom with 

respect to its original position, “t” is time and “k” =4 kcal/mol 

Å2 for small fluctuations of applied force (x is due to thermal 

movement of the position of the controlled atom), where the 

term “small” is relative to the scale of 


F  at this position; k was 

chosen to be large, such that the contraction of the ligands’ 

“spring” due to the development of the ligand and an unbind-

ing path in excess of 1–2 Å resulted in an obvious drop in 

the force.53,54 The spring constant was 500 pN/Å, and pulling 

velocities of 1–10 Å/ns were used. The strength of the ligand 

binding to the binding pocket site of the protein was dependent 

on the pulling velocity.53,55 The ligand binding directions were 

calculated by VMD, and then the residue information was 

saved as a fixed reference file for one binding direction. In the 

parameter file, the SMD position was on without wrap water, 

and pulling velocities of 1–10 Å/ns were used (SMDVel 0.005); 

then, the simulations of binding pathways were run, with 1,000 

minimization for 500,000 steps with 5 ns. From the calcula-

tions and output files, the simulations of unbinding pathways 

were run with 1,000 minimization for 200,000 steps with 2 

ns. After the simulations, the results were analyzed in VMD 

by calculating the RMSD and root mean square fluctuation 

(RMSF) trajectories; the protein was found to contain overall 

translational and rotational motions removed by superimposing 

the backbone of the protein with all trajectories in each configu-

ration using a least-squares fitting algorithm.56 The analyzed 

trajectories were plotted using Microsoft® Excel 2007.

Results and discussion
Molecular features and crystallizability 
of target protein
The predicted physicochemical properties of TtFRho 

showed 421 amino acids length with a 46,970 kD MW. 

The pI was approximately 5.87 for those that were affected 

by the ionizing groups of the amino acid associated with 

electron withdrawal from the ligand (ATP) for several cel-

lular processes, such as hydrolase, phosphoric ester, diester 

hydrolase, cyclic-nucleotide and 3′-5′-cyclic-nucleotide 

phosphodiesterase, catalytic activities. The GRAVY and the 

instability indexes was -0.21 and 42.75, respectively. The 

overall physicochemical properties revealed that the protein 

might be unstable and hydrophilic in nature and interact with 

ATP in cellular and biochemical processes. Crystallizability 

of the protein shows class-4 expert pool crystallization and 

random forest crystallization by molecular-surface features, 

such as surface entropy, surface hydrophobicity, and surface 

ruggedness, which were -1.23, -1.39, and 1.15, respectively. 

Thus, based on the crystallizability of the protein, there might 

be a suboptimal region comparable with crystallization struc-

tures from TargetDB. Furthermore, according to PSIPRED, 

the predicted secondary structure of the protein consists of 

41 coil residues, 42 helix residues, and 17 strand residues. 

Hence, the mature protein might form a standard 3D structure 

with helix, coils, loops, and strands, and these are useful 

for prediction and stabilization of the protein by homology 

modeling. The other servers, such as COILS, DISOPRED2, 

TMHMM, RPSP, and SEG, depicted the other molecular 

features; among these predictions were, from COILS, that 

TtFRho does not form the leucine zipper domains in tran-

scriptional regulators because of the absence of coiled-coil 

regions; and, from DISOPRED2, that the protein consists of 

18 (5%) longest disorder regions. No transmembrane helices 

were identified from TMHMM, while eleven low-complexity 

regions were identified from SEG. Localization studies of 

TtFRho were predicted from the Cell-PLoc package by fus-

ing the gene-ontology information prediction approach and 

PSORTb by SCL-BLAST. Both servers depicted the target 

protein significantly located in the cytoplasmic region of 

the cell with the score of 9.97, and the SignalP prediction 

showed that the protein did not have signal peptides. From 

the above investigation, the target TtFRho protein may 

form good and reasonable tertiary structure with substrate 

and ligand molecules. The class-4 crystallizability indicated 

that this target associated with previous crystal structures. 

Because of the fact that the target TtFRho protein consists 

of cytoplasmic localized ATP a nucleotide binding domain 

was vital for Brucella survival via several cellular processes. 

The results are depicted in Table 1.

Three-dimensional model construction, 
optimization, and evaluation
To determine the probable function of B. melitensis 16M 

TtFRho, the sequence was subjected to comparative 

modeling using the target protein sequence as a query for 

PSI-BLAST. The crystal structure of the TtFRho complex 

with ssRNA substrate and ANP from E. coli (PDB ID: 

1PVO) was selected as the template. The 1PVO crystal 

structure covers 98% of the query residues, 0.0 E-value, 
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and 69% of the sequence identity with the target protein. 

The alignment with the ALIGN2D module in MODELLER 

showed the possible region for three target domains (172–

177, 184–189, and 215 binding residues of ATP), and the 

residues showed 80% sequence identity with the template 

1PVO residues. The target sequence showed the maximum 

conserved residue in the coverage of the nucleotide and ATP 

domains of the TtFRho chain. The PDB structure of 1PVO 

consists of ssRNA and ANP within the domain coordinates; 

hence, the supplementary modeling and analysis were pro-

cessed in the ANP + ssRNA domain. The domain consists 

of conserved residues that were aligned appropriately with 

the functionally essential regions of the protein template. 

The 3D structure of the 1PVO chain A, at 3.0 Å, was used 

as the coordinate structure for homology modeling. The 

comparative modeling of the target Brucella’s TtFRho was 

performed by a restrained-based approach in MODELLER. 

A set of 100 initial models was constructed for the target 

protein. The resulting 3D models of TtFRho were sorted 

according to scores calculated from the DOPE scoring 

function. Thus, based on this model, number 38 (TtFRho.

B99990038) contained lower DOPE energy other than the 

models, with a value of -46,435.96094 with 2,816.10596 

molecular PDF energies. Therefore, model 38 was consid-

ered for further studies.

The final errors in the protein structure geometry were 

regularized via energy minimization to satisfy the special 

restraints on bond distances and dihedral angles of each 

amino acid; this was accomplished by applying forces via the 

MODELLER variable target function method by applying 

500 steps of the steepest descent algorithm, optimized with 

500 steps of the CG algorithm, and then refining the result 

using MD with simulated annealing for 1,000 steps. The 

final refined model was evaluated by stereochemical quality 

checking by submitting it to the SAVES. Before optimiza-

tion, PROCHECK showed that 91.9% of residues were 

present in most favored regions (A, B, L), 6.8% of residues 

were located in additional allowed regions (a, b, l, p), and 

1.4% of residues were located in generously allowed regions 

(~a, ~b, ~l, ~p); there were no residues present in disallowed 

regions, and the non-glycine and non-proline residues pres-

ent in the protein were 27 and 27, respectively. ERRAT 

showed 80.535. Verify3D showed that 80.09% of the resi-

dues had average 3D–one-dimensional (1D) scores. After 

refinement of the model protein, PROCHECK showed that 

90.5% of residues were present in most favored regions (A, 

B, L), 9.2% of residues were located in additional allowed 

regions (a, b, l, p), and 0.3% of residues were located in 

generously allowed regions (~a, ~b, ~l, ~p); there were no 

residues present in disallowed regions. ERRAT showed a 

92.533 overall quality factor, and Verify3D showed a bet-

ter environmental profile and that 86.06% of the residues 

had average 3D–1D scores (Figure 1). After optimization, 

overall quality factors were increased and the error values 

were reduced by satisfying the special restraints. The Veri-

fy3D plot shows a compatibility score above zero, indicating 

that the protein contains favored side-chain environments 

and good fold regions. The final optimized target protein 

Table 1 Molecular characterization and crystallizability predicted from the XtalPred server

S number Server Molecular feature(s) Prediction

1 XtalPred 1. Molecular weight
2. Amino-acid length
3. Theoretical pI
4. Instability index
5. GRAVY
6. Crystallization class
7. Molecular surface feature (4 expert pool and random forest crystallization)

a. Surface entropy
b. Surface hydrophobicity
c. Surface ruggedness

46,970 kD
421
5.87
42.75
-0.21
2

-1.23
-1.39
1.15

2 COILS Coiled-coils regions 0 (no leucine zipper domains)
3 DISOPRED2 Longest disorder region 18 (5%)
4 TMHMM Transmembrane helices 0 (no transmembrane helices)
5 RPSP/SignalP Signal peptides and signal peptides 0 (unsecretary protein)
6 SEG Low-complexity regions 11
7 PSIPRED Secondary structure Coil residues: 41%

Helix residues: 42%
Strand residues: 17%

8 Cell-PLoc/PSORTb Protein localization 9.97 (cytoplasm)

Abbreviations: GRAVY, grand average of hydropathicity; pI, isoelectric point; S, serial.
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Figure 1 Stereochemical quality of optimized protein.
Notes: (A) Secondary structure of modeled protein (red: helices, yellow: sheets, blue: loops) from PyMOL. (B) Ramachandran plot. (C) Verify3D plot profile. (D) ERRAT 
(v 2.0) values showed reasonable scores from SAVES (Structural Analysis and Verification Server).

secondary structure, and the values of ramachandran plot, 

Verify 3D plot profile, ERRAT was depicted in Figure 1A, 

B, C and D respectively.

The final model that shared the lowest RMSD was traced 

out by the Swiss-PdbViewer (also known as “DeepView”) 

and SuperPose programs, and relative to the backbone and 

Cα atoms of the coordinate structure (1PVO), it showed  

0.33 and 0.56 Å, respectively. The overall quality factors 

and RMSD results are illustrated in Table 2. Finally, the 

evaluated structure was submitted to the PMD; TtFRho 

B. melitensis 16M is available from the PMDB with the 

accession number PM0079545.

Catalytic cleft analysis and lead 
optimization
The pocket binding site of the modeled TtFRho was predicted 

from the CASTp server because the function of an entire 

protein depends on the binding ability of small molecules or 

ligands within the binding pocket and interaction with active-

site residues with a high degree of specificity.57 The highest 

volume of active-site residues within the binding pocket 

were selected for docking studies ie, pocket number 76. The 

CASTp server results revealed that binding-site 76 consists of 

181 to 186 active-site residues involved in nucleotide binding 

with ATP ([KR]-x-G-K-[TS]-x); also, the 215th residue for 

ATP binding and 326 optional residues for RNA-binding 2 

(by similarity with the ATP region) are also correlated with 

the template coordinate structure with 80% identity. Thus, 

the 76th pocket’s active-site residues were selected as grid 

dimensions. The template coordinate structure 1PVO’s ligand 

(ie, ANP) was selected as the coordinate template for the 

structure-based ligand prediction from the ZINC database. 

The ANP’s physicochemical properties and their structural 

information were retrieved from the PubChem database 

with their chemical structure, CID: 33113. Accordingly, the 

results revealed that ANP has a MW of 506.196266 (g/mol), 
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Table 2 Significant SAVES (Structure Analysis and Verification Server) results of modeled transcription termination factor Rho protein 
calculated before and after optimization

S number Server Before optimization After optimization

1 PROCHECK Most favored regions (A, B, L), 91.9%
Additional allowed regions (a, b, l, p), 6.8%
Generously allowed regions (~a, ~b, ~l, ~p), 1.4%
Disallowed regions, 0.0%

Most favored regions (A, B, L), 90.5%
Additional allowed regions (a, b, l, p), 9.2%
Generously allowed regions (~a, ~b, ~l, ~p), 0.3%
Disallowed regions, 0.0%

2 ERRAT 80.535 92.533
3 Verify3D 80.09% 86.06%

Note: Bold indicates observed increased protein quality.
Abbreviation: S, serial.

molecular formula of C
10

H
17

N
6
O

12
P

3
,
 
XLOGP: -6, eight HBD, 

and 17 HBA with standard SMILES. Based on the ANP 

properties with SMILES, we predict 2,821 potential drug-like 

compounds for docking studies with 70% structural identity 

with a nontoxic side-chain environment. The predicted com-

pounds’ errors were resolved by lead optimization by apply-

ing the united force-field forces of the ligand bond angle and 

bond length. Then, the complete refined leads were prepared 

as datasets with the AutoDock ligand format.

Structure-based virtual screening 
and flexible docking approaches
The ANP-related structural analogs were used for structure-

based virtual screening against the selected active site of the 

modeled TtFRho protein to understand their molecular inter-

action and inhibition mode by docking simulation. The grid 

parameter file was created by AutoGrid. The grid dimension 

is formed by the proper adjustment of nucleotide binding with 

ATP binding-site residues. The domain coordinates selected 

as grid dimensions – the x, y, and z center – and the total 

grid size values of the grid were -9.262, -23.686, 22.174 

and 26.103, 27.756, 30.022, respectively. Subsequently, the 

TtFRho protein was converted into the AutoDock format, and 

the Lamarckian geometric algorithm was used for docking 

simulations. The docking was performed by AutoDock Vina 

by PyRx virtual screening software using the reference of the 

template substrate. The docking for 2,821 of the optimized 

ligands against TtFRho with 50 dock poses was calculated 

for each ligand. The best dock poses were selected and then 

refined and analyzed. Based on the virtual screening study, 

high-binding molecules were separated, and top scoring hits 

representing 10% of the molecules were selected for further 

standard flexible docking simulations by AutoDock.4

The residues were involved in the exact binding of incom-

ing ligand molecules with Thr185, Gly186, Lys187, Thr188, 

and Arg215 within the predicted binding pockets. The PO 

group of substrates interacted with active-site residues of 

the N-terminal amino and CA groups of the target protein. 

Then, the top five ranking compounds were selected from 

the flexible docking. The docking scores of these compounds 

have ranges of -10.4 to -10.1 kcal/mol. In fact, among those, 

ZINC24934545 and ZINC72319544 have a docking score  

of -10.4 kcal/mol with twelve and ten hydrogen-bond 

contacts, respectively, with conserved residues involved in 

hydrogen-bonding interactions, including Arg180, Thr185, 

Gly186, Lys187, Thr188, Asp213, Arg215, Glu218, 

Phe235, and Phe358. Three other leads, ZINC49803082, 

ZINC58554413, and ZINC36093420, have docking scores 

of -10.3, -10.2, and -10.1, respectively. ZINC49803082 

has seven hydrogen-bonding interactions with conserved 

residues; other pocket residues, such as Asn278, Thr279, 

and ZINC58554413, have eleven hydrogen-bonding interac-

tions with conserved residues; and still other residues, such 

as Pro182, Glu218, Arg272, Thr326, and ZINC36093420, 

have ten hydrogen-bonding interactions with conserved 

residues only. ZINC24934545 forms two hydrogen bonds 

with Arg180 (the atoms CA-N interact with the PO group) 

and three hydrogen bonds with Thr188 (the residue atoms 

CB-OG1 interact with the PO of different positions). These 

conserved residues were involved in nucleotide binding with 

ATP-binding activity. ZINC72319544 formed three hydrogen 

bonds with Arg215, there are two bonds with CZ-NH2, and 

one bond with CA-N, interacting with the PO of the ligand. 

Arg215, an important conserved residue, is involved in ATP-

binding activity. The two best binding leads were selected 

for further toxic evaluation. The predicted docking results 

of selected compound key features are illustrated in Table 3. 

Hydrogen bonds and hydrophobic interactions of protein-

ligand complexes were analyzed by the LigPlot+ program 

(Figure 2). The molecular interaction features, such as bond 

angle, bond distance, the atoms involved in the protein, and 

lead molecules, were discovered using PyMOL software.

In silico toxicity and bioactivity prediction
The final set of best hit compounds was submitted to Molin-

spiration and MolSoft for the calculation of drug likeness and 
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Table 3 Binding affinities and molecular interaction of the best lead molecules to target Brucella transcription termination factor rho 
protein was calculated from PyMOL software

S number ZINC ID Binding affinity  
(kcal/mol)

Protein-ligand interactions Bond distance Bond angle

Protein Ligand

1 ZINC24934545 -10.4 Arg180 CA-N
Arg180 C-O
Thr188 CB-OG1
Thr188 CB-OG1
Thr188 CB-OG1
Asp213 C-O
Asp213 C-O
Asp213 CG-OD1
*Arg215 CZ-NH1
Glu218 CD-OE2
Phe358 C-O
Phe358 C-O

O57P55

N49C1

O40P56

O58P56

O53C25

HN8N50

O38C42

O38C42

O52C16

O58P56

O37C41

N3C41

2.80
2.29
3.26
3.27
2.99
2.90
3.18
3.35
3.24
3.12
3.31
3.30

107.38
111.49
138.75
97.26
147.81
129.85
139.40
88.25
110.96
106.91
132.17
133.70

2 ZINC72319544 -10.4 Thr185 CA-N
Thr185 CB-OG1
Gly186 CA-N
Lys187 CA-N
Asp213 C-O
*Arg215 CZ-NH2
*Arg215 CZ-NH2
*Arg215 CA-N
Phe235 C-O
Phe235 C-O

O38C42

O38C42

O38C42

O38C42

O57P55

O43P55

O47P56

O57P55

N49C1

O37C41

2.80
2.97
2.84
3.11
3.52
3.28
2.99
3.00
2.98
3.45

105.05
113.79
122.00
119.29
133.45
91.52
157.60
135.60
121.93
139.39

Note: *The anchoring residue for the inhibitor interaction in rho.
Abbreviations: S, serial; ZINC, ZINC Is Not Commercial.

Figure 2 Molecular interaction of best inhibitor molecules with function site of modeled protein from LigPlot+. (A) TtFRho-ZINC24934545 and (B) TtFRho-ZINC72319544 
complexes.
Notes: Hydrophobic interactions: plain red lines with labels; hydrogen-bond interaction with functional residues: green dotted lines with bond distances (Å).
Abbreviation: TtFRho, transcription termination factor rho.
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molecular properties. According to these criteria, the best 

molecules were selected for further studies. The selected 

compounds showed reasonable logP, MWs, HBA, HBD, 

molecular polar surface areas, rule of five violations, rotat-

able bonds, non-hydrogen atoms, and molecular volumes, 

as shown in Table 4. For the final set of lead candidates, we 

chose only the molecules with good adherence to the Lipinski 

rule and drug likeness, no toxicity risks (mutagenicity, tum-

origenicity, irritability, and reproductive effectiveness), and 

the most favorable drug-score features via the OSIRIS server. 

Chemically related drugs frequently bind to naturally diverse 

protein targets, and protein receptors with similar sequences 

or structures do not constantly identify the similar ligands. 

The SEA tool judges the proteins via a chemo-centric analysis 

of the chemical similarity of the ligands relating them. Hence, 

ligand molecules that have similar molecules have similar 

biological functions and bind to similar protein targets. This 

classification is performed according to the significant and 

insignificant E-values (1×10−10 and 1.0, respectively) 

of target ligands. The most prominent, interesting, and 

significant results for the selected leads were obtained for 

the best hits, ZINC24934545 and ZINC72319544, refer-

enced via the enzyme-inhibition property with E-values of 

3.62×10−15 and 1.62×10−10, respectively, as shown in Table 5. 

ZINC24934545 and ZINC72319544 were selected for com-

plex simulation studies. For that reason, the ligands have 

high hydrogen-bonding interaction, the same Pfizer’s rule of 

five (xlogP =-5.07, MW =688.4, HBD =8, HBA =24) and 

similar bioactivity from Molinspiration (G protein-coupled 

receptor ligand =0.44, enzyme inhibitor =0.46), along with 

conserved residues with high binding affinity; reasonable 

bond angles and bond distances; and nontoxic and similar 

protein targets from the OSIRIS and SEA analyses. The over-

all predictions show that both ligands are reasonable drugs 

for the target protein, and they were analyzed thoroughly by 

MD simulations.

Protein-ligand molecular dynamics 
simulations
MD simulation is a well-known theoretical technique and 

is mainly used for evaluating the stability of any predicted 

3D model. Therefore, the constructed 3D homology model 

of TtFRho was processed for primary MD simulation for a 

5 ns timescale with Langevin dynamics to control the kinetic 

energy, temperature, and/or pressure of the system without 

binding pocket. It also does not change its conformation 

during the ligand unbinding in the explicit solvent condi-

tion in the NAMD 2.9 package. The results demonstrate 

the overall conformations of the protein contain RMSD T
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values are normally below 3 Å; only the domain residues 

showed RMSD values between 3 and 2.5 Å. Hence, the 

protein water system appears to be equilibrated in a very 

short time after the start of the free MD simulations. After 

2 ns of MD simulations, we prepared the protein inhibitor 

complex in VMD with parameterized ZINC24934545 and 

ZINC72319544 compounds. The protein-ligand complex 

systems were simulated for 2 ns with flexible residues 

involved in the binding pocket (Thr185, Gly186, Lys187, 

Thr188, and Arg215) in both alternative conformations. 

Completion of the total 2 ns free conventional simulation for 

both enzyme ligand complexes relaxed the functional residue 

atoms, and a reliable stable conformation was obtained.  

The RMSD values of both complexes contain alpha carbon 

atoms (Ca), and all atoms were calculated by taking their 

respective structures with reference conformation points. 

The RMSD values of all atoms of TtFRho-ZINC24934545 

and TtFRho-ZINC72319544 were stabilized at 1.7 Å 

(Figure 3); accordingly, the results indicate that there was 

no change in hydrogen-bond distances (from 1.2 to 1.5 Å) 

from coordination bonds to the ligands in the simulations 

(Figure 4A), and average values of fluctuations were less 

than 1% from RMSF (Figure 5A). In addition, the conforma-

tions of the two complexes were stable.

Table 5 Calculated in silico toxicity and ligand similarity of inhibitors by OSIRIS and SEA servers shows nontoxic and ligand hits with 
similar E-values and MaxTC scores, respectively

Rank ZINC 
ID

Mutagenic Tumorigenic Irritant Reproductive  
effect

SEA prediction
Ligands E-value MaxTC

1 24934545 – – – – 42 3.08e-24 0.34
2 72319544 – – – – 42 3.08e-24 0.34

Abbreviations: ZINC, ZINC Is Not Commercial; MaxTC, best molecule-molecule matches.

Figure 3 Backbone root mean square deviations (RMSDs) of target protein, Complex 1, and Complex 2 versus time (2 ns) at 300 K.
Notes: Blue: structure of protein without ligand; red: TtFRho-ZINC24934545 complex; green: TtFRho-ZINC72319544 complex.
Abbreviation: TtFRho, transcription termination factor rho.
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Figure 4 Hydrogen-bond distances of target protein, Complex 1, and Complex 2.
Notes: (A) Hydrogen-bond distances of protein (blue), TtFRho-ZINC24934545 (black), and TtFRho-ZINC72319544 (red). (B) Distance fluctuation between complexes 
1 (black) and 2 (red) in binding process at 5 ns. (C) Distance fluctuation between Complexes 1 (black) and 2 (red) in unbinding process at 2 ns.
Abbreviation: TtFRho, transcription termination factor rho.

Figure 5 RMSF of the backbone Cα atoms of transcription termination factor rho (TtFRho) (blue), TtFRho-ZINC24934545 (black), and TtFRho-ZINC72319544 (red) 
complexes.
Notes: (A) Modeled protein compared with complexes; (B) binding-pathway fluctuations of complexes; (C) unbinding pathway fluctuations of complexes; (D) after 3 ns of 
unbinding pathway fluctuations of complexes at 300 K.
Abbreviation: RMSF, root mean square fluctuation.
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Steered molecular dynamics simulations
Ligand free energy calculations
The two potential binding pathways of ligands were 

calculated for 5 ns via the SMD simulations. The CHARMM 

forces applied to the ligands for functional residues were 

crucial to the specific directions. Here, cv and cf SMD simu-

lations were performed for Ligands 1 (ZINC24934545) and  

2 (ZINC72319544) by using fixed atomic binding direc-

tions. SMD simulations of binding directions were per-

formed at a constant temperature of 300 K. The identified 

conformational changes of the protein path when binding 

to ligands and then stabilized at RMSD 1.5 were ana-

lyzed by VMD. The trajectory confirmations read 1–5 

ns (Figure 6). A change in hydrogen-bond distances was 

observed from Complex 1 to Complex 2 – from 1.2 to 1.5 

Å, respectively (Figure 4B). The average values of fluc-

tuations were less than 1% from RMSF; hydrogen bonds 

stabilized between 0 and 4 ns, but increased bond stability 

was observed at 4 to 5 ns (1 ns timescale) (Figure 5B). The 

completion of 5 ns of binding-direction SMD simulations 

revealed that Complex 1 (ie, TtFRho-ZINC24934545) 

shows lower binding affinity than Complex 2, ie,  

TtFRho-ZINC72319544. Overall, hydrogen-bond distance 

and RMSFs in the PO group interaction with Arg218 in the 

protein very clearly indicate that ZINC72319544 has high 

binding affinity with low timescale when compared with 

ZINC24934545.

During the unbinding of ligands, forces were crucial for 

pulling the ligand out from the binding pocket of both protein-

ligand complexes, along with possible pathways. Hence, cv 

and cf SMD simulations were performed to pull Ligands  

1 (ZINC24934545) and 2 (ZINC72319544) out using fixed 

directions. The SMD simulations revealed that, due to diver-

gent features of the inhibitor unbinding process, discovered 

after the careful examination of the ligand binding directions 

in both protein-ligand complexes, SMD simulations revealed 

that the two potential pathways were preferred to carry out the 

unbinding nature of the ligands. In TtFRho, the two potential 

pathway vectors are as follows: (1) Direction 1 is resolute 

by the vector from Arg215 CZ-NH1 to ZINC24934545 

and Arg215 CZ-NH2 to ZINC24934545, and (2) Direction 

2 is resolute by the vector from Arg215 CZ-NH1 to 

Figure 6 Binding-pathway root mean square deviation (RMSD) confirmations of protein-ligand complexes between 1 and 5 ns. 
Notes: Black graph lines and top panels: TtFRho-ZINC24934545; red graph line and bottom panels: TtFRho-ZINC72319544.
Abbreviation: TtFRho, transcription termination factor rho.
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ZINC72319544 and Arg215 CZ-NH2 to ZINC72319544, in 

which Pathway 1 and 2 are quite similar but different from 

their binding atoms in that ZINC24934545 forms CO bond-

ing with Arg215 but ZINC72319544 forms PO bonding with 

Arg215. Throughout the course of the 2 ns simulations, resi-

dues altered their interactions with the inhibitors and pulled 

out. During the simulations with the 2 ns timescale for the 

unbinding along Paths 1 and 2 of both complexes, an increase 

in the applied force was observed; the hydrogen bond made 

by the PO group of the inhibitor to one of the amino groups 

of Arg215 required less energy to break than the CO group 

of the inhibitor, while the broken bond mated to the other 

possible residue with Arg215, hence was weakened. This 

result was evident in that a sharp increase in the interaction 

energy of ZINC72319544 with Arg215, more so than with 

ZINC24934545; at this confirmation of the complexes, the 

pocket residues Arg180, Arg184, Thr185, Gly186, Lys187, 

and Thr188 formed the closed van der Waals interactions 

with the PO and CO groups of the ligands. The structural 

superimposition elucidated the RMSD value of 1.5 to 1.0 Å 

of Cα atoms between the two protein complexes, indicating 

that the cv SMD of Complex 2 was more stabilized than 

that of Complex 1. As the cf SMD of both complexes was 

within 1.5 Å of the RMSD, both are similar and correlated. 

For each direction in two complexes, four SMD simula-

tions were carried out with the stiff spring constant. All the 

cv curves showed different changing behavior; cf curves 

showed similar correlated curves, which strictly suggested 

that the forces were common for both complexes, but velocity 

changes were judged by the functional group of the ligand in 

the protein. These results strongly suggest that the PO group 

of ZINC72319544 was a much stronger binder to the loop 

Figure 7 Force required to extract the ligands from the functional pocket along the unbinding pathway of protein-ligand complexes between 0 and 2 ns.
Notes: Black graph lines and top panels: TtFRho-ZINC24934545; red graph lines and bottom panels: TtFRho-ZINC72319544.
Abbreviation: TtFRho, transcription termination factor rho.
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of Arg215 than ZINC24934545 (Figure 7). The change in 

hydrogen-bond distances was observed from Complex 1 to 

Complex 2 at a distance of 2.4 Å (Figure 4C). The average 

value of fluctuations from the RMSF was less than 10%, and 

hydrogen bonds between them stabilized at 0 to 2 ns with a 

distance of 1 Å (Figure 5B); however, a standard increased 

bond stability deviation at 1.5 to 3.0 ns was observed (1.5 ns 

timescale) (Figure 5D).Therefore, the suite of SMD simula-

tions for binding and unbinding direction analysis revealed 

that the ZINC72319544 ligand has a higher binding energy 

and a lower unbinding energy than ZINC24934545, with 

good drug-like properties and a nontoxic nature.

Overall this work reveals that both ligands can be used 

to target therapies for brucellosis by preclinical and clinical 

strategies via in vitro high-throughput screening for predic-

tion of new drug analogs against Brucella.

Conclusion
Overall, this work suggests that the complete restrained 3D 

structure of the TtFRho protein is reliable for the binding 

of inhibitors. Herein, we identified the two best inhibitors – 

ZINC24934545 and ZINC72319544 – which are compounds 

with similar binding affinity and an enzyme-inhibition property, 

by structure-based virtual screening and molecular-docking 

approaches and identification of their inhibitor specificity with 

functional cleft by further MD simulations.

The binding-pathway analysis  revealed that 

ZINC72319544 has higher binding affinity and fewer error 

fluctuations than ZINC24934545. The unbinding routes of 

both ligands were found to be similar, extending from the 

active site and down toward the cytoplasm. These inhibitors 

bind to the active site by one possible direction, owing to the 

conformational change to the binding pocket in the loop of the 

active site. The inhibitors then leave the active site through 

the base of the binding site by one pathway that remains 

unobstructed after the movement to the cytoplasm. This 

places the ligand at some detachment from the binding site, 

and the protein goes through a conformational alteration back 

into the closed, inactive state. The key amino acids – Arg180, 

Arg184, Thr185, Gly186, Lys187, Thr188, Asp213, Arg215, 

Phe235, and Arg272 – may play a vital role in binding and 

unbinding of inhibitors.

Thus, both identified compounds may serve as a lead for 

developing potential candidates against B. melitensis 16M. 

Additionally, the rotatable axis of the lead molecules with 

functional amino acids provides clues for the discovery of 

inhibitors for other Brucella spp. targets in the drug-discovery 

process.
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