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Abstract: The role of granulocyte-macrophage-colony-stimulating factor (GM-CSF) in the 

supportive care of cancer patients has been evaluated with promising results. More recently, 

GM-CSF has been added to regimens for the mobilization of hematopoietic progenitor cells. 

An expanding role for GM-CSF in regulating immune responses has been recognized based 

upon its activity on the development and maturation of antigen presenting cells and its capa-

bility for skewing the immune system toward Th1-type responses. GM-CSF has been shown 

to preferentially enhance both the numbers and activity of type 1 dendritic cells (DC1), the 

subsets of dendritic cells responsible for initiating cytotoxic immune responses. The increase 

in DC1 content and activity following local and systemic GM-CSF administration support a 

role for GM-CSF as an immune stimulant and vaccine adjuvant in cancer patients. GM-CSF 

has shown clinical activity as an immune stimulant in tumor cell and dendritic cell vaccines, 

and may increase antibody-dependent cellular cytotoxicity. The successful use of myeloid act-

ing cytokines to enhance anti-tumor responses will likely require the utilization of GM-CSF in 

combination with cytotoxic or other targeted therapies.
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Introduction/background
Granulocyte-macrophage-colony-stimulating factor (GM-CSF) and granulocyte-

colony-stimulating factor (G-CSF) belong to the family of hematopoietic cyto-

kines. Their activities include stimulating the proliferation of granulocyte and/or 

macrophage progenitor cells, infl uencing differentiation, inducing maturation, and 

stimulating the functional activity of mature hematopoietic cells (Inaba et al 1992; 

Metcalf and Nicola 1995; Metcalf 1998). Colony stimulating factors (CSF) are not 

only important as mediators of the cellular response to immunologic or infectious 

insults but are also essential for maintaining basal hematopoiesis (Dranoff et al 

1994; Fantuzzi 2003). G-CSF-defi cient mice manifest a chronic neutropenia and 

an impaired response to infectious challenge leading to premature death (Lieschke 

et al 1994). GM-CSF-defi cient mice, on the other hand, have normal levels of 

steady-state blood cell production, but exhibit defective phagocytosis and decreased 

oxygen radical production by granulocytes and macrophages; responses which are 

essential for the anti-bacterial defense (Stanley et al 1994; Zhan et al 1998; LeVine 

et al 1999). These mice also exhibit decreased tumor necrosis factor-alpha and 

leukotriene secretion, abnormal para-bronchial accumulations of B and T lympho-

cytes, and decreased catabolism of alveolar surfactant lipids and proteins leading 

to a syndrome reminiscent of pulmonary alveolar proteinosis (Stanley et al 1994; 

Paine et al 2001). Double G-CSF and GM-CSF knockout mice exhibited a greater 

degree of neutropenia, and had an increased mortality rate in the early post-natal 

period compared to mice defi cient in G-CSF alone (Seymour et al 1997). Enzler 

et al (2003) found that mice defi cient in GM-CSF and gamma interferon (IFN-γ) 
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acquired lymphoproliferative disorders and solid tumors 

in a background of chronic infl ammation, supporting the 

relationship between infl ammation and carcinogenesis.

Recombinant GM-CSF has made signifi cant contribu-

tions in the supportive care of cancer patients, owing to 

enhanced myeloid recovery after cytotoxic chemotherapy. 

Recently GM-CSF has been successfully included in mobi-

lization regimens for hematopoietic progenitor cell trans-

plantation (Cashen et al 2004; Lonial et al 2004). Recent 

data on the effects of GM-CSF on dendritic cells has led 

to growing interest in its use as primary immunotherapy. 

The ability of GM-CSF to generate of type 1 dendritic cells 

(DC1), which can skew T-cells toward a Th-1 phenotype 

has been demonstrated and is an attractive approach toward 

generating anti-tumor effects (Ferlazzo et al 2000). Periph-

eral blood mononuclear cells (PBMC), T-cells and antigen 

presenting cells (APC) cultured with GM-CSF exhibited 

increased production of type 1 cytokines (interleukin-12, 

interferon-alpha, tumor necrosis factor-alpha) and decreased 

production of type 2 cytokines (interleukin-4 and interleu-

kin-10) compared to cells treated with control media or 

G-CSF (Eksioglu et al 2007). In addition, APC treated with 

GM-CSF induced higher proliferation of allogeneic T-cells 

compared to APC treated with G-CSF or control media 

(Eksioglu et al 2007). The capacity of GM-CSF to skew the 

immune system toward Th1 effects in vitro suggests a role 

for GM-CSF in cell-mediated immune therapy and is cur-

rently being tested in-vivo. Dendritic cells (DC) have come 

to be recognized as the sensors of tissue injury, infection, 

or malignant transformation and as the agents responsible 

for the initial activation of the immune response (Matzinger 

1994). DC are the antigen presenting cells of the immune 

system, have the capacity to express both HLA class I and 

HLA class II restricted peptides, and express the co-stimula-

tory molecules needed for T-cell activation (Banchereau et al 

2000). A number of reports have shown that administration 

of GM-CSF can induce anti-tumor immune responses and 

tumor regressions. These immune activities are attributed 

to the action of GM-CSF on DC (Dranoff et al 1993; Wos 

et al 1996; Davidson et al 1998). The limitations of GM-CSF 

as an immune adjuvant, and its modest clinical activity, 

have been attributed to discordance between the observed 

immune response measured in the laboratory and the clinical 

correlates of anti-tumor activity. The need to generate the co-

stimulatory signals required to break immune tolerance, the 

proper dosing and timing of cytokines, the state of disease at 

time of treatment, and the role of concomitant chemotherapy 

are the topics of current investigation. In this review, we will 

discuss the role of GM-CSF as primary treatment and as an 

immune adjunct to the therapy of cancer.

Relationship between cancer 
and infl ammation
The connection between inflammation and malignant 

transformation has been recognized for over a century. In 

1863, Dr. Rudolf Virchow recognized a possible relation-

ship between chronic infl ammation and the development of 

cancer, based on observations of infl ammatory infi ltrates and 

spontaneous regression of malignant tumors (Balkwill and 

Mantovani 2001; Schreiber 2003). In the late 1890s, William 

Coley, a surgeon in New York, observed tumor regressions 

in patients with cancer who recovered from acute skin infec-

tions. He then developed a vaccine composed of extracts of 

inactivated bacteria, which he administered to cancer patients 

with variable results (Nauts et al 1953). He observed that 

tumor regressions were more common among patients who 

developed both a local and a systemic infl ammatory response 

(Hoption Cann et al 2002). The premise was that non-specifi c 

activation of the immune system could lead to (specifi c) 

cytokine-mediated anti-tumor effects. While cytokines are 

credited with potent anti-tumor effects, a counteracting effect 

of tumor-secreted cytokines, and tumor-associated tolerizing 

T-cells, or immature DC has also been documented (Perrot 

et al 2007; Wang and Wang 2007). Some solid tumors, for 

example, are capable of inducing immune tolerance via 

down-regulation of antigen-specifi c T-cell responses by 

tolerigenic APC (Cuenca et al 2003). Immature tumor-infi l-

trating DC are capable of compromising the tumor-specifi c 

immune response in draining lymph nodes (Perrot et al 2007). 

The premise that the immune system can be manipulated in 

vivo supports a role for the manipulation of the cytokine/co-

stimulatory signal milieu in the treatment of cancer using 

recombinant cytokines, such as GM-CSF.

Approaches will need to account 
for the level of maturation of tumor-
associated DC, and the number 
of tumor-associated regulatory T-cells
GM-CSF may enhance tumor-specifi c antigen presenta-

tion leading to better recognition of tumors by the immune 

system via effects on DC. However, its benefi t has been 

limited to patients with minimal residual disease, and dose-

escalation has been limited by signifi cant systemic toxici-

ties. The optimal use of cytokines may be directly in the 

tumor micro-environment. Furthermore, better quantitative 
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measures of antigen-specifi c immune responses are needed 

(Keilholz et al 2002).

Role of GM-CSF in supportive 
therapy
Numerous clinical trials have established the role of CSF in 

the prevention and treatment of febrile neutropenia (Garcia-

Carbonero et al 2001; Mizutani et al 2003; Repetto et al 2003). 

The majority of clinical trials investigated the role of G-CSF 

in the supportive care of cancer patients; therefore, the current 

recommendations do not address the specifi c use of GM-CSF 

in this setting. The American Society of Clinical Oncology 

(ASCO) has provided guidelines for the use of CSF (either 

G-CSF or GM-CSF) in patients receiving chemotherapy for 

solid and hematological malignancies (Smith et al 2006). 

No recommendation was made regarding the equivalency of 

G-CSF and GM-CSF. Rowe et al reported a signifi cant reduc-

tion of infectious complications in patients with acute myeloid 

leukemia (AML) who received GM-CSF after induction che-

motherapy, compared to placebo (Rowe et al 1995). However, 

Zittoun et al (2006) reported a decreased complete response 

(CR) rate in patients with AML who received GM-CSF with 

induction chemotherapy, indicating that the routine use of 

cytokines for acceleration of hematopoietic recovery may 

not always be indicated; and the use of CSF for priming of 

leukemic cells is not recommended.

Dendritic cells as regulators 
of immune responses
DC play a central role in the initiation of innate and adaptive 

immune responses. Pattern recognition receptors, known as 

toll-like receptors (TLR), on the surface of DC are bound by 

proteins, lipids, and nucleic acids resulting in DC activation 

(Kadowaki et al 2001; Dillon et al 2004). Antigen-specifi c 

T-cell immune responses are initiated by DC when these 

bound antigens are internalized, degraded, and presented as 

processed peptides on the surface of HLA molecules (Hart 

1997; Bancereau and Steinman 1998; Banchereau et al 2000). 

Two main categories of peripheral blood and bone marrow 

derived DC have been described in humans, type 1, myeloid 

dendritic cells (DC1), and type 2 plasmacytoid dendritic cells 

(DC2) (Grouard et al 1997). DC1 and DC2 differ in the type 

of cell differentiation markers and TLR expressed on their 

surface, their cytokine milieu, and their effect on polarizing 

T-cell immune responses (Rissoan et al 1999; Amsen et al 

2004; Dillon et al 2004). The maturation status of DC is an 

important determinant of the type of immune response gener-

ated upon DC activation. For example, antigen presentation 

by immature DC leads to generation of anergic CD4+ T-cells 

(Kuwana et al 2001), and immuno-suppressive CD8+ T-cells 

with antigen-specifi city (Gilliet and Liu 2002). Immature DC2 

progenitors play a crucial role in the response to viral infection 

by releasing large amounts of alpha and beta interferon (Siegal 

et al 1999; Fonteneau et al 2003; Larsson et al 2003; Coccia 

et al 2004). The targeting of DC by synthetic TLR ligands is 

a topic of current clinical and pre-clinical research.

Generation of dendritic 
cells by GM-CSF
Colony-stimulating factors can differentiate hematopoietic 

progenitor cells into specifi c DC lineages (Santiago-Schwarz 

et al 1992; Grouard et al 1997; Olweus et al 1997; Rissoan 

et al 1999; Siegal et al 1999; Berthier et al 2000; Ferlazzo et al 

2000). Hematopoietic stem cells cultured in GM-CSF and 

Flt3 can differentiate along a myelo-monocytic lineage into 

DC1 (Ferlazzo et al 2000). CD14+ progenitor cells cultured 

in GM-CSF and IL-4 can also differentiate into immature 

DC1 (Ferlazzo et al 2000; Basak et al 2002). In contrast, treat-

ment of hematopoietic progenitors with G-CSF and IL-3 can 

mobilize large numbers of (plasmacytoid) DC2 (Arpinati et al 

2000). Thus, while GM-CSF and G-CSF have similar effects 

on the mobilization of neutrophils, they have signifi cantly dif-

ferent effects on the mobilization and differentiation of DC1 

and DC2, with culture in GM-CSF leading to differentiation 

of progenitors into DC1, and culture in G-CSF leading to 

differentiation of progenitors into DC2 (Arpinati et al 2000). 

Due to their effects on DC1 and DC2, these 2 cytokines are 

optimal agents for cellular immune therapy.

Cytokines and peripheral blood 
hematopoietic progenitor cell 
transplantation
Peripheral blood as a source of stem cells for clinical stem 

cell transplantation was introduced by Korbling et al and 

Kessinger et al in the 1980s (Korbling et al 1981; Kessinger 

et al 1986). CSF are now widely used for the mobilization 

of hematopoietic progenitor cells into the peripheral circula-

tion, allowing collection of CD34+ cells for autologous and 

allogeneic hematopoietic progenitor cell transplantation. 

Essential differences have been noted between bone marrow 

(BMT) and peripheral blood grafts, owing to differences in the 

ratio of early pluripotent, self-renewing stem cells to lineage-

committed, late progenitor cells, and the accessory cells in the 

grafts (Korbling and Anderlini 2001). These differences may 

account for the observed differences in clinical outcomes after 
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transplantation. A study by the European working group for 

blood and marrow transplant reported similar rates of overall 

survival, leukemia-free survival, and similar incidence of graft 

versus host disease (GVHD) when comparing bone marrow 

with cytokine-mobilized peripheral blood grafts. They did, 

however, observe improved platelet recovery with cytokine-

mobilized peripheral graft compared to BMT (Schmitz et al 

1998). A randomized, multi-center trial of cytokine-mobilized 

peripheral blood progenitor cell grafts versus BMT reported 

by Schmitz et al (2002), found an increased risk of acute 

and chronic GVHD among recipients of cytokine-mobilized 

peripheral blood grafts, but no difference in survival compared 

to recipients of bone marrow transplants. In contrast, in another 

randomized trial comparing peripheral blood hematopoietic 

progenitor cell and bone marrow transplantation, Bensinger 

et al found more rapid neutrophil and platelet recovery and 

similar rates of acute and chronic GVHD. In that trial, the 

duration of chronic GVDH was longer among recipients of 

blood progenitor cell grafts. Furthermore, recipients of blood 

progenitor cell grafts had a higher estimated probability of 

overall survival and 2-year disease-free survival (Bensinger 

et al 2001). Interestingly, Urbini and colleagues found a higher 

number of CD34+ cells in peripheral blood grafts mobilized 

with G-CSF compared to bone marrow, and the dose of CD34+ 

cells infused correlated with the number of DC1 in peripheral 

blood grafts and DC2 in bone marrow allografts. In addition, 

among recipients of cytokine mobilized grafts, a signifi cantly 

shorter overall survival and a trend toward lower disease free 

survival was noted among recipients of larger numbers of 

CD34+ cells (Urbini et al 2003).

The fact that the incidence of acute GVHD in recipients 

of peripheral blood progenitor cell grafts was similar to, or 

only slightly higher than in BMT recipients, despite the higher 

content of T cells in the peripheral blood grafts, suggests that 

there may be quantitative differences in the other immune 

cellular components of peripheral blood grafts; such as, the 

presence of increased numbers of immunosuppressive DC2 

in G-CSF mobilized peripheral blood grafts compared to 

bone marrow grafts (Arpinati et al 2000).

Clinical outcomes after 
hematopoietic progenitor cell 
transplantation: contribution 
of dendritic cells
Recent growing interest in the role of accessory cells in 

hematopoietic progenitor cell grafts has led to further 

studies of the immune-modulatory effects of CSF on the 

constituents of the peripheral blood progenitor cell graft. 

Flt3 and GM-CSF administration led to mobilization of 

increased numbers of DC1 in the cellular apheresis product 

(Gasparetto et al 2002). In contrast, administration of G-CSF 

lead to mobilization of increased numbers of DC2 cells in 

the grafts (Arpinati et al 2000). The clinical consequences 

of mobilizing more DC1 with GM-CSF and more DC2 

with G-CSF remain unknown, and are the subject of current 

investigation.

Waller et al tested the hypothesis that the cellular con-

stituents of the graft could affect clinical outcomes after bone 

marrow transplantation (Waller et al 2001). They performed 

a retrospective study of 113 patients with hematological 

malignancies who received non-T cell-depleted bone marrow 

grafts from HLA-matched siblings. After evaluating patient 

and disease-specifi c characteristics, characteristics of the 

graft constituents, and clinical outcomes, they reported that 

patients who received larger numbers of donor DC2 had 

signifi cantly worse clinical outcomes, with lower event-free 

survival, less chronic GVHD, and an increased incidence of 

relapse than their counterparts who received fewer numbers 

of DC2 cells (Waller et al 2001).

The signifi cance of absolute numbers of DC in post-

transplant outcomes was also evaluated in a clinical study 

by Reddy and colleagues (Reddy et al 2004). Fifty patients 

undergoing allogeneic transplantation for hematological 

disorders were evaluated. After evaluating the constituents 

of the grafts, as well as the type and number of DC in the 

peripheral blood early after engraftment, they noted that 

patients with lower absolute numbers of DC (�4.97 cells/µL) 

at engraftment had worse clinical outcomes compared to 

patients with higher numbers of DC at engraftment, with 

lower overall survival (p = 0.002), increased incidence of 

relapse (p = 0.002), and a higher incidence of acute GVHD 

(p = 0.0005). Multivariable analysis confi rmed that low DC 

count was independently associated with death (hazard ratio 

[HR], 3.8; p = 0.02), time to relapse (HR, 11.6; p = 0.001), 

and acute GVHD (HR, 3.3; p = 0.04). The effect was similar 

when DC1 were analyzed separately. However, when DC2 

were analyzed separately, the effect was only signifi cant for 

increased incidence of acute GVHD among patients with 

lower numbers of DC2 at engraftment. The independent 

effect of DC1 and DC2 was not confi rmed in the multivariate 

analysis (Reddy et al 2004).

Subsequently, Lonial and colleagues hypothesized that 

the combination of G-CSF and GM-CSF administered for the 

mobilization of stem cells after chemotherapy would reduce 

the content of DC2 in the autologous blood hematopoietic 
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progenitor cell grafts compared with administration of G-CSF 

alone after chemotherapy (Lonial et al 2004). They random-

ized 35 patients with lymphoma and multiple myeloma to 

receive either G-CSF or the combination of G-CSF plus 

GM-CSF after chemotherapy. Blood hematopoietic progeni-

tor cell grafts were collected by large volume apheresis. They 

found a similar incidence of cytokine-related adverse events, 

and similar numbers of stem cells mobilized between the 2 

treatment groups. There were minor differences with respect 

to the content of T cells in the apheresis products. However, 

grafts mobilized with the combination of GM-CSF plus 

G-CSF had signifi cantly fewer DC2 and similar numbers of 

DC1 compared with grafts mobilized with G-CSF alone. A 

third cohort of patients received G-CSF and the sequential 

administration of GM-CSF 6 days later. Grafts from these 

patients had a markedly decreased DC2 content compared 

with grafts mobilized from patients treated with G-CSF alone 

or with the simultaneous administration of both cytokines. 

This preliminary trial formed the foundation for a randomized 

clinical trial where normal volunteer donors were randomized 

to receive either G-CSF or G-CSF plus GM-CSF in order to 

evaluate the impact of these cytokines on DC content, T-cell 

polarization, and immune function after allogeneic transplan-

tation. Fifty patients were enrolled in the trial with 25 in the 

GM+G-CSF and 25 in the G-CSF alone arm. All patients 

were successfully mobilized. Among donors mobilized 

with G-CSF alone, the mean number of collections was 1.48 

compared with 1.08 in the group receiving the combination 

of GM+G-CSF (p = 0.01). There was a trend toward a higher 

total cell dose in the G-CSF arm (p = 0.09). Two of the 25 

donors in the G/GM group required more than 1 apheresis, 

and 8 of 25 donors in the G-CSF alone group required more 

than 1 collection to achieve an adequate number of CD34+ 

cells. Analysis of the T-cell and T-cell subset data revealed 

that in the group receiving G-CSF alone, there was a signifi -

cantly higher percent and total T-cell, CD4+ and CD8+ cell 

content of the grafts when compared with the group receiving 

the GM+G-CSF combination. Among dendritic cell subsets 

in the grafts, there was a signifi cantly lower percentage and 

fewer absolute numbers of DC2, as well as a lower delivered 

DC2 dose/kg for the group randomized to receive GM-CSF 

plus G-CSF compared with the group randomized to receive 

G-CSF alone (p � 0.001). There was no signifi cant difference 

in the DC1 content or the content of CD34+ cells between 

the 2 treatment arms. Proliferation of the graft in response 

to T and B-cell mitogens was measured on the graft itself. 

Cells were exposed to mitogens or control for 72 hours, and 

then thymidine incorporation was measured. So far, there 

are available data on mitogen stimulation for 32 patients, 

showing a trend toward more IL-12 secretion for G+GM-CSF 

mobilized grafts, and more IL-2 secretion for G-CSF mobi-

lized grafts. There have been no differences in the incidence 

of GvHD, relapse or survival between the 2 cytokine arms 

to date (Lonial et al 2004; Lonial et al 2006).

These data, and data indicating that cross-presentation 

of antigen by DC2 may induce antigen-specifi c tolerance by 

T cells, suggest that the addition of GM-CSF to regimens 

during mobilization of peripheral blood progenitor cell grafts 

may be a clinically applicable strategy to enhance innate 

and acquired immunity after peripheral blood progenitor 

cell transplantation (Kuwana et al 2001; Gilliet and Liu 

2002). Larger clinical trials are needed to determine the 

exact consequences of altering the DC1 and DC2 content of 

peripheral blood hematopoietic progenitor cell grafts. Those 

effects may include: incidence of acute and chronic GVHD, 

engraftment, graft rejection, graft versus leukemia effect and 

response to infection.

Role of GM-CSF in post transplant 
immune reconstitution
Recent data on the differential effects of GM-CSF and G-CSF 

on the DC subsets in the graft, has inspired clinical studies 

to investigate whether the administration of these cytokines 

following autologous hematopoietic stem cell transplanta-

tion may infl uence the post-transplant reconstitution of 

cellular immunity. Fattorossi and colleagues conducted a 

randomized, prospective clinical trial to test for differences 

in immune recovery among 39 patients with ovarian and 

breast cancer who received either G-CSF or GM-CSF after 

high dose myeloablative chemotherapy and autologous 

transplantation. At day 12, GM-CSF was more effi cient 

at up-regulating membrane molecules on phagocytic cells 

important for antibody-dependent cytotoxicity and for the 

uptake of immune complexes compared to treatment with 

G-CSF; and at day 80, a signifi cantly higher proportion of 

mitogen-stimulated T cells from GM-CSF-treated patients 

expressed interleukin-2 receptor, and a higher proportion 

of these T cells were actively proliferating (Fattorossi et al 

2001) . Recently, Gazitt and colleagues showed that among 

29 non-Hodgkin’s lymphoma (NHL) patients receiving 

cyclophosphamide plus GM-CSF, G-CSF or GM-CSF fol-

lowed by G-CSF for stem cell collection, patients mobilized 

with the GM-CSF containing regimens mobilized higher 

numbers of DC, and had a higher probability of survival 

compared to patients receiving G-CSF alone (median of 55 

months versus 15 months; p = 0.02). Of note, there was no 
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difference in the ratio of DC1:DC2 between CSF regimens. 

This fi nding supports the hypothesis that higher numbers of 

DCs in the graft might be associated with prolonged survival 

of NHL patients after autologous transplantation (Gazitt et al 

2006). Further studies in larger populations of patients are 

merited. More is known about the effects of G-CSF than the 

effects of GM-CSF on post-transplant immune reconstitution. 

Volpi and colleagues reported on the effects of G-CSF admin-

istration in the post-transplant setting among 43 patients 

with acute leukemia who received T-cell depleted peripheral 

blood progenitor cell transplants from HLA haplo-identical 

related donors, compared to a cohort of 36 patients with 

acute leukemia who did not receive G-CSF after transplanta-

tion. They found signifi cantly delayed recovery of Th1-type 

CD4+ T-cells (low IL-4 and IL-10, and high IL-12 receptor 

expression), a higher proportion of CD4+ T-cells with a Th2 

phenotype (high levels of IL-4 and IL-10, and low levels of 

IL-12 receptor expression), and impaired production of IL-12 

by dendritic cells, compared to patients who did not receive 

post-transplant G-CSF. T-cells from recipients of post-trans-

plant G-CSF had signifi cantly decreased in-vitro reactivity 

to fungal pathogens compared to T-cells from patients who 

did not receive post-transplant G-CSF. This fi nding suggests 

an increased susceptibility to opportunistic infections in the 

G-CSF treated cohort, given that Th1-responses are necessary 

for anti-fungal protection (Volpi et al 2001). The effect of 

G-CSF on post-transplant immune reconstitution appeared 

to be dependent on G-CSF’s infl uence on DC maturation and 

differentiation; given that administration of G-CSF following 

transplantation favored the appearance of IL-12-defi cient 

DC which polarize T-cells toward Th2 responses. Fagnoni 

reported a similar effect of post-transplant G-CSF in children 

(Fagnoni et al 2004). Ringden et al performed a retrospective 

analysis to determine the role of post-transplant treatment 

with G-CSF in patients with AML and acute lymphocytic 

leukemia (ALL) who received allogeneic BMT or peripheral 

blood grafts. They found that prophylactic, post-transplant 

treatment with G-CSF led to a higher risk of acute and 

chronic GVHD, higher transplant related mortality, and 

decreased overall survival and leukemia-free survival rates 

in patients who received BMT only. Post-transplant G-CSF 

led to faster engraftment of absolute neutrophil count but 

slower engraftment of platelets in transplant recipients 

irrespective of the type of graft (Ringden et al 2004). These 

findings suggest that post-transplant administration of 

G-CSF may cause an imbalance in dendritic cell content 

or function, resulting in impaired cellular immunity in the 

early post-transplant period. This may lead to an increase 

in the incidence of GVHD (Fagnoni et al 2004). Current 

guidelines support the use of colony stimulating factors 

for mobilization of autologous and allogeneic grafts and 

after peripheral blood progenitor cell transplantation in the 

autologous setting only (Smith et al 2006). Further studies 

are needed to support the addition of GM-CSF after allo-

geneic transplantation.

GM-CSF may improve antibody-
dependent cell-mediated 
cytotoxicity
The anti-CD20 antibody, rituximab, used alone or in com-

bination with chemotherapy, is an established treatment for 

non-Hodgkin’s lymphoma (NHL) (Cvetkovic and Perry 

2006). Augmenting the expression of CD20 antigen on the 

tumor cells may increase the cell kill and therefore increase 

the effectiveness of the antibody (Venugopal et al 2000). Pre-

liminary data suggest that GM-CSF can up-regulate the CD20 

expression on lymphoid B cells in vitro, but these results have 

not been reproducible in vitro nor in vivo (Venugopal et al 

2000; Chow et al 2001; Yagci et al 2005).

Venugopal and colleagues performed experiments on 

cells from patients with chronic lymphocytic leukemia 

(CLL) where CLL cells were cultured with cytokines and 

the expression of CD 20 on the surface of the CLL cells was 

measured before and after cytokine exposure. They found 

a statistically signifi cant up-regulation of CD20 antigen 

expression on CLL cells after culture with GM-CSF, IL-4, or 

TNF-alpha. Flow cytometry evaluation revealed an increase 

in fl uorescence intensity as well in the percentage of cells 

expressing the antigen (Venugopal et al 2000). This led to 

further studies which have revealed promising, but incon-

sistent results. Olivieri and his group showed the feasibility 

of rescuing patients with NHL relapsing after autologous 

transplantation with a regimen containing rituximab, CHOP 

chemotherapy and GM-CSF. They reported a 75% overall 

response rate (60% complete remission, and 15% partial 

response) among 20 patients with aggressive NHL who 

relapsed after autologous transplantation (Olivieri et al 2005). 

Rapoport and colleagues reported promising results utiliz-

ing post-transplant rituximab and GM-CSF after autologous 

transplantation among a group of patients with advanced 

NHL and Hodgkin’s disease (Rapoport et al 2002). However 

neither up-regulation of CD20 antigen, nor a change of the 

proportion of CD20 positive cells was observed after culture 

with GM-CSF in a study by Yagci et al (2005) on cells from 

18 patients with CLL.
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GM-CSF may augment the graft 
versus leukemia effect of allogeneic 
transplantation
Relapse of acute leukemia after allogeneic transplanta-

tion remains a signifi cant therapeutic challenge, affecting 

approximately one third of all patients with acute leukemia 

who receive allogeneic transplantation as a curative therapy. 

Salvage post-transplant maneuvers have focused on utilization 

of second transplants, but these are limited to a minority (10% 

in most series) of fi t patients. Clinical and pre-clinical data 

has suggested a role for cytokine therapy in the induction of 

graft versus leukemia effects in the setting of post-transplant 

relapse (Slavin et al 1996; Cortes et al 1998; Boyer et al 2000; 

Mohty et al 2002; Kolb et al 2004; Li and Waller 2004). 

Improving the antigen-presenting capacity of leukemic blasts 

may lead to clinically-signifi cant anti-leukemic effects. The 

feasibility of generating DC-like leukemic antigen presenting 

cells upon treatment with cytokines, including GM-CSF has 

been demonstrated ( Santiago-Schwarz et al 1994; Mohty et al 

2002). The level of co-stimulatory molecule expression on 

leukemic blasts has been hypothesized to play a role in the 

capacity of leukemic blasts to present antigen to effector cells 

(Vereecque et al 2000; Whiteway et al 2003). A retrospec-

tive study at our institution reviewing the treatment of acute 

leukemia relapsed after allogeneic transplantation revealed 

promising results among a minority of patients treated with 

GM-CSF and interferon-alpha-2b (Arellano et al 2007). A 

prospective clinical trial at our center is currently investigating 

the feasibility and activity of a regimen utilizing the combina-

tion of GM-CSF and interferon-alpha-2b after cytoreduction 

to treat acute leukemia relapsed after allogeneic transplanta-

tion. Correlative studies will test the hypothesis that GM-CSF 

and interferon-alpha-2b act by up-regulating co-stimulatory 

molecules on leukemic blasts, and down-regulating regulatory 

T-cells leading to improved antigen presentation and durable 

graft versus leukemia effects (Figure 1).

GM-CSF for the treatment 
of solid tumors
Role of GM-CSF in the management 
of renal cell carcinoma
Renal cell carcinoma (RCC) is known to be an immunogenic 

tumor. Interferon-alpha (IFN-alpha) has been established 

as the standard treatment for metastatic RCC with response 

rates ranging between 10 and 20%. High dose interleukin-

2 has yielded similar results, but its use has been limited 

by significant toxicities (Coppin et al 2005). Previous 

observations have indicated that GM-CSF can potentiate 

the effect of IL-2 on T-cell activation (Masucci et al 1990; 

Groenewegen and de Gast 1999). Subsequently multiple trials 

have tested the activity of GM-CSF combinations for RCC 

with modest results. Table 1 summarizes activity and toxici-

ties of GM-CSF in the treatment of renal cell carcinoma. Verra 

and colleagues studied the effect of simultaneous administra-

tion of low dose IL-2, IFN-alpha and GM-CSF in metastatic 

RCC in a phase I study and, subsequently in a multicenter 

phase II study, showing tolerability and promising effi cacy 

with 19% overall responses (9% CR, 10% PR) (De Gast et al 

2000; Verra et al 2003). Recently, the same group conducted 

a phase I study of peri-operative low-dose IL-2, IFN-alpha, 

and GM-CSF in resectable RCC. In addition to determining 

the maximum tolerated dose of the cytokine combination in 

the peri-operative setting, the investigators studied the effects 

of the cytokines in the peripheral blood and at the tumor site. 

They found higher numbers of tumor-infi ltrating T-cells and 

mature DC1 in tumors resected from patients who received 

peri-operative cytokines, compared to a control group of 

tumors resected from non-cytokine treated patients (Verra 

et al 2005). The advent of targeted therapy for RCC has 

marked a new paradigm in the treatment of this tumor (Motzer 

and Bukowski 2006), and further studies may fi nd a role for 

combining cytokines with the newer targeted agents.

acute leuk.

Leukemic
APC

Figure 1 GM-CSF and IFN may upregulate co-stimulatory molecule expression on 
leukemic blasts leading to stimulation of cytotoxic T-cells and a GVL effect.
Abbreviations: APC, antigen presenting cells; GVL, graft versus leukemia; GM-CSF, 
granulocyte-macrophage-colony-stimulating factor; IFN, interferon; CTL, cytotoxic 
T lymphocyte.
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Table 1 Recent trials using GM-CSF in patients with renal cell carcinoma

Author Population Immune therapy Dose of GM-CSF Outcomes Toxicities (most 
common)

Correale et al 2005 19 Metastatic RCC IL-2 0.5 MIU BID
SQ D 6–15

150 µg /day SQ D 1–5 PR: 4/19
SD: 11/19
mTTP = 9 months 
2 year OS 42%
3 year OS 26%

Bone pain, asthenia, 
and fever

Verra et al 2003 59 Progressive RCC IL-2: 4 MIU/m2 SQ
INF-α :5MIU SQ
× 12 days every 3 wks

2.5 µg/kg SQ
D 1–12

CR: 5/59
PR: 6/59 
mOS: 9.5 mos.

Flu-like symptoms, 
transient LFT eleva-
tions

Lissoni et al 2003 25 Metastatic RCC IL-2: 6 MIU/day SQ 
6 D/wk × 4 wks
2 cycles (21-day 
intervals)
Maintenance: 6 days/
month until progres-
sion

13 patients also 
received GM-CSF 
0.3 µg /kg D 1–3 each 
week of Il-2 

IL-2 alone
PR: 3/13
SD: 8/13
IL-2 + GM
PR: 3/12
SD: 6/12

More asthenia 
occurred in the IL-2 + 
GM group

Smith et al 2003 21 (13 with metastatic 
RCC)

IL-2: 72,000 IU/kg
TID × on D 2–6 and
D16–20 ± GM-CSF

125 or 250 µg /m2/day 
SQ D 1–7 and
D 15–21

No PR or CR
SD: 4/13 with RCC

Grade 3 confusion in 
4 pts (3 on IL-2 alone)

Schmidinger et al 2001 55 Metastatic RCC IL-2: 4.5 MU day 1–4 
wks. 3 and 6
INF-γ: 100 µg TIW 
wks 1 and 4

400 µg SQ D 1–5 
weeks 2 and 5

CR: 1/53,.
PR: 4/53
SD: 14/53
mOS: 12 mos

No toxicities greater 
than grade 2

Westermann et al 2001 10 Stage IV RCC
Pilot study

IL-2: 4 MU/m2 SQ 
and INF-α: 5 MIU/m2 
SQ multiple dosing 
schedules

5 µg /kg SQ
D 1 + 4 week 1
D 1, 3, 5 week 2
D 1, 3, 5 weeks 3–5
D 1, 3, 5 weeks 7–9

PR 2/10 
1/10 mixed response

One grade 3 fever
No other grade 3–4 
toxicities

Tate et al 2001 13 Metastatic RCC, 
Phase I

IL-6 1, 5, or 10 µg/kg/
day D 1–14

3 µg /kg/day
D1–14

No responses DLT: thrombocytosis 
and hyperbilirubinemia

De Gast et al 2000 18
11 RCC
7 melanoma
Phase I

IL-2: 1, 4, or 8 MIU/m2, 
and INF-α: 5 MIU SQ 
× 12 days every 3 wks

2.5 or 5 µg /kg/day SQ CR: 3/11
SD: 5/11

DLT: fever with chills, 
hypotension, fl uid 
retention

Ryan et al 2000 20 Metastatic RCC IL-2: 11 MIU SQ 
D1–4 weekly
INF-α: 10 MIU SQ
2 days/week
c-RA 1 mg/kg daily 
orally for 4 weeks

1.25 µg /day SQ 
D 1–14

PR: 1
SD: 3
1-year survival rate: 
48%

Grade 3 fever, fatigue, 
anorexia mucositis, 
and dermatitis
One on-study death

Hotton et al 2000 16 pts with RCC and 
pulmonary metastases

IL-2: 1.5, 2.25, or 4.5 
MIU/m2/day 96 h CIV
D 1–4, 8–11, and 
15–18

1.25, 2.25, or 2.5 
g/kg/day SQ D 8–19

14 evaluable
0/14 had �50% 
shrinkage of total 
tumor burden nor 
reduction in pulmo-
nary metastases

Grade 3–4 toxicities:
lymphopenia, throm-
bocytopenia, elevated 
PT, thrombosis, hypo-
tension, hypocalcemia, 
hyperglycemia, pain, 
constipation
Grade 5: neurologic

Abbreviations: c-RA, cis-retinoic acid; CR, complete response; D, days; INF-α, interferon alpha; INF-γ, interferon gamma; OR, overall response; PR, partial response; pt, patient; 
SQ, subcutaneous; IL-2, interleukin 2; PR, partial response; mOS, median overall survival; LFT, liver function test; wks, weeks; mTTP, median time to progression; CIV, continu-
ous intra-venous infusion; PT, prothrombin time.
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Role of GM-CSF in the management 
of malignant melanoma
Unresectable melanoma carries a poor prognosis with lim-

ited options for treatment (Parmiani et al 2007). GM-CSF 

has been shown to induce cytotoxic T-cells and activated 

DC at tumor sites and draining lymph nodes (Parmiani et al 

2007). The use of GM-CSF in combination with IL-2 or 

IFN-alpha has yielded promising results, but is associated 

with signifi cant systemic toxicity. Table 2 summarizes activ-

ity and toxicities of GM-CSF-containing regimens in the 

treatment of malignant melanoma. Delivery of therapy into 

local sites of disease may circumvent systemic toxicity and 

is the subject of current investigation.

GM-CSF and cancer vaccine 
development
Addressing questions pertaining to the choice of vector, the 

specifi city of the antigen, and the choice of co-stimulatory 

molecules is crucial to the optimal development of cancer 

vaccines. Tumor-associated antigens from tumor cells (both 

autologous and allogeneic), proteins, peptides, and nucleic 

acid have been used as immunogens. Genetically modifi ed 

allogeneic tumor cells as well as recombinant viruses or 

bacterial genes have been utilized as vectors. Pre-existing 

immunity to the vector itself has limited the use of vaccines 

based on viral vectors (Rosenberg et al 1998). Vaccination 

in the absence of the co-stimulatory signals necessary to 

break tolerance can lead to anergy. Therefore, some vectors 

have been designed to express not only tumor-associated 

antigens, but also, co-stimulatory molecules and cytokines. 

Dranoff et al (1993) introduced GM-CSF as an important 

adjuvant in cancer vaccine trials, based on his observations 

that irradiated tumor cells expressing murine GM-CSF could 

stimulate potent, long-lasting, and tumor-specifi c immunity. 

In order to circumvent systemic toxicity and to increase 

immune responses, injection into the local tumor environ-

ment has been proposed. Hersch and colleagues used intra-

tumor injection of HLA-B7/beta2-microglobulin genes as 

plasmid DNA in lipid into patients with malignant melanoma. 

In a phase I trial setting, they reported a 36% response at the 

locally injected tumor and a 19% systemic anti-tumor response 

(Hersh and Stopeck 1997).Vaccine trials utilizing GM-CSF 

or engineering tumor cells to secrete GM-CSF showed 

encouraging results in the treatment of solid tumors including: 

malignant melanoma, breast carcinoma, pancreatic cancer, 

renal cell carcinoma, non-small cell carcinoma of the lung 

and prostate cancer (Schmidt et al 1997; Simons et al 1997; 

Hung et al 1998; Soiffer et al 1998; Disis et al 1999; 

Gaudernack and Gjertsen 1999; Leong et al 1999). Cassaday 

and colleagues performed a phase I study of immunization 

using particle-mediated epidermal delivery (PMED) of genes 

for gp100 and GM-CSF into uninvolved skin of melanoma 

patients. Two groups of 6 patients each were treated; group 1 

received PMED with cDNA for gp100, and group 2 received 

PMED with cDNA for GM-CSF followed by PMED for 

gp100 at the same site. Biopsies were obtained and evaluated 

to assess transgene expression, gold-bead penetration, and 

dendritic cell infi ltration. Exploratory studies included fl ow 

cytometric analyses of peripheral blood lymphocytes and 

evaluation of delayed-type hypersensitivity to gp100 peptide 

in HLA-A2 + patients. Local toxicity in both groups was mild 

and resolved within 2 weeks. No vaccine-related systemic 

toxicity was reported, including no induction of pathologic 

auto-antibodies. GM-CSF transgene expression in vaccinated 

skin sites was detected. GM-CSF and gp100 PMED yielded 

a greater infi ltration of DC into vaccine sites than did gp100 

PMED alone. Immunologic monitoring suggested modest 

activation of an anti-melanoma response (Cassaday et al 

2007). This study demonstrated tolerability and induction 

of anti-melanoma immune responses with a local approach. 

Additional investigation utilizing this technique is warranted. 

Bendandi and colleagues tested the hypothesis that immune 

therapy is more effective in the setting of minimal residual 

disease (MRD). They documented clearance of the t(14,18) 

translocation by PCR from the peripheral circulation in 8 of 

11 patients with lymphoma and MRD, after administration 

of a GM-CSF containing vaccine (Bendandi et al 1999). 

Currently our center participates in a multi-institutional trial 

of vaccine therapy for AML after remission induction. GM-

CSF may enhance antigen presentation by recruiting DC to 

the (vaccine) site where antigen is taken up, processed, and 

presented to T-cells in draining lymph nodes, generating 

systemic tumor-specifi c responses (Borrello and Pardoll 

2002).

Cell-mediated vaccines: role 
of dendritic cells
DC are ideal candidates for use in vaccination, owing to 

their role in antigen presentation. DC can be isolated from 

the peripheral circulation by FACS sorting or magnetic bead 

isolation, or can be generated in large quantities ex-vivo 

from peripheral blood progenitors in media supplemented 

with cytokines, including GM-CSF (Berthier et al 2000). 

These DC may then be matured with cytokine culture 

prior to loading with antigen. They have yielded promising 
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Table 2 GM-CSF-containing regimens in patients with malignant melanoma

Author Population Concurrent 
therapy

Dose of GM-CSF Outcomes Toxicities (most 
common)

Lutzky et al 2003 11 Thalidomide: intra-
patient dose escalation 
50–400 µg PO daily

125 µg/m2 SQ daily × 
14 days

3 alive without recur-
rent disease

Most common: fatigue, 
dizziness, somnolence, 
constipation

Weber et al 2005 31 Temozolamide: days 
1–5
INFα-2b: days 6–17 
IL-2: days 6–17

125 µg/m2 SQ days 
6–17

CR: 4 
PR: 4 
SD: 7 
mOS: 15.9 mos

SAEs in 7 patients
Most common toxic-
ity: fl u-like symptoms

De Gast et al 2003 74 Temozolamide: days 
1–5
INFα-2b: days 6–17 
IL-2: days 6–17 
Repeated every 
22 days in stable/
responding pts

2.5 µg/kg SQ days 
6–17

CR: 4 s
PR: 19 
SD: 13 
mOS: 252 day

DLT: thrombocyto-
penia
Grade 3–4 lymphope-
nia was observed
All patients developed 
fl u-like syndrome

Groenewegen and de 
Gast 1999; Groenewe-
gen et al 2002

32 DTIC: day 1 
IL-2: days 6–17 
INFα-2b: days 6–17

2.5 µg/kg SQ days 
2–12

CR: 4 
PR: 6 
mOS: 8 mos

Treatment was well 
tolerated

Janik et al 2001 28 Topotecan: 1.5 mg/m2 
daily x 5 days 
Cycle repeated every 
21 days

250 µg/m2 SQ QD 
post CHT 
250 µg/m2 SQ BID × 
5 D prior to CHT; or 
none

CR: 0 
PR: 1

Treatment was well 
tolerated

Ravaud et al 2001 32 A: None 
B: DTIC 800 mg/m2 D 
1 21-day cycles 
Cross-over from A 
to B allowed for non-
response/progression

A: 5 µg/kg BID SQ × 
14 D 
 B: 5 µg/kg BID SQ 
D2-19, 
21-day cycles

Best response was SD: 
A: 0 
B: 3 
OS 
A: 6.3 months 
B: 7.3 months

Dose alteration due 
to toxicity in 20% A 
and 4.7% B
Grade 3 or 4 toxicity 
occurred in 40% A 
and 76.5% B

Gajewski and Flickinger 
2000

7 Cisplatin, DTIC: D1 
IL-2: D 8–14 
INF-α: D 8,10,12,14 
28 day cycles

5 µg/kg SQ D 2–7 CR: 1 
PR: 1 
MR: 2

Treatment was well 
tolerated

Gibbs et al 2000 72 Temozolamide: D1–5
Cisplatin: D 1–3 
IL-2: D 1–4 
INF-α: D 1–5 
28-day cycles

250 µg SQ days 6–25 CR: 1 
PR: 11 
mOS: 11 mos

Signifi cant toxicity 
with grade 2 and 4 
thrombocytopenia and 
renal impairment

Vaughan et al 2000 19 Cisplatin: D 1–3 
DTIC: D 1–3 
Tamoxifen: daily 
IL-2: D 6–10, 17–21 
INFα-2b: days 6–10 
and 17–21 
28-day cycles

450 µg/m2 SQ D 
4,5,15,16 or 
450 µg /m2 SQ 
D 4,5,15,16 and 225 
µg/m2 SQ D 6–10, 
17–21 or 
450 µg /m2 SQ 
D 4–10, 15–21

OR: 6 
CR: 2 
mOS: 6.2 mos.

Grade 3–4 toxicities:
bone marrow sup-
pression, hypoten-
sion, pulmonary 
edema, confusion, 
and increased serum 
creatinine

Schachter et al 1998 40 INF-α: days 1,3,5 
Carmustine: day 8 
Cisplatin: days 8–10 
DTIC: days 8–10 
Tamoxifen: daily 
21-day cycles

20 µg/m2/day 
SQ × 7 days following 
chemotherapy

CR: 9 
PR: 11 
Survival benefi t in 
responders: 22 mos. vs 
8 mos.(p = 0.0001)

Treatment was well 
tolerated

Abbreviations: bid, twice daily; TIW, 3 times weekly; DTIC, dacarbazine; INF-α, interferon alpha; IL-2, interleukin 2; PD, progressive disease; PO, orally; PR, partial response; 
pt, patient; OR, overall response; mOS, median overall survival; SQ, subcutaneously; LFT, liver function test; wks, weeks; CHT, chemotherapy; D, days; DLT, dose-limiting toxicity; 
SAEs, serious adverse events.
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results and continue to be tested in the treatment of solid 

and hematological malignancies. Results from phase 1 and 

2 clinical trials indicate that tumor-peptide loaded DC can 

induce clinically signifi cant immune responses in patients 

with lymphoma and melanoma (Hsu et al 1996; Hersey et al 

2004). Antigen-loaded DC as cancer vaccines have been 

limited by uncertainty regarding the best DC subtype to use, 

the optimal maturation status of the DC, the best site of admin-

istration (sub-cutaneous, intra-venous, or intra-nodal) and the 

optimal schedule of administration. More research is needed 

in order to answer these questions and defi ne the optimal use 

of GM-CSF as an adjuvant in cell-mediated vaccines.

Future directions
Pre-clinical and clinical data support the role of GM-CSF as an 

immune adjuvant in the treatment of malignant solid and liquid 

tumors, but the challenge remains to devise combinations of 

cytotoxic and cytokine therapy which are synergistic in break-

ing immune tolerance, enhancing antigen presentation and 

up-regulating anti-tumor T-cell responses. Local production of 

GM-CSF by tumors in the setting of tumor-specifi c vaccina-

tion has shown promise in the induction of anti-tumor immune 

responses. However, the laboratory correlates of response; 

such as, the lymphocytic and infl ammatory infi ltrates that 

develop at the site of vaccination and cytokine injection, do not 

reproducibly correlate with improved clinical outcomes, and 

well designed translational studies are needed to better defi ne 

the anti-tumor activity of GM-CSF and other cytokines. Vac-

cines and cytokine therapies are attractive for use in patients 

who cannot tolerate further cytotoxic chemotherapy, owing 

to their relatively low toxicity, and in patients whose tumors 

are in a minimal residual disease state.

Table 3 Clinical trials using GM-CSF transduced tumor cells as vaccines

Authors Tumor type Clinical results

Slingluff et al 2003
.

Melanoma
Randomized comparison of multipeptide vac-
cine either in emulsion with GM-CSF or pulsed 
on monocytoid DCs

–  Overall immune responses, including T-cell 
responses were superior in the GM-CSF arm, 
compared to the DC arm

–  Helper T-cell responses were detected and 
correlated with T-cell reactivity to the mela-
noma peptides

–  2 PR in the GM-CSF arm, 1 in the DC arm. 
-2 SD in the GM-CSF arm and 1 in the DC arm

–  mOS:14.8 months for patients in the GM-
CSF arm and 6.2 months for the DC arm.

Nelson et al 2000 Renal cell carcinoma –  Increase in DTH response against autologous 
tumor cells

– 1 PR

Simons et al 1999; Simons and Sacks 2006 Prostate cancer – Increase in DTH response
–  Induction of tumor specifi c T-cell and B-cell 

responses

Kusumoto et al 2001 Melanoma – Increase in DTH response
–  Increase in melanoma specifi c CTLs in most 

patients

Soiffer et al 1998; Soiffer et al 2003 Melanoma – Increase in DTH response
– Eosinophilia
– TILs highly cytotoxic
– 1 CR, 1PR, 1MR, 3 minor responses

Salgia et al 2003 Non-small cell lung Cancer – Increase in DTH response
–  T-cell and plasma cell infi ltration of metastatic 

sites
– 5 SD, 1 mixed response

Jaffee et al 2001 Pancreatic cancer – Increase in DTH response
– Increased systemic GM-CSF levels
–  2/5 patients receiving highest cell dose �25 

months in CR

Abbreviations: DTH, delayed type hypersensitivity; PR, partial response; CTLs, cytotoxic T lymphocytes; TILs, tumor infi ltrating lymphocytes; MR, minor response; SD, stable 
disease; mOS, median overall survival; CR, complete response.
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The success of cytokine therapy will likely depend upon 

defi ning the most favorable combination of cytokines, the 

optimal site and route of administration, reaching a MRD 

status prior to cytokine therapy, and development of surrogate 

endpoints of anti-tumor activity that can be used to design 

subsequent clinical trials.
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