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Abstract: During recent years the neural transcription factor SOX11 has been established as 

an important biomarker for mantle cell lymphoma. SOX11 is both a diagnostic and prognostic 

antigen, and may potentially be used for treatment selection for younger patients, in relation 

to protocols including high dose chemotherapy. The molecular pathways involved are still not 

fully elucidated and, as SOX11 can interact with several co-transcription factors, functional 

assays need to be carefully designed to pinpoint SOX11-specific function in a defined cellular 

context. Furthermore, as SOX11 belongs to a large family of homologous proteins, analysis of 

SOX11 has been limited by the availability of specific antibodies for detection and pull-down. 

In this review, we discuss the emerging role of SOX11 in mantle cell lymphoma and discuss the 

potential impact in relation to tumorigenesis, diagnostics, prognostics, and therapy.
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Mantle cell lymphoma – is B cell receptor  
function and CCND1 overexpression necessary  
for tumorigenesis?
Mantle cell lymphoma (MCL) is a very aggressive B-cell lymphoma with patients 

having a median age of 68 years.1 Previously, MCL has been considered an incurable 

disease, with a median survival slowly increasing from 3 years in the 1980s to around 

5 years in the early 2000s.2 However, recent new treatment protocols combining high 

dose cytarabine with autologous stem cell transplantation and rituximab has achieved 

significant improvement in long-term survival in younger patients. One such study, 

the Nordic MCL2 trial, has shown very encouraging results with a median survival 

of more than 10 years.3

MCL was originally considered to be derived from naïve B cells and most tumors 

show unmutated immunoglobulin (Ig) V
H
 genes. However, later studies have shown 

that 10%−20% of MCLs have mutated Ig genes, indicating that a sub-group has passed 

through a differentiation stage involving somatic hypermutation of V
H
 genes.4–9 It is 

noteworthy that all MCL cells in an individual, including the ones that are V
H
 mutated, 

are clonally identical, indicating that the tumor cells are frozen at the stage where the 

malignant transformation took place.10,11 Interestingly, it has been reported that B cells 

can mutate their V
H
 genes in the absence of GC, but the mechanisms involved are far 

from understood.12,13 Furthermore, a biased V
H
 usage has been described for MCL, 

which suggests that the transformation is antigen driven,5,7,8,11 as recently discussed by 

Hadzidimitriou et al.14 No antigen has been identified but V
H
 3-21, which is one of the 

most commonly used V
H
 genes in MCL, has been used to produce rheumatoid factors 
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and may recognize an auto-antigen.10,15 Most lymphomas 

express a functional B cell receptor due to successful rear-

rangement of one allele, despite the occurrence of transloca-

tions involving the Ig heavy chain locus on the other allele, 

indicating that, at least initially, the B cell was dependent on 

a functional B cell receptor.16 This is further supported by 

the successful use of BTK inhibitors, such as ibrutinib, in 

treatment of MCL.17

Cyclin D1 is the hallmark of MCL, and the overexpres-

sion is most often caused by a translocation of the CCND1 

gene to the IgH (11;14). The translocation occurs during an 

attempted primary DH-JH rearrangement in early B cells, 

but may also occur later during a secondary rearrangement.4 

Although the majority of MCL patients show overexpres-

sion of Cyclin D1, there are Cyclin D1 negative MCL-like 

cases that have an indolent course of disease.18,19 For some 

Cyclin D1 negative cases, it has been shown that they 

have similar clinicopathological and gene expression profiles 

as conventional Cyclin D1 positive MCL but overexpressing 

Cyclin D2 and Cyclin D3, supporting a role for the D-type 

cyclins in the pathogenesis of MCL.20

However, although Cyclin D1 is overexpressed in MCL, 

it has been shown that Cyclin D1 does not induce MCL 

development in vivo.21 Furthermore, the lack of prognostic 

information related to Cyclin D122 and the existence of Cyclin 

D1 negative MCL (7%–15%) challenges the requisite of this 

protein for tumorigenesis.18,23 Knockdown of Cyclin D1 has 

also been reported to only have a limited effect on cell prolif-

eration and apoptosis.24 Furthermore, healthy individuals may 

carry B-cells with the t(11;14) translocations, supporting the 

need for additional genetic hits for lymphomagenesis.25

It is possible that such additional oncogenic events 

may precede the translocation of CCND1 and allow it to 

occur unhindered. One mechanism for this could be the 

frequent mutation/deletion of ataxia telangiectasia mutated 

(ATM).26,27 ATM, which is involved in the cellular responses 

to double-strand breaks, is normally expressed in pre-GC 

B cells and it has been suggested that inactivation of the gene 

may be involved in malignant transformation.28,29

In MCL, it has been assumed that Cyclin D1 primarily 

acts through its role in the cell cycle, controlling the transition 

of G
1
 to S phase by binding and activating cyclin-dependent 

kinase (CDK) 4 and CDK6 followed by phosphorylation 

of the retinoblastoma protein and release of the transcrip-

tion factor E2F.30 However, in other malignancies several 

CDK-independent functions of Cyclin D1 have been identi-

fied, including interaction with the pro-apoptotic protein 

BAX21 and RAD51,31 the latter impacting DNA repair. 

This potential involvement of Cyclin D1 in apoptosis and/or 

DNA repair pathways in MCL is highly interesting but 

unexplored.

SOX11 and its role as a routine 
diagnostic tool in MCL
The neural transcription factor SOX11 has during recent 

years been shown to be aberrantly expressed in several types 

of cancers, such as medulloblastoma,32 glioma,33 MCL,34 

and epithelial ovarian cancer,35,36 while corresponding 

non-malignant tissues lack expression.

The Sox family belongs to a group of 20 TFs within the 

high-mobility group (HMG) box protein super family, which 

are characterized by high sequence homology within their 

DNA-binding HMG domain.37 It has been proposed that the 

HMG domain serves two functions, ie, DNA binding and 

partner selection, which may permit selective recruitment of 

SOX proteins to specific promoters and transcription factors. 

To date, the main known function of SOX11 has been its 

importance for neural development38 and organogenesis39 

during fetal development. Recent data also suggest an impor-

tant role for SOX11 as a transcriptional regulator in adult 

immature neurons.40 Of note, limited information on the role 

of SOX11 in normal and malignant tissues are available and 

present data point towards a dual role in relation to survival 

and growth consistent with previous reports of SOX proteins 

being promiscuous in the DNA binding,41 allowing use of 

tissue-specific co-transcription factors. So far, functional 

investigations of SOX11 in both similar and separate cellular 

contexts show diverse results. This may be explained by the 

potential use of different co-transcription factors but also by 

technical challenges to specifically pin-point SOX11 among 

other homologous SOX members.

In MCL, SOX11 is a disease-associated antigen and 

can be used to diagnose this subtype with high accuracy 

using immunohistochemistry,34,42 as confirmed by multiple 

independent laboratories.43–45 SOX11 has shown to be an 

important tool to accurately diagnose the small fraction of 

Cyclin D1 negative MCL cases.42,44 It has also been proposed 

to correlate to unmutated disease and distinguish rare indolent 

SOX11 negative MCL from classical MCL,46,47 which may 

have an impact on treatment selection. Subsequently, novel 

methods and improved tools have been developed to be able 

to clinically use this biomarker for diagnostic and prognostic 

purposes. Among others, qPCR-based detection of SOX1148 

and methods to analyze fine needle aspirates49 have been 

developed. It has further been suggested that SOX11 may be 

used as a marker for minimal residual disease.50,51
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Analysis of SOX11 protein, being highly homologous to 

other SOX4 and SOX12, has been hampered by unspecific 

tools and only recently a specific monoclonal antibody was 

developed.50 The superiority of this antibody has also been 

confirmed by independent users.52 Thus, current literature 

should be carefully interpreted to acknowledge that analy-

sis may include background levels of other SOX family 

proteins.

In summary, SOX11 has been identified as an important 

MCL-associated antigen that complements Cyclin D1 over-

expression to accurately diagnose MCL and to distinguish it 

from molecular mimics such as CLL. In unselected cohorts, 

the numbers of SOX11 negative cases are low and it has 

been proposed that these might be transformed cases from 

indolent SOX11 negative disease. If that holds true, SOX11 

might be regarded as a stand-alone diagnostic antigen for 

de-novo classical MCL.

SOX11 as a prognostic tool
The portfolio of MCL treatment strategies has increased 

dramatically during the last decade and includes high dose 

chemotherapy, stem cell transplantation, immunomodula-

tory agents, as well as targeted therapies such as rituximab, 

bortezomib, and ibrutinib.17,53 However, there is currently no 

standard therapy available and treatment selection depends 

mostly on age and performance status. With a growing arsenal 

of effective agents – some even providing a possible cure for 

subgroups of patients – the need for prognostic and predic-

tive biomarkers is urged to guide clinicians in selecting an 

optimal therapy for each patient.

The MCL International Prognostic Index (MIPI) was 

developed in 2008 and is based on the independent prognostic 

factors, age, performance status (ECOG PS), lactate dehydro-

genase and white blood cell count.54 MIPI categorizes patients 

into low, intermediate, and high risk groups and its prognostic 

value was recently confirmed in a large set of MCL patients 

included in the European MCL Network.55 Although MIPI is 

a part of the routine work-up in most clinics, it is still rarely 

used for treatment decisions.56 Therefore, increased efforts in 

identifying biomarkers useful as companion diagnostics are 

needed. In this case, biological biomarkers, which reflect the 

underlying pathogenesis of MCL, have a huge potential.

The prognostic impact of SOX11 has been contro-

versial, being associated with both an improved and 

inferior survival. Initial studies have assessed survival 

in population-based cohorts, including both indolent 

and aggressive MCL. SOX11 has been associated with 

improved overall survival in two studies including 53 and 

186 patients respectively.45,57 In contrast, SOX11 expression 

has also been identified as a discriminating antigen between 

indolent MCL (SOX11 negative) and aggressive MCL 

(SOX11 positive), thus correlating SOX11 expression to 

poorer outcome and lack of hypermutation of V
H
 genes.46,47 

This is in contrary to studies presented by Nygren et al and 

Kuo et al, which concluded that most of their indolent MCL 

patients were SOX11 positive.49,57 Recently, two indepen-

dent studies associated increased SOX11 expression with 

improved overall survival in patients treated with either the 

Nordic protocol22 (Figure 1A) or with R-Hyper-CVAD49 

pin-pointing a role of SOX11 as a predictive biomarker 

for these treatments.

To reach consensus on the prognostic relevance of SOX11, 

several international guidelines need to be established. Indo-

lent MCLs display a large patient heterogeneity within dif-

ferent studies and international guidelines defining indolent 

MCL need to be improved and well-defined patient cohorts, 

treated with modern protocols, use to further investigate 

the prognostic relevance of SOX11. Furthermore, as most 

studies use IHC to assess SOX11 expression, it is worth 

mentioning that tissue fixation time could have a large impact 

on the staining intensity. Also, most studies have assessed 

SOX11 expression using polyclonal reagents, which display 

a potential cross-reactivity to SOX450 and/or suffer from 

batch variations. Thus, current literature supports the use of 

specific monoclonal SOX11 antibodies that today are present 

on the market.22,52

Besides SOX11, several other molecular biomarkers have 

been suggested to add prognostic information in relation to 

MCL. Ki-67 has previously shown prognostic value, and 

when combined with MIPI, form the biological MIPI.54

Another protein commonly affected in tumorigenesis is 

p53 and disruption of the p53 pathway is a common event 

in MCL. TP53 is one of the most frequently mutated genes 

(14%–20%) in MCL patients58–60 and both TP53 mutations 

and strong expression of the protein have been correlated 

to shorter survival22,59 and high proliferation.61 In our recent 

study, we explored the impact of the molecular markers 

Ki-67, Cyclin D1, SOX11, and p53 to add prognostic 

power to MIPI using multivariate analysis.22 P53 was the 

only molecule that remained significant and the combined 

p53-MIPI was able to identify a low risk group with longer 

overall survival and a high risk group with significantly 

shorter event-free survival in patients treated according to 

the Nordic protocol.

To fully explore the potential of SOX11, p53, Ki-67, and 

other novel biomarkers, well defined prospective studies 

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Blood and Lymphatic Cancer: Targets and Therapy 2015:5submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

38

Kuci et al

needs to be conducted and validated by independent research 

groups.

Epigenetic regulation of SOX11
Transcription factors and chromatin modifying enzymes 

drive cellular identity, dictating either activation or repression 

of specific transcriptional programs. The aberrant expression 

of SOX11 is not a direct consequence of the genetic insta-

bility in MCL and no copy number alterations or mutations 

have been reported. In chicken germ cells, SOX11 has been 

shown to be regulated by miR-302a and miR-456,62 but it is 

unknown if this is species and/or tissue specific as these par-

ticular micro ribonucleic acids (miRNAs) were not identified 

by Navarro et al comparing microRNA expression among 

SOX11 positive and negative MCL tumors.63 Initial investiga-

tions on SOX11 promoter methylation in B-cell lymphomas 

revealed a distinct difference in promoter methylation where 

SOX11 expressing MCLs have an unmethylated promoter, 

and non-expressing lymphomas have a strongly methylated 

promoter.64 Vegliante et  al further demonstrated that the 

rare subgroup of SOX11 negative MCLs as well as normal 

peripheral B-cells display an unmethylated promoter and 

that transcription was silenced by repressive histone marks 

(as schematically illustrated in Figure 1B).65 Interestingly, 

they further showed that SOX11 expression is induced in 

hematopoietic cells by expression of OCT4, KLF4, SOX2, 

and c-MYC in induced pluripotent cells.65 However, OCT4, 

KLF4, and SOX2 are not expressed in MCL cell-lines.66

Although SOX11 is silenced in most adult tissue, the 

promoter remains unmethylated (unpublished data, 2014). 

However, many tumors methylate SOX11 de novo during 

their pathogenesis as reported in B-cell lymphomas (exclud-

ing MCL)64 and subgroups of epithelial ovarian cancer.36 

Additionally, SOX11 methylation has been correlated to lymph 
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Figure 1 Overview of the diagnostic, prognostic, and regulatory role of SOX11.
Notes: (A) Immunohistochemistry staining of SOX11 differentiates between MCL and morphological similar variants such as CLL and the intensity of the SOX11 staining has 
been shown to correlate with overall survival. (B) SOX11 expression is regulated by epigenetic events, associated with an unmethylated promoter and the activating histone 
marks H3K4me3 and H3K9/K14Ac. However, transcription factors involved in the initiation of SOX11 expression and potentially regulatory miRNAs remain to be identified 
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TGFβ, WNT, and angiogenesis as downstream signaling pathways.
Abbreviations: miRNAs, micro ribonucleic acids; ChIP, chromatin immunoprecipitation; MCL, mantle cell lymphoma.
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node metastasis in nasopharyngeal carcinoma67 and included 

in a five gene signature for detection of bladder cancer.68

With the growing interest in using epigenetic therapies 

in hematological malignancies, investigations on genetic and 

epigenetic regulation of SOX11 are needed to understand 

its aberrant expression in disease. While the epigenetic 

regulation of SOX11 has been initially described, no studies 

have investigated SOX11 upstream regulatory transcription 

factors in MCL.

The molecular function  
of SOX11 in MCL
Improved treatment strategies for MCL patients could be 

developed if the specific molecular drivers of disease were 

identified. Among others, novel therapies targeting BTK 

(ibrutinib) and BCL-2 (ABT-199) show promising effects 

and may in the future contribute to improved treatment suc-

cess for MCL patients.

The molecular function of SOX11 has so far mainly been 

investigated in the normal setting, and proved to be involved 

in adult and embryogenic neurogenesis.69 However, as SOX11 

is promiscuous in its DNA binding capacity,70 it is expected 

that down-stream targets are tissue specific. Thus, functional 

studies of SOX11 need to be performed in MCL to identify 

involved signaling pathways. In such recent efforts, several 

important molecular mechanisms of SOX11 have been 

revealed. Several independent studies have used gene expres-

sion profiling (GEP) on SOX11 silenced and overexpressed 

models to identify pathways involved in SOX11 regulation. 

Of interest, the Cyclin D1 related pathway Rb-E2F was shown 

to be affected by the increased level of SOX11 upon transient 

overexpression.64 Biologically similar results were shown 

using a knock-down model where a number of genes, among 

others DBN1, previously associated with MCL and involved in 

migration, proliferation, and apoptosis was co-regulated with 

SOX11,71 pinpointing the global impact of SOX11 on MCL-

associated gene expression. In this stable knock-down model, 

it was further shown that SOX11 reduction caused increased 

growth, partially driven by the upregulation of autotaxin 

(ATX).71 Of interest, ATX has previously has been reported 

to be involved in tumor aggressiveness and angiogenesis.72

Besides GEP, chromatin immunoprecipitation (ChIP) 

has been used alone, or in combination with GEP to assess 

the transcription factor binding sites of SOX11. Using these 

technologies, DBN1, SETMAR, and HIG2 were identified as 

direct targets of SOX11.73 Further studies using ChIP-seq has 

pin-pointed WNT signaling as a potential important pathway 

down-stream of SOX11.49 In a separate study by Vegliante et al, 

they suggest that SOX11 blocks terminal B-cell differentiation 

in aggressive MCL through direct positive regulation of 

PAX5.74 It is known that SOX genes are promiscuous in their 

DNA binding capacity and thus, it is not surprising that several 

pathways may be affected – but it remains to be determined 

which ones are of most biological value for MCL pathogen-

esis (see schematic illustration in Figure 1C). It should be 

stressed that i) MCL cell lines are molecularly different in 

various aspects and ii) that immunoprecipitation assays are 

highly dependent on the specificity of the used antibody for 

enrichment. Thus, the use of single or few cell lines and the 

potential use of different and cross-reactive antibodies may 

explain the poor overlap between GEP and ChIP studies.

Recent in vivo studies of SOX11 have revealed a role in 

angiogenesis, where SOX11-positive MCL cells promote 

vasculature development through regulation of PDGFA.75 

Furthermore, in that experimental set-up SOX11 is associated 

with increased growth,74 in contrast to previous observations 

where SOX11 is associated with decreased growth, lower 

tumorigenicity, and longer time to symptoms of disease 

compared to SOX11 silenced MCL cells.71 The development 

of efficient anti-angiogenic treatment is warranted, but so far 

the clinical benefit of anti-angiogenic treatment in MCL has 

been limited,76 although thalidomide has shown some effect 

in relapsed patients.77

Conclusion
SOX11 has emerged as a highly interesting disease-defining 

marker for MCL and detailed investigations of involved sig-

naling pathways are warranted to identify potential targets 

for improved intervention. It is evident that we need to look 

beyond the apparent conflict between SOX11 as i) a disease-

defining antigen for classical MCL and ii) associated with 

improved prognosis within this diagnostic group. Efforts to 

identify a molecular link between p53, Cyclin D1, and/or 

SOX11 have so far not been successful but need to be care-

fully investigated to, if possible, identify synthetically lethal 

combinations for MCL cells that can lead to a cure.

Disclosure
A patent has previously been filed on the use of SOX11 as a 

diagnostic, prognostic, and therapeutic target in MCL. The 

authors report no other conflict of interest in this work.
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