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Abstract: IHL-305 is a PEGylated liposomal formulation of irinotecan (CPT-11). The objective 

of this study was to evaluate the factors associated with interpatient variability in the pharma-

cokinetics and pharmacodynamics of IHL-305 in patients with advanced solid tumors. IHL-305 

was administered intravenously once every 4 weeks as part of a Phase I study. Pharmacokinetic 

studies of the liposomal sum total CPT-11, released CPT-11, SN-38, SN-38G, 7-ethyl-10-[4-

N-(5-aminopentanoic acid)-1-piperidino]-carbonyloxycamptothecin, and 7-ethyl-10-[4-amino-

1-piperidino]-carbonyloxycamptothecin in plasma were performed. Noncompartmental and 

compartmental pharmacokinetic analyses were conducted using pharmacokinetic data for sum 

total CPT-11. The pharmacokinetic variability of IHL-305 is associated with linear and non-

linear clearance. Patients whose age and body composition (ratio of total body weight to ideal 

body weight [TBW/IBW]) were greater than the median age and TBW/IBW of the study had 

a 1.7-fold to 2.6-fold higher ratio of released CPT-11 area under the concentration versus time 

curve (AUC) to sum total CPT-11 AUC. Patients aged ,60 years had a 1.3-fold higher ratio of 

percent decrease in monocytes at nadir to percent decrease in absolute neutrophil count at nadir 

as compared with patients aged $60 years. There was an inverse relationship between patient 

age and percent decrease in monocytes at nadir, ie, younger patients have a higher percent 

decrease in monocytes. Patients with a higher percent decrease in monocytes at nadir have a 

decreased plasma exposure of sum total CPT-11. The pharmacokinetics and pharmacodynam-

ics of IHL-305 are consistent with those of other PEGylated liposomal carriers. Interpatient 

variability in the pharmacokinetics and pharmacodynamics of IHL-305 was associated with 

age, body composition, and monocytes.
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Introduction
IHL-305 is a PEGylated liposomal formulation of irinotecan (CPT-11), a camptothecin 

analog that inhibits topoisomerase I and is approved for the treatment of metastatic 

colorectal cancer.1–4 The PEGylated liposomal formulation consists of phospholipids 

arranged in a bilayer with polyethylene glycol (PEG) covalently bound on the external 

surface. Encapsulation of CPT-11 allows for release of the active lactone form into the 

tumor over a protracted period of time, which is ideal for a cell cycle-specific drug.1–6 

CPT-11 is a prodrug that requires metabolic transformation to the active metabolite, 

7-ethyl-10-hydroxy-camptothecin (SN-38), which is approximately 100-fold to 1,000-

fold more active than the parent drug. SN-38 is further conjugated to form an inactive 

glucuronide (SN-38G) by uridine diphosphate glucuronosyltransferases, primarily 
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the UGT1A1 isoform. Other identified CPT-11 metabolites 

are 7-ethyl-10-[4-N-(5-aminopentanoic acid)-1-piperidino]-

carbonyloxycamptothecin (APC) and 7-ethyl-10-[4-amino-

1-piperidino]-carbonyloxycamptothecin (NPC).3,7

The pharmacokinetic disposition of carrier-mediated 

agents, such as liposomal agents, is dependent upon the 

carrier until the drug is released from the carrier.1 Unlike 

small molecule anticancer agents, which are metabolized and 

cleared by the liver and kidney, the clearance of liposomes 

occurs via the mononuclear phagocyte system (MPS). The 

MPS is comprised of monocytes, macrophages, and den-

dritic cells located primarily within the liver and spleen.8 

The uptake of liposomes by the MPS may result in acute 

impairment or toxicity in the MPS, which in turn decreases 

clearance of PEGylated liposomal agents. Thus, there is 

a bidirectional interaction between PEGylated liposomal 

anticancer agents and the MPS. PEGylated liposomes are 

cleared at a slower rate through the MPS compared with 

non-PEGylated liposomes.9 Once the drug is released from 

the carrier, the pharmacokinetic disposition of the drug will 

be the same as after administration of the noncarrier form of 

the drug.4,8 Thus, the pharmacokinetic properties of liposomal 

agents are unique, and there may be many factors attributed to 

their interpatient variability. Nanoparticle anticancer agents 

have higher variability in pharmacokinetic (eg, drug clear-

ance, systemic exposure, distribution) disposition (20–100-

fold), with potentially higher variability in pharmacodynamic 

(antitumor response and toxicity) responses as compared with 

small-molecule chemotherapy.10,11 The high interpatient vari-

ability in pharmacokinetics and pharmacodynamics threatens 

the clinical utility and activity of nanoparticle and liposomal 

agents. The factors that may explain the variability in the 

pharmacokinetics and pharmacodynamics of encapsulated 

and released forms of conventional and PEGylated liposomes 

remain unclear, but most likely include the MPS.12–18 Our 

group has evaluated factors affecting the pharmacokinetics 

and pharmacodynamics of liposomal anticancer agents in 

preclinical animal models and in patients.10,11 We were the 

first to report a reduced clearance of the liposomal encapsu-

lated forms of PEGylated liposomal doxorubicin (Doxil®) 

and CKD-602 (S-CKD602) in patients aged $60 years.18–20 

We have also reported that monocytes are more sensitive to 

S-CKD602 compared with neutrophils, and the increased 

sensitivity is related to the liposomal formulation and not 

CKD-602.21,22 These results suggest that monocytes engulf 

S-CKD602, which causes the release of CKD-602 from 

the liposome and toxicity to the monocytes, and that the 

effects are more prominent in patients aged ,60 years.20,22,23  

We were also the first group to report that body composition 

alters the pharmacokinetics of PEGylated liposomal agents 

in mice and in patients.20 In mice, there was greater exposure 

of drug in fat compared with muscle after administration 

of S-CKD602, whereas there was greater exposure of drug 

in muscle compared with fat after administration of non-

liposomal CKD-602.24 In addition, in patients, the exposure of 

encapsulated liposomal CKD-602 in plasma after administra-

tion of S-CKD602 was inversely related to the ratio of total 

body weight (TBW) to ideal body weight (IBW), suggesting 

that patients with a larger body composition have greater 

distribution of drug to fat which results in lower exposure 

in plasma. These results in patients are consistent with our 

prior studies in mice.

Based on our previous preclinical and clinical studies 

of PEGylated liposomal agents, we hypothesized that age, 

body composition, and monocyte changes are fundamental 

patient-related factors that alter the pharmacokinetics and 

pharmacodynamics of all liposomal, nanoparticle, and con-

jugated drugs.10,11,18 However, these factors have not been 

evaluated for other nanoparticle or liposomal agents in mice 

or patients.

The clinical and standard pharmacokinetic results of 

the Phase I study of IHL-305 have been published previ-

ously.25 IHL-305 was associated with higher interpatient 

variability in the pharmacokinetic disposition of sum total 

(encapsulated + released) and released CPT-11 compared with 

nonliposomal CPT-11.25 However, the factors associated with 

the high pharmacokinetic variability of IHL-305 have not been 

evaluated. Thus, based on our hypothesis described above, 

the objective of this study was to evaluate the factors (ie, age, 

body composition, monocytes) associated with interpatient 

variability in the pharmacokinetics and pharmacodynamics 

of IHL-305 in patients with advanced solid tumors.

Patients and methods
Patients
Written informed consent, approved by the institutional 

review board of the Sarah Cannon Research Institute and 

Vanderbilt University Medical Center, was obtained from 

all patients prior to study entry. Patients aged 18 years or 

older with a histologically confirmed malignant solid tumor 

for which no known regimen or protocol treatments of higher 

efficacy were available were eligible for this study. Pertinent 

eligibility criteria included an Eastern Cooperative Oncol-

ogy Group performance status of 0 to 2 and normal bone  

marrow, hepatic, and renal function as defined by the fol-

lowing: absolute neutrophil count (ANC) $1,500 cells/µL, 
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platelets $100,000 cells/µL, total bilirubin within normal 

institutional limits, aspartate aminotransferase/alanine ami-

notransferase ratio #2.5× institutional upper limit of normal 

(ULN) or #5.0× ULN if liver metastases were present, and 

plasma creatinine #1.5× institutional ULN or creatinine 

clearance $60 mL/min/1.73 m2 for patients with creatinine 

levels above institutional normal. Patients were excluded 

from the study for any of the following: prior treatment 

with CPT-11; chemotherapy or radiotherapy within 4 weeks 

(6 weeks for nitrosoureas or mitomycin C); known brain 

metastases; significant cardiac disease including heart fail-

ure; a history of myocardial infarction; a history of serious 

ventricular arrhythmias. All other eligibility criteria have 

been previously reported.25

Dosage and administration
IHL-305 is a formulation of CPT-11 encapsulated in long-

circulating PEGylated liposomes. In IHL-305, the PEGylated 

liposome bilayer is composed of cholesterol and hydrogen ated 

soybean phosphatidylcholine, and the surface of the liposomes 

is modified with PEG. The mean particle diameter is approxi-

mately 100 nm and the drug to lipid mass ratio is 1:4 (0.25 mg 

CPT-11 per mg of lipid). The PEGylated liposomal formula-

tion was generated by Terumo Corporation (Tokyo, Japan). 

IHL-305 was supplied by Yakult Honsha Corporation (Tokyo, 

Japan) in sterile 10 mL light-resistant, single-use glass vials 

as a translucent white to pale yellow liquid with a nominal 

total CPT-11 concentration of 5 mg/mL. IHL-305 was diluted 

25-fold in 5% dextrose or normal saline prior to administra-

tion. Prior to administration of the study drug, patients were 

premedicated with ondansetron (or an other 5-HT
3
 inhibitor 

should circumstances require) and dexamethasone, according 

to each institution’s standard of care.

IHL-305 was administered as a 60-minute intravenous 

infusion every 4 weeks. Doses administered (expressed in 

mg of CPT-11) were 3.5, 7, 10.5, 14, 28, 33.5, 37, 50, 67, 80, 

88, 120, 160, and 210 mg/m2. This Phase I study followed 

a standard dose escalation design with patients enrolled in 

cohorts of three, with the possibility of extending the cohort 

up to six patients depending on the number of dose-limiting 

toxicities.26 No intrapatient dose escalation was permitted. 

The maximum tolerated dose was defined based on standard 

criteria.

Blood counts
ANC and monocyte counts were obtained at least once per 

week on cycle 1 of the IHL-305 study. Additional counts were 

obtained as clinically required. The percent decrease in ANC 

and monocytes at nadir was calculated using the standard 

formula [(pre-value-nadir)/pre-value] ×100.

sample collection, processing, and 
analytical studies
Plasma samples for pharmacokinetic assessment were 

obtained from all patients. On cycle 1, blood (5 mL) was 

collected in tubes containing sodium heparin at prior to 

administration, at the end of the infusion (approximately 

1 hour), and at 1.5, 2, 3, 5, 9, 13, and 25 hours after the start 

of the infusion for patients treated at ,67 mg/m2 and the 

first three patients treated at 67 mg/m2. Additional samples 

at 49, 73, 97, 169 (day 7), 192 (day 8), and 216 (day 9) hours 

after the start of the infusion were also collected for patients 

treated at .67 mg/m2 and the last three patients treated at 

67 mg/m2.

The blood samples were centrifuged at 3,000× g for 

15 minutes at 4°C to collect the plasma fraction. Plasma samples 

were processed to measure sum total (encapsulated + released) 

CPT-11 and released CPT-11, SN-38, SN-38G, APC, and 

NPC, as previously described.27 The sum total CPT-11, 

released CPT-11, SN-38, SN-38G, APC, and NPC con-

centrations were measured using high-performance liquid 

chromatography.28 The total (lactone + hydroxy acid) form of 

camptothecin was measured for sum total CPT-11, released 

CPT-11, SN-38, SN-38G, APC, and NPC samples. The lower 

limit of quantitation of the total form sum total CPT-11, 

released CPT-11, SN-38, SN-38G, APC, and NPC were 100, 

2, 2, 2, 2, and 2 ng/mL, respectively.

compartmental pharmacokinetic analysis
Compartmental pharmacokinetic analysis of sum total 

CPT-11 after administration of IHL-305 was performed 

using WinNonlin (version 5.0.1; Pharsight Corporation, 

Mountain View, CA, USA).29 Different pharmacokinetic 

model structures were considered to characterize the 

disposition of IHL-305 in plasma. In the development of 

the model, one-compartment and two-compartment models 

with linear and nonlinear (Michaelis-Menten) clearance 

were evaluated to describe the plasma disposition of IHL-

305. The final model structure used for the pharmacokinetic 

analysis produced identifiable parameters in all patients 

except one.

Pharmacokinetic model parameters for sum total CPT-11 

after administration of IHL-305 included the volume of the 

central compartment (V
c
) and intercompartment rate con-

stants, (k
12

, k
21

).29 The elimination rate constant from the cen-

tral compartment (k
10

) was used to represent linear clearance. 
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For nonlinear clearance, the maximum rate (velocity, V
max

) 

and a Michaelis constant (K
m
) were estimated using the 

standard Michaelis-Menten equation described below, where 

X
1
 represents the amount remaining and t is the time after 

administration of the study drug.

dX

dt

V X

V X
m

1 1

1 1

= −
⋅

⋅ +
max

K

Using standard equations, clearance and elimination 

half-life were calculated using parameter estimates from 

the models. The area under the IHL-305 plasma concen-

tration versus time curve from 0 to infinity (AUC
0–∞) was 

calculated using the log trapezoidal method by simulating 

the concentration versus time data from each patient using 

patient-specific parameters.29 The AUC was also normalized 

by dose (AUC/dose).

Evaluation of the goodness of fit and the estimated 

parameters was based on the Akaike information criterion, 

the precision of the parameter estimates, the random distribu-

tion of weighted residuals between measured and predicted 

concentrations with respect to time, and the absence of a 

significant correlation between independent model para-

meters (,0.95).29

evaluation of factors
The patient’s age, TBW/IBW ratio, and percent decrease 

in monocytes at nadir were evaluated as potential factors 

associated with the pharmacokinetic variability of IHL-305. 

The TBW/IBW ratio was calculated using standard equations 

and used as a measure of body composition. These same 

factors were evaluated as potential factors associated with 

the pharmacodynamic variability of IHL-305.

statistical analysis
The relationship between TBW/IBW and AUC/dose was 

analyzed using multiple linear regression controlling for 

age. The relationship between clearance and the percent 

decrease in monocytes was analyzed using a simple linear 

regression. The relationship between dose-normalized sum 

total CPT-11 AUC and the percent decrease in monocytes 

was analyzed using simple linear regression. The relation-

ship between the percent decrease in monocytes and age 

was analyzed using multiple linear regression controlling for 

dose. The percent decrease in monocytes and ANC at nadir 

within a patient were compared using the Wilcoxon signed 

ranked test. The percent decrease in monocytes and ANC at 

nadir in patients aged ,60 and $60 years were compared 

using the two-sample t-test. All statistical analyses were 

performed using SAS version 9.2 software (SAS Institute, 

Cary, NC, USA).30

Results
Patient characteristics
The characteristics of the 42 patients enrolled in this study 

from December 14, 2006 to December 15, 2008 have been 

described previously.25 Pharmacokinetic studies of IHL-305 

were performed in 39 of these patients with a mean (median, 

range) age of 59.3 years (60 years, 41–75 years), and the 

majority being female (n=26, 66%).

linear and nonlinear pharmacokinetic 
disposition of Ihl-305
The variability in the pharmacokinetic disposition of sum 

total CPT-11 was related to linear and nonlinear (satu-

rable) clearance of IHL-305 in patients, which was dose-

dependent. At doses from 3.5 to 50 mg/m2, the IHL-305 

sum total CPT-11 plasma concentration versus time profiles 

were best described using a model with linear clearance 

in all patients (n=14). At doses from 67 to 210 mg/m2, the 

IHL-305 sum total CPT-11 plasma concentration versus 

time profiles were best described using a model with linear 

(n=16) and nonlinear clearance (n=8). The dose of IHL-305 

was significantly higher in patients with nonlinear clear-

ance than in patients with linear clearance (P=0.01). The 

dose-normalized sum total CPT-11 AUC in patients with 

linear clearance and patients with nonlinear clearance are 

presented in Table 1.

relationship between age, body 
composition, and pharmacokinetic 
disposition of Ihl-305
Based on our previous studies reporting both age and TBW/

IBW ratio affecting the pharmacokinetic disposition of 

S-CKD602, we evaluated the relationship between these 

two factors and the pharmacokinetic disposition of IHL-305. 

The relationship between TBW/IBW and dose-normalized 

CPT-11 AUC (AUC/dose) in all patients is presented in 

Figure 1. Controlling for age, there was an inverse relation-

ship between TBW/IBW ratio and AUC/dose (R2=0.12, 

P=0.41), whereby low TBW/IBW was associated with high 

AUC/dose in patients aged ,60 years. The effect of age and 

TBW/IBW together on the ratio of released CPT-11 AUC to 

sum total CPT-11 AUC in all patients was evaluated using a 

bubble chart and is presented in Figure 2. Patients whose age 

and TBW/IBW were greater than the median of the study had 

a 1.7-fold to 2.6-fold higher ratio of released CPT-11 AUC 

to sum total CPT-11 AUC.
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relationship between percent decrease 
in monocytes and pharmacokinetic 
disposition of Ihl-305
Based on our prior studies, the percent decrease in monocytes at 

nadir on cycle 1 was used as a surrogate measure of monocyte 

function. The relationship between the percent decrease in 

monocytes and dose normalized CPT-11 AUC in patients with 

linear clearance and nonlinear clearance are presented in Figure 

3A and B, respectively. For patients with linear clearance, there 

was a statistically significant linear relationship between percent 

decrease in monocytes and AUC/dose (P=0.008, R2=0.49), 

where high percent decrease in monocytes was associated with 

low AUC/dose. However, the relationship between the percent 

decrease in monocytes and dose-normalized CPT-11 AUC in 

patients with nonlinear clearance was not significant (P=0.37, 

R2=0.20) which may be due to saturation of the interaction 

between IHL-305 and monocytes.

Neutropenia and monocytopenia 
associated with Ihl-305
To evaluate the differential effects of IHL-305 on neutrophils 

and monocytes, we compared the percent decrease in ANC 

Table 1 compartmental pharmacokinetic parameters of sum total cPT-11 after Ihl-305 in patients with linear and nonlinear 
disposition

Parameters Units Linear pharmacokinetic 
 disposition

Nonlinear pharmacokinetic  
disposition

Age ,60 years mean ± SD  
(range) n=15

Age $60 years mean ± SD  
(range) n=15

All ages mean ± SD  
(range) n=8

k10 (h-1) 0.031±0.0098 (0.016–0.046) 0.034±0.0077 (0.019–0.047) –
t½a (h) 24.9±8.1 (15.0–43.7) 21.3±5.6 (14.8–35.8) 11.6±3.8 (7.8–17.0)
Vc (l/m2) 1.6±0.45 (0.90–2.70) 1.6±0.55 (1.14–2.86) 1.6±0.36 (1.08–2.12)
cl (l/h/m2) 0.048±0.024 (0.021–0.12) 0.055±0.027 (0.023–0.12) –
k12 (h-1) – – 0.15±0.070b (0.10–0.20)
k21 (h-1) – – 0.095±0.040b (0.066–0.12)
Km (ng/ml) – – 32.8±31.3 (0.93–92.7)
Vmax (ng/h) – – 4.54±3.39 (1.72–11.3)
sum total aUc/dosee (µg/ml⋅h)/(mg/m2) 12.9±4.9c,d (8.19–27.5) 14.5±4.6c,d (8.29–25.1) 14.8±5.3d (7.79–23.6)

Notes: at½ is the terminal half-life; bestimates are from two patients; csum total CPT-11 AUC normalized by dose in patients with linear disposition was not significantly 
different between patients aged $60 and ,60 years (P.0.05); dsum total CPT-11 AUC normalized by dose was not significantly different between patients with nonlinear 
disposition and patients with linear disposition who were aged $60 and ,60 years (P.0.05); esum total aUc was calculated from 0 to the last sampling time point; k10 is 
the elimination rate constant from the central compartment; Vc is the volume of central compartment; cl is clearance; k12 and k21 are intercompartment distribution rate 
constants; Vmax is maximum rate (velocity); Km is a Michaelis constant; cPT-11 is irinotecan; Ihl-305 is a Pegylated liposomal formulation of irinotecan.
Abbreviations: aUc, area under the concentration versus time curve; sD, standard deviation; –, not applicable.
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Figure 1 relationship between the ratio of TBW/IBW and dose-normalized Ihl-
305 sum total aUc (aUc/dose). aUc/dose in patients aged ,60 and $60 years are 
represented by the solid triangles and open triangles, respectively.
Notes: The best-fit line of the data is represented by the curved solid line (R2=0.12). 
after controlling for age, there was an inverse relationship between TBW/IBW and aUc/
dose, with a low TBW/IBW being associated with high aUc/dose in patients aged ,60 
years; cPT-11 is irinotecan; Ihl-305 is a Pegylated liposomal formulation of irinotecan.
Abbreviations: aUc, area under the concentration versus time curve; TBW/IBW, 
total body weight to ideal body weight.
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ratio of released cPT-11 aUc to sum total cPT-11 aUc.
Notes: Patients are divided into four groups according to the median value of age and 
TBW/IBW. The size of each circle correlates with ratio of released cPT-11 aUc to sum 
total CPT-11 AUC in a patient at the specific age and ratio of true body weight to ideal 
body weight. The mean ± standard deviation values for the ratio of released cPT-11 
aUc to sum total cPT-11 aUc were 0.0042±0.0028, 0.0038±0.0038, 0.0066±0.0084, 
and 0.0025±0.0013 in patients aged ,60 years and TBW/IBW ,1.16, patients 
aged $60 years and TBW/IBW ,1.16, patients aged $60 years and TBW/IBW $1.16, 
and patients aged ,60 years and TBW/IBW $1.16, respectively; cPT-11 is irinotecan; 
Ihl-305 is a Pegylated liposomal formulation of irinotecan.
Abbreviations: aUc, area under the concentration versus time curve; TBW/IBW, 
total body weight to ideal body weight.
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and monocytes at nadir in the blood of patients administered 

IHL-305 on cycle 1. The day of nadir (mean ± standard 

deviation) for ANC and monocytes after administration of 

IHL-305 was 18.7±7.4 days and 11.2±6.1 days, respectively 

(P=0.0006). The extent of neutropenia and monocytope-

nia following administration of IHL-305 is summarized 

in Table 2. After administration of IHL-305, the percent 

decrease in ANC and monocytes at nadir were 29%±20% and 

42%±24%, respectively (P=0.19) in all patients. The ratio of 

percent decrease in monocytes to percent decrease in ANC 

at their nadir within a patient was 1.4±1.0.

To evaluate age-related effects on the relationship 

between neutropenia and monocytopenia after administration 

of IHL-305, we compared the percent decrease in ANC and 

monocytes in the blood of patients aged ,60 and $60 years. 

Categorizing patients as aged ,60 or $60 years was 

based on our previous studies reporting a reduced clear-

ance of PEGylated liposomal anticancer agents in patients 

aged $60 years compared with patients aged ,60 years.20 

The age (mean ± standard deviation) of patients in groups 

aged ,60 and $60 years was 51.4±4.8 years and 

67.3±5.2 years, respectively (P,0.001). The extent of neu-

tropenia and monocytopenia following administration of 

IHL-305 in patients aged ,60 and $60 years is summarized 

in Table 2. The percent decrease in ANC and monocytes 

in patients aged ,60 years was 30%±23% and 45%±30%, 

respectively (P=0.46). The ratio of percent decrease in 

monocytes to percent decrease in ANC within a patient 

aged ,60 years was 1.7±1.4. The percent decrease in ANC 

and monocytes in patients aged $60 years was 28%±19% 

and 40%±20%, respectively (P=0.30). The ratio of percent 

decrease in monocytes to percent decrease in ANC within a 

patient aged $60 years was 1.2±0.7.

relationship between age 
and pharmacodynamics of Ihl-305
The relationship between age and percent decrease in 

monocytes at nadir in patients treated at a dose $50 mg/m2 

is presented in Figure 4. Patients treated at a dose ,50 

mg/m2 were not included because the majority of these 

Table 2 summary of aNc and monocyte decrease at nadir after administration of Ihl-305

Units Monocytes mean ± SD  
(range)

ANC mean ± SD  
(range)

Ratio monocytes to  
ANC mean ± SD (range)

All patients
Percent decrease % a42.0±23.9 (0.0–80.1) a28.8±20.3 (0.0–84.8) 1.40±0.98 (0.067–4.28)
Patients ,60 years
Percent decrease % b,d44.7±29.9 (0.0–80.1) b,e29.6±22.6 (0.0–84.8) 1.65±1.36 (0.22–4.28)
Patients $60 years
Percent decrease % c,d40.2±20.3 (4.35–71.6) c,e28.1±18.9 (0.0–65.3) 1.24±0.68 (0.067–2.35)

Notes: aP.0.05 for comparison of percent decrease in monocytes and percent decrease in aNc in all patients; bP.0.05 for comparison of percent decrease in monocytes and 
percent decrease in aNc in patients aged ,60 years; cP.0.05 for comparison of percent decrease in monocytes and percent decrease in aNc in patients aged $60 years; 
dP.0.05 for comparison of percent decrease in monocytes in patients aged ,60 years and patients aged $60 years; eP.0.05 for comparison of percent decrease in aNc in 
patients aged ,60 years and patients aged $60 years; cPT-11 is irinotecan; Ihl-305 is a Pegylated liposomal formulation of irinotecan.
Abbreviations: aNc, absolute neutrophil count; sD, standard deviation.
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patients were not evaluated for monocyte counts. There was 

an inverse linear relationship between the percent decrease 

in monocytes and age in all patients (R2=0.32, P=0.029), in 

patients with a dose #88 mg/m2 (R2=0.49, P=0.121), and 

in patients with a dose $120 mg/m2 (R2=0.43, P=0.056), 

where in all cases younger patients had a higher percent 

decrease in monocytes compared with younger patients. 

In addition, the percent decrease in monocytes was lower 

in patients with a dose #88 mg/m2 than in those with a 

dose $120 mg/m2.

Discussion
Major advances in the use of liposomes, conjugates, and 

nanoparticles as vehicles to deliver drugs have occurred 

in the past 10 years.4,9,31 Doxil and the albumin-stabilized 

nanoparticle formulation of paclitaxel (Abraxane®) are now 

approved by the US Food and Drug Administration.32–34 In 

addition, there are more than 300 liposomal and nanoparticle 

formulations of anticancer agents currently in development.4 

This is the first study to identify age, body composition, and 

monocyte counts as factors associated with pharmacokinetic 

variability of a PEGylated liposomal CPT-11 formulation. 

These results are consistent with our prior studies of Doxil 

and S-CKD602.19,20

The percent decrease in monocytes was significantly cor-

related with clearance of sum total CPT-11, where patients 

with a higher percent decrease in monocytes at nadir have an 

increased clearance of sum total CPT-11. The relationship 

between changes in monocytes and the pharmacokinetic 

disposition of IHL-305 suggest that the monocytes engulf 

liposomal anticancer agents via their phagocytic function as 

part of the MPS, which causes the release of drug from the 

liposome and subsequent cytotoxicity to monocytes.9,34 There 

are two potential explanations for the relationship between 

changes in monocytes and the pharmacokinetic disposition 

of IHL-305. The first theory is that the monocytes engulf 

liposomal anticancer agents via their phagocytic function as 

part of the MPS, which causes release of drug from the lipo-

some and subsequent cytotoxicity to monocytes. The second 

theory is that the reduction in monocytes after administration 

of liposomal agents may also be a result of movement of 

monocytes out of the bloodstream and into other MPS organs, 

such as the liver and spleen. Additionally, monocytes were 

more sensitive to IHL-305 as compared with neutrophils in 

our study. This is consistent with our previous study, that the 

increased sensitivity is related to the liposomal formulation 

and not to the encapsulated drug.35 The overall difference in 

monocyte and neutrophil sensitivity to IHL-305 is less than 

that reported for S-CKD602. This may be due to CPT-11 

being less potent than CKD-602 or due to the different 

liposomal formulations used in each product. In our study, 

the decrease in monocytes is reversible, monocytopenia 

resolved in 2 weeks for most patients, and was not a dose-

limiting toxicity in our study. However, the long-term effects 

of liposomal and other nanoparticles on the function of the 

MPS and other parts of the immune system are unknown and 

need to be evaluated.

The nonlinear clearance of IHL-305 was associated with 

high doses of IHL-305 ($67 mg/m2 CPT-11 or 268 mg/m2 

lipid). We previously reported that nonlinear clearance of 

S-CKD602 was associated with high doses of S-CKD602 

(.1.7 mg/m2 CKD-602 or 15.2 mg/m2 lipid).20 The nonlin-

ear clearance of sum total CPT-11 after administration of 

IHL-305 and other nanoparticle agents may be related to 

saturation of the clearance capacity of the MPS. The differ-

ence in the lipid dose of IHL-305 and S-CKD602 resulting in 

saturable clearance of each agent suggests that the lipid dose 

is not the predominant factor associated with saturating the 

MPS, and that other constituents (eg, number of liposomes 

administered) and the patient’s MPS function and capacity 

may be more important issues. Age and body composition 

were not associated with the pharmacokinetic variability 

of IHL-305 in patients with nonlinear clearance, which is 

consistent with our prior studies.20

Patients who were younger than 60 years and had a 

lean body composition had an increased plasma exposure 

of IHL-305. The relationship between body composition 

and plasma exposure of IHL-305 in patients is consistent 
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Figure 4 relationship between percent decrease in monocytes and age in all patients 
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with our prior studies of S-CKD602 which showed that 

patients with a lean body composition had a higher plasma 

exposure of S-CKD602.20 Our previous studies in mice also 

showed that the distribution of S-CKD602 in fat relative to 

muscle is greater compared with nonliposomal CKD-602.24 

In addition, overweight mice were reported to express more 

macrophages in fat.36 The lower exposure of liposomal 

agents in patients with a greater TBW/IBW ratio may be a 

result of greater distribution of IHL-305 to adipose tissue 

and greater uptake by macrophages in adipose tissue. Thus, 

adipose tissue could be considered an MPS-related organ, 

similar to the liver and spleen. In addition, studies suggest 

that obesity induces an inflammatory state, so patients with a 

greater TBW/IBW ratio may have heightened MPS function, 

which would result in faster clearance of liposomal agents.37 

The influence of age on the pharmacodynamics of PEGylated 

liposomal agents has been reported by our group. There 

was an inverse relationship between patient age and percent 

decrease in monocytes at nadir, with younger patients having 

a higher percent decrease in monocytes. This is consistent 

with our study of S-CKD602, indicating that an age-related 

decrease in the function of monocytes may account for the 

reduced uptake and clearance of PEGylated liposomes and 

cytotoxicity to monocytes.22

We evaluated factors affecting SN-38 AUC but did not 

see any relationship. The lack of a relationship between 

SN-38 pharmacokinetics and factors associated with the MPS 

and pharmacology of liposomal agents is not unexpected 

given that the factors affecting liposomal agents (MPS) and 

SN-38 (phase I and II hepatic enzymes) are different. In addi-

tion, we evaluated the relationship between CPT-11 AUC 

(not dose-normalized) and percent decrease in monocytes. 

There was no significant relationship between CPT-11 AUC 

and percent decrease in monocytes in patients with linear 

clearance or in patients with nonlinear clearance.

IHL-305 exhibits all of the pharmacologic, antitumor, 

and cytotoxic advantages of a long-acting, liposomal 

anticancer agent.4,25,38,39 The high interpatient variability 

in the pharmacokinetics and pharmacodynamics of sum 

total IHL-305 was associated with age, body composition, 

saturable clearance, and monocyte function. Our data also 

suggest that IHL-305 undergoes nonlinear or saturable 

clearance at higher doses.25 The clinical significance of 

these differences and the factors associated with them need 

to be evaluated for IHL-305 and other liposomal and nano-

particle anticancer agents. Ultimately, the best predictor of 

the pharmacokinetic and pharmacodynamic variability of 

IHL-305 and other liposomal and nanoparticle agents may 

be a phenotypic probe that measures the clearance capacity 

of liposomes in individual patients.40 This phenotypic probe 

can then be used to individualize the dosages of liposomal 

and nanoparticle agents for each patient to achieve a target 

exposure and thus reduce the pharmacodynamic variability 

of these agents.40 As there are more than 300 nanoparticle 

anticancer agents currently in development, as well as 

numerous other nanoparticles in development for other dis-

eases, the results of our study may have a wide and long-term 

impact on the development of these agents.10,11,18
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