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Background: The majority of previous neuroimaging studies have demonstrated both structural 

and functional abnormalities in obstructive sleep apnea (OSA). However, few studies have 

focused on the regional intensity of spontaneous fluctuations during the resting state and the 

relationship between the abnormal properties and the behavioral performances. In the present 

study, we employed the amplitude of low-frequency fluctuation (ALFF) method to explore the 

local features of spontaneous brain activity in OSA patients (OSAs).

Methods: Twenty-five untreated male severe OSAs and 25 age-matched and years-of-education-

matched male good sleepers (GSs) were included in this study. The ALFF method was used 

to assess the local features of spontaneous brain activity. The mean signal values of the altered 

ALFF areas were analyzed with receiver operating characteristic curve. Partial correlation 

analysis was used to explore the relationship between the observed mean ALFF values of the 

different areas and the behavioral performances.

Results: Compared with GSs, OSAs had significantly higher scores for body mass index, apnea–

hypopnea index, arterial oxygen saturation 90%, arousal index, and Epworth Sleepiness Scale 

(ESS) score; furthermore, OSAs had significantly lower scores for rapid eye movement sleep and 

in the Montreal Cognitive Assessment (MoCA). Compared with GSs, OSAs showed significant 

lower-ALFF areas in the cluster of the right precuneus and bilateral posterior cingulate gyrus, as 

well as a higher-ALFF area in the left inferior frontal gyrus. The area under the curve values of 

the lower- and higher-ALFF areas were 0.90 and 0.93, respectively. Further diagnostic analysis 

exhibited that the sensibility and specificity of the two clusters were 80% and 92%, respectively. 

The mean signal value of the lower-ALFF cluster displayed significant positive correlations with 

lowest oxygen saturation (r=0.447, P=0.025) and MoCA score (r =0.405, P=0.045).

Conclusion: OSAs may involve in a dysfunction in the default mode network and an adap-

tive compensatory response in the frontal lobe, which reflect the underlying pathophysiology 

of  cognitive impairment.

Keywords: obstructive sleep apnea, amplitude of low-frequency fluctuation, functional magnetic 

resonance imaging, resting state, spontaneous activity, blood oxygen-level-dependent

Introduction
Obstructive sleep apnea (OSA), characterized by repeated obstructions of upper 

airway with intermittent hypoxic exposure, is associated with multiple detrimental 

physiological and psychological consequences, in addition to being associated with 

cardiorespiratory diseases, including pulmonary hypertension,1 systemic hypertension,2 

cardiac arrhythmias,3 cardiac ischemia4 and cerebral ischemia.5 OSA may also cause 

daytime sleepiness,6 increase the risk of a traffic accident,7 and diminish both qual-

ity of life8 and work performance,9 as well as being accompanied by impairment in 
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several cognitive domains, including attention and vigilance 

decrements, memory gaps, psychomotor dysfunction, and 

abnormalities in executive functions.10–12 On the basis of 

available population-based studies, OSA affects 3%–7% 

of adult men, 2%–5% of adult women,13–15 and up to 4% 

of children.16,17 The main pathophysiologic mechanism of 

cognitive deficits from OSA, including intermittent hypoxia, 

intermittent hypercapnia, and sleep fragmentation,18 are still 

unclear.

Previous neuroimaging studies have investigated 1) 

diminutions in gray matter concentration in the left hip-

pocampus, left rectus gyrus, bilateral superior frontal gyrus, 

left precentral gyrus, bilateral frontomarginal gyrus, bilateral 

anterior cingulate gyrus, right insular gyrus, bilateral caudate 

nucleus, bilateral thalamus, bilateral amygdalo-hippocam-

pus, bilateral inferior temporal gyrus, and cerebellum, and 

2) gray matter volume deficits in bilateral hippocampus, 

bilateral lateral temporal areas, right cuneus, right middle 

temporal gyrus, left dorsolateral prefrontal cortex, right 

middle temporal gyrus, and left cerebellum using voxel-

based morphometry techniques in OSA patients (OSAs).19–23 

Moreover, diffusion tensor imaging studies showed a wide 

range of changes in white matter integrity within the corpus 

callosum, frontal cortex, temporal cortex, parietal cortexes, 

cingulate bundle, and cerebellum.24–26 A single-photon emis-

sion computed tomography study found that severe OSAs 

showed reduced cerebral blood flow in bilateral parahip-

pocampal gyrus, right lingual gyrus, pericentral gyrus, and 

cuneus.27 Decreased neural activations associated with cog-

nitive impairment have been found in multiple brain regions, 

including the cingulate gyrus, dorsolateral prefrontal gyrus, 

inferior frontal gyrus, left postcentral gyrus, inferior and 

posterior parietal lobes, insula, and right putamen using 

task-state functional magnetic resonance imaging (fMRI) 

in OSAs.28–30 Recently, use of resting-state fMRI (rs-fMRI) 

has been increasing to investigate the ongoing neuronal 

processes in OSA. Although the majority of previous neu-

roimaging studies have focused on the brain structural and 

task-state functional changes of OSAs, few studies have 

evaluated the changes in blood oxygen-level-dependent 

(BOLD) signals of regional spontaneous activity of OSAs 

during resting state and their relationships with behavioral 

performances.

Amplitude of low-frequency fluctuation (ALFF), a newly 

developed rs-fMRI approach, calculates the square root of the 

power spectrum in a low-frequency range (0.01–0.08 Hz), for 

detecting the regional intensity of spontaneous fluctuations in 

BOLD signals.31–33 Furthermore, the ALFF has been proven 

to have test–retest reliability34 and has already been applied 

to patient studies investigating attention deficit hyperactiv-

ity disorder,31 sleep deprivation,35 schizophrenia,36 and early 

Alzheimer’s disease.37 However, it has not yet been used 

to explore the pathophysiological changes in OSAs. This 

study is the first to utilize ALFF as an index to investigate 

the intrinsic brain activity traits of OSAs and its potential 

mechanisms.

Materials and methods
Subjects
Twenty-five untreated male severe OSAs and 25 age-matched 

and years-of-education-matched male good sleepers (GSs) 

were included in this study from the Sleep Monitoring 

Room of the Respiratory Department of The First Affiliated 

Hospital of Nanchang University. Each subject was assessed 

by a detailed clinical interview and physical examination; 

in addition, the subjects completed a sleep questionnaire 

and underwent overnight polysomnography. The inclusion 

and exclusion criteria for the OSAs and GSs were as the 

same as in our previous study.38,39 The inclusion criteria for 

the OSAs were as follows: male sex; age 22  years but 

60 years; and an apnea–hypopnea index (AHI) 30 events 

per hour. The exclusion criteria for both OSAs and GSs were 

as follows: 1) other sleep disorders, such as insomnia and 

sleep-related eating disorders; 2) history of cardiovascular 

disease, hypertension, or diabetes mellitus; 3) central nervous 

system disorders (neurodegenerative diseases, epilepsy, head 

injury, psychosis, hypothyroidism, or current depression); 

4) left-handedness; 5) alcohol or illicit drug abuse; 6) current 

intake of psychoactive medications; and 7) contraindica-

tions to MRI, such as claustrophobia, metallic implants, or 

devices in the body. This study was approved by The Human 

Research Ethics Committee at The First Affiliated Hospital 

of Nanchang University, and all participants provided written 

informed consent forms.

Polysomnography
The day before the sleep studies, all OSAs and GSs were 

asked to refrain from drinking alcohol or caffeinated bever-

ages. Full nocturnal polysomnography monitoring was per-

formed on OSAs and GSs using the Respironics LE-series 

physiological monitoring system (Alice 5 LE; Respironics, 

Orlando, FL, USA) in the Sleep Center of our hospital. 

Standard electroencephalogram, electrooculogram, chin 

electromyogram, electrocardiogram, thoracic and abdominal 

movements, and snoring were recorded. Arterial oxygen 

saturation (SaO
2
) was measured transcutaneously by fingertip 
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pulse oximetry. In accordance with the American Academy 

of Sleep Medicine guidelines, apnea was defined as the 

continuous cessation of airflow for more than 10 seconds 

and hypopnea was defined as a decrease in airflow by 30% 

with arousal or oxygen desaturation 4%.40,41 The AHI 

was calculated as the average of the total number of apnea 

and hypopnea events experienced per hour of sleep. Sub-

jects’ performances were recorded on videotape and were 

continuously observed by a polysomnography technician. 

Polysomnography was performed from 10 pm to 6 am next 

morning.

Neuropsychological evaluation
All subjects filled in a sleep questionnaire to assess their 

daytime sleepiness by the Epworth Sleepiness Scale (ESS), 

with scores between 0 and 24.42 A score higher than 6 was 

considered somnolence. All subjects underwent a cogni-

tive assessment using the Montreal Cognitive Assessment 

(MoCA)43 tool, administered by two independent neurop-

sychologists, to evaluate their executive function, naming, 

attention, calculation, language, abstraction, memory, and 

orientation. The total MoCA score is 30. A total MoCA 

score 26 indicates cognitive impairment, whereas a 

score 26 indicates normal cognitive function. If the length 

of schooling was 12 years, one point was added to the total 

score, so as to adjust for educational bias.44

MRI parameters
MRI scanning was performed on a 3-Tesla MRI scanner 

(Siemens, Erlangen, Germany). High-resolution T1-weighted 

images were acquired with a three-dimensional spoiled 

gradient-recalled echo sequence in a sagittal orientation: 176 

images (repetition time =1,900 ms; echo time =2.26 ms; thick-

ness =1.0 mm; gap =0.5 mm; acquisition matrix =256×256; 

field of view =250×250 mm2, flip angle =9°) were obtained. 

Finally, 240 functional images (repetition time =2,000 ms; 

echo time =30  ms; thickness =4.0  mm; gap =1.2  mm; 

acquisition matrix =64×64; flip angle =90°; field of 

view =230×230 mm2; 30 axial slices with gradient-recalled 

echo-planar imaging [EPI] pulse sequence) covering the 

whole brain were obtained.

fMRI data analysis
Functional data were checked using MRIcro software 

(www.MRIcro.com) to exclude defective data. The first ten 

time points of the functional images were discarded due to 

the possible instability of the initial MRI signals and the 

participants’ adaptation time to the scanning environment. 

On the basis of MATLAB2010a (Mathworks, Natick, MA, 

USA), the remainder of the data preprocessing was performed 

by DPARSFA (http://rfmri.org/DPARSF) software, includ-

ing DICOM form transformation, slice timing, head motion 

correction, spatial normalization, smoothing with a Gaussian 

kernel of 6×6×6 mm3 full width at half maximum (FWHM). 

Motion time courses were obtained by estimating the values 

for translation (mm) and rotation (degrees) for each subject. 

Participants who had 1.5 mm maximum displacement in 

x, y, or z planes and 1.5° of angular motion during the whole 

fMRI scans were rejected. The Friston six head motion 

parameters were used to regress out head motion effects based 

on recent work showing that higher-order models were more 

effective in removing head motion effects.45,46 Linear regres-

sion was also applied to remove other sources of spurious 

covariates along with their temporal derivatives, including 

the signal from a ventricular region of interest (ROI) and the 

signal from a region centered in the white matter.47 Of note, 

the global signal was not regressed out in the present data, 

as in the study by Guo et al48 for the reason that there is still 

a controversy around the removal of the global signal in the 

preprocessing step of resting-state data.47,49 After head-motion 

correction, the fMRI images were spatially normalized to 

the Montreal Neurological Institute (MNI) space using the 

standard EPI template and resampling the images at a resolu-

tion of 3×3×3 mm3. After preprocessing, the time series for 

each voxel were linearly detrended to reduce low-frequency 

drift, physiological high-frequency respiratory and cardiac 

noise, and time series linear detrending. The time series for 

each voxel were transformed to the frequency domain, and 

the power spectrum was then obtained. Because the power 

of a given frequency is proportional to the square of the 

amplitude of this frequency component, the square root was 

calculated at each frequency of the power spectrum, and 

the averaged square root was obtained across 0.01–0.08 Hz 

at each voxel. This averaged square root was taken as the 

ALFF. The details of ALFF calculation are as described in 

a previous study.31 To reduce the global effects of variability 

across the participants, the ALFF of each voxel was divided 

by the global mean ALFF value for each participant.

Statistical analysis
Subject characteristics, including age, body mass index (BMI), 

education, ESS score, MoCA score, and sleep-disordered 

breathing parameters, were tested using independent sample 

t-tests to compare OSAs with GSs using IBM Statistical Pack-

age for the Social Sciences version 19.0 (SPSS 19.0), and a 

P-value 0.05 was deemed significant. For functional data, 
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two-sample Student’s t-test was used to analyze the difference 

between the two groups, with age and years of education as 

nuisance covariates of no interest. A corrected significance 

level of individual voxel P0.001 and a cluster volume (V) 

270 mm3 (a minimum continuous V of 270 mm3), using 

a false discovery rate (FDR)-corrected cluster threshold of 

P0.05, was used to determine statistical significance.

On the basis of the ALFF findings, the brain regions that 

demonstrated significant level of difference between groups 

were indentified. These regions were classified as ROIs and 

saved as masks using the REST Version1.8 software (http://

www.resting-fmri.Sourceforge.net). For each ROI, the mean 

ALFF value was extracted by averaging the ALFF values 

over all voxels for each OSA. Finally, the mean ALFF values 

were entered into IBM SPSS 19.0 to calculate their correla-

tions with the behavioral performances.

Results
Demographic and clinical results
Demographic and clinical characteristics of each group are 

summarized in Table 1. The OSAs had significantly higher 

scores for BMI (t =6.25, P0.001), AHI (t =15.51, P0.001), 

SaO
2
 90% (t =6.66, P0.001), arousal index (t =6.85, 

P0.001), and ESS score (t =7.64, P0.001) and had signifi-

cantly lower scores for rapid eye movement (REM) sleep (t =-5.4, 

P0.001) and MoCA (t =-2.16, P=0.036) than the GSs.

ALFF results
Compared with GSs, OSAs showed significant lower-ALFF 

areas in the cluster of right precuneus and bilateral posterior 

cingulate gyrus and a higher-ALFF area in the left inferior 

frontal gyrus. The details are presented in Table 2 and 

Figure 1. The mean ALFF values of these altered areas were 

extracted (Figure 2).

Correlation results
In the OSAs, the AHI score displayed a significant positive 

correlation with the arousal index (r=0.642, P=0.001) and 

negative correlations with REM% (r=-0.429, P=0.032) and 

MoCA score (r=-0.405, P=0.045). N2% (percentage of 

total sleep time at diagnostic polysomnography spent in the 

relevant stage) displayed negative correlations with REM% 

(r=-0.584, P=0.002) and ESS score (r=-0.531, P=0.006). 

BMI displayed significant positive correlation with arousal 

index (r=0.582, P=0.002) and negative correlation with the 

lowest oxygen saturation (r=-0.647, P0.001).

The mean signal value of the observed lower-ALFF area 

displayed significant positive correlations with the lowest 

oxygen saturation (r=0.447, P=0.025) and MoCA score 

(r=0.405, P=0.045).

Receiver operating characteristic curve
Because different ALFF areas were found between OSAs 

and GSs, they might be utilized as markers to separate 

the OSAs from the GSs. To test this possibility, the mean 

ALFF values of the different brain regions were extracted 

and used for analysis of the receiver operating character-

istic curves. In the present study, the values for the areas 

under the curves of the left inferior frontal gyrus and the 

cluster of right precuneus and bilateral posterior cingulate 

gyrus were 0.93 and 0.90, respectively. Further diagnostic 

analysis showed that the sensibility and specificity of the 

two clusters were 92% and 80%, respectively. The details 

are presented in Figure 3.

Discussion
Our previous study50 had demonstrated that many brain 

areas have obvious sex differences after normal sleep status 

and during sleep loss status. In this study, so as to avoid the 

influence of the sex differences or a lopsided sex ratio, only 

male OSAs were recruited. Our study is the first to investi-

gate the effect of OSA on resting-state brain activity using 

the ALFF method. In our current study, we found that OSAs 

showed higher ALFF in the left inferior frontal lobe and 

lower ALFF in the cluster of right precuneus and bilateral 

Table 1 Demographic and clinical characteristics of OSAs and 
GSs

Characteristic OSAs (N=25) GSs (N=25) P*

Mean SD Mean SD

Age, years 39.4 1.7 39.5 1.6 0.946
Education, years 11.9 3.1 10.8 3.8 0.258
BMI, kg/m2 27.8 3.4 22.9 2.1 0.001*
Total sleep time, minutes 373.6 31.8 397.4 24.9 0.005*
AHI, per hour 60.0 18.6 2.2 1.3 0.001*
N1, % 32.2 20.4 10.6 4.0 0.001*
N2, % 45.2 17.4 48.6 6.4 0.361
N3, % 14.2 9.3 21.0 5.2 0.001*
REM, % 8.4 8.6 20.4 6.9 0.001*
SaO2 90% 26.5 19.7 0.2 0.2 0.001*
Lowest SaO2 64.0 12.3 90.63 5.72 0.001*
Arousal index, per hour 44.0 23.3 11.8 3.0 0.001*
ESS score 15.2 7.3 1.1 1.1 0.001*
MoCA score 25.7 2.3 27.1 2.3 0.036*

Notes: SaO2 90%, percentage of total sleep time spent at oxygen saturations 
less than 90%; N1%, N2%, N3%, REM%, percentage of total sleep time at diagnostic 
polysomnography spent in relevant stages; Lowest SaO2, lowest oxygen saturations; 
MoCA, Montreal Cognitive Assessment; P*, independent samples t-tests; *P0.05. 
Abbreviations: AHI, apnea–hypopnea index; BMI, body mass index; ESS, Epworth 
Sleepiness Scale; N, number; OSAs, patients with severe obstructive sleep apnea; 
GSs, good sleepers; REM, rapid eye movement; SD, standard deviation.
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posterior cingulate gyrus, compared with GSs, and showed 

lower MoCA score than GSs. Moreover, the observed lower-

ALFF area displayed significant positive correlations with 

the lowest oxygen saturation and MoCA score.

As known, the lower-ALFF area in the cluster of right 

precuneus and bilateral posterior cingulate gyrus is largely 

included in the default mode networks (DMNs).51 Similarly, 

Prilipko et al52 found that OSAs showed abnormal deacti-

vation in the DMN during working-memory tasks and a 

significantly positive correlation between the deactivation of 

DMN regions and behavioral performance,52 suggesting that 

suppression of activity in the DMN plays a role in cognitive 

impairment. Beebe et al53 also found, using sophisticated 

meta-analytic models, that OSA had a substantial impact on 

vigilance and executive functions but a negligible impact on 

intellectual and verbal function. Yaouhi et al54 found that the 

glucose metabolic activity of precuneus and cingulate gyrus, 

which were not atrophic, was reduced in OSAs, compared 

with that in GSs, using a 18F-fluoro-2-deoxy-D-glucose 

positron emission tomography method,54 and that this func-

tional impairment may have been caused partly by remote 

effects originating from morphologically impaired areas 

with decreased connectivity.55 Furthermore, our study found 

a positive correlation between cerebral deactivation in parts 

of regions of the DMN and the lowest oxygen saturation, 

suggesting that intermittent hypoxia may be an important 

factor for the DMN dysfunction in OSAs.

The cingulate area is activated by dyspnea,56 breath

lessness,57 and emotion related to the need for air58 and is 

involved in autonomic functions, including maintenance of 

blood pressure and salivary secretion, which suggests that 

the cingulate cortex has a complex and indirect relationship 

with the central networks that control respiration.59,60 Previ-

ous structural neuroimaging studies have found gray matter 

loss and white matter integrity reduction in the cingulate in 

OSAs.25,26 Joo et al20 also found that OSAs had decreased 

gray matter concentrations in the cingulate cortex, which 

may explain the clinical manifestations such as respiratory, 

affective, and cardiovascular disturbances. Ayalon et al61 

Table 2 Two-sample t-test differences between OSAs and GSs using ALFF method

Conditions Brain regions V (mm3) t-score of  
peak voxel

MNI coordinates of peak voxel P

OSAs  GSs
Right precuneus/posterior  
cingulate gyrus

1,350 -5.44 0 -51 30 0.001*

OSAs  GSs Left inferior frontal gyrus 297 5.37 -27 39 -21 0.001*

Notes: The between-condition statistical threshold was set at cluster size with P0.05, voxel with P0.001, and V 270 mm3, corrected by FDR. P*, independent samples 
t-tests; *P0.05.
Abbreviations: ALFF, amplitude of low-frequency fluctuation; FDR, false discovery rate; GSs, good sleepers; MNI, Montreal Neurological Institute; OSAs, patients with 
severe obstructive sleep apnea; V, volume.

Figure 1 Compared to GSs, OSAs showed altered ALFF areas.
Notes: The red color represents an higher-ALFF area (A), and the blue color 
represents a lower-ALFF area (B). 
Abbreviations: GSs, good sleepers; OSAs, patients with obstructive sleep apnea; 
ALFF, amplitude of low-frequency fluctuation.
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Figure 2 Mean ALFF signal values for altered regional brain areas.
Notes: Compared with GSs, OSAs showed altered ALFF area in the left inferior 
frontal gyrus (0.75±0.63 versus -0.17±0.38, respectively) and in the cluster of the 
right precuneus and bilateral posterior cingulate gyrus (0.71±0.58 versus 1.72±0.57, 
respectively).
Abbreviations: GSs, good sleepers; OSAs, patients with obstructive sleep apnea; 
ALFF, amplitude of low-frequency fluctuation; Prc, precuneus; Pcc, posterior 
cingulate gyrus.
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found that OSAs showed decreased brain activation in left 

precentral gyrus, left anterior, and posterior cingulate, com-

pared with control subjects, during an attention task. Similar 

results have been reported during valsalva maneuvers.62 

These studies suggest that the cingulate gyrus may be particu-

larly vulnerable to OSA-related impairment, independent of 

the specific cognitive challenge measured. In support of these 

functional and structural findings, our study found lower-

ALFF areas in the posterior cingulate in OSAs compared with 

GSs. Moreover, a significant positive correlation between 

the lower-ALFF area and the MoCA score was observed in 

the OSAs. This brain–behavior relationship demonstrated 

that the abnormal properties of the posterior cingulate were 

associated with impaired cognitive function in OSAs.

The precuneus plays an important role in fundamental 

cognitive functioning, including episodic memory retrieval, 

visual–spatial imagery, self-processing, and consciousness.63 

Our previous study38 found lower regional homogeneity area 

in the precuneus, which showed a significant negative cor-

relation with sleep time, suggesting that decreased sleep time 

may be an important factor for dysfunction in the precuneus. 

In the current study, the lower-ALFF area in the right precu-

neus displayed significant positive correlation with MoCA 

score, suggesting that the abnormalities of the precuneus may 

be associated with a cognitive dysfunction.

Ayalon et al64 found that compared with GSs, OSAs 

showed increased activity in the bilateral inferior frontal 

gyrus, and a significant relationship between increased acti-

vation in the left inferior frontal gyrus and better immediate 

recall during a verbal learning task was found, suggesting 

an adaptive compensatory response. In support of this 

finding, in our study, OSAs showed higher ALFF in the 

left inferior frontal lobe, compared with GSs, which was 

consistent with previous studies on sleep deprivation65 and 

healthy aging.66

Conclusion
In conclusion, our findings suggest that the ALFF method 

may be a useful noninvasive imaging tool and a symbolic 

early biomarker for the detection of cerebral changes and for 

indexing of the changes of cognitive function, which may 

be helpful in the development of imaging biomarkers for the 

detection of cerebral changes. Furthermore, the abnormal 

spontaneous activity of the DMN region and the frontal 

lobe may be involved in the underlying pathophysiology of 

OSAs. However, there are several limitations that should be 

paid attention to. First, a larger sample size, as well as female 

and children populations, should be studied. Second, another 

group comparison, both before and after the treatment, will 

yield significant insight.
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Figure 3 ROC curve analysis of mean ALFF signal values for altered regional brain areas.
Notes: (A) Depicts the ROC curve of left inferior frontal gyrus; ROC with AUC =0.93. (B) Depicts the ROC curve of cluster of right precuneus and bilateral posterior 
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