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Background: Enhancement of the osteogenic potential of mesenchymal stem cells (MSCs) 

is highly desirable in the field of bone regeneration. This paper proposes a new approach for 

the improvement of osteogenesis combining hypergravity with osteoinductive nanoparticles 

(NPs).

Materials and methods: In this study, we aimed to investigate the combined effects of hyper-

gravity and barium titanate NPs (BTNPs) on the osteogenic differentiation of rat MSCs, and 

the hypergravity effects on NP internalization. To obtain the hypergravity condition, we used a 

large-diameter centrifuge in the presence of a BTNP-doped culture medium. We analyzed cell 

morphology and NP internalization with immunofluorescent staining and coherent anti-Stokes 

Raman scattering, respectively. Moreover, cell differentiation was evaluated both at the gene 

level with quantitative real-time reverse-transcription polymerase chain reaction and at the 

protein level with Western blotting.

Results: Following a 20 g treatment, we found alterations in cytoskeleton conformation, 

cellular shape and morphology, as well as a significant increment of expression of osteoblastic 

markers both at the gene and protein levels, jointly pointing to a substantial increment of NP 

uptake. Taken together, our findings suggest a synergistic effect of hypergravity and BTNPs in 

the enhancement of the osteogenic differentiation of MSCs.

Conclusion: The obtained results could become useful in the design of new approaches in 

bone-tissue engineering, as well as for in vitro drug-delivery strategies where an increment of 

nanocarrier internalization could result in a higher drug uptake by cell and/or tissue constructs.

Keywords: mesenchymal stem cells, hypergravity, barium titanate nanoparticles, osteogenesis

Introduction
Physical stimuli can significantly alter cellular behavior, giving rise to biochemical 

signals involved in molecular response.1 This process is called mechanotransduc-

tion, and the responsible structures sensitive to mechanical forces are most probably 

cytoskeleton elements.2

A number of studies have demonstrated that cells are sensitive to several kinds 

of physical cues (shear stress, topography, mechanical deformation, etc), influencing 

cell migration,3 differentiation,4 and proliferation.5 Among these stimuli, gravity is 

required for the correct development of land-based organisms, and in particular for 

the skeleton and for the muscle and nervous systems.6

An increasing amount of research is focused on the effects of gravity alterations 

on the physiological processes, but also on the possibility to exploit this stimulus as 

a potential therapeutic cue.7–9 As an example, improved regeneration of infarcted 

myocardium has been achieved after injection of stem cells differentiated following 
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a 2 g hypergravity treatment, which enhanced the activities 

of cardiac marker MEF-2 by promoting the nuclear export of 

histone deacetylase 5.10 Chang et al investigated altered grav-

ity effects on human lung adenocarcinoma, demonstrating the 

ability of simulated microgravity to decrease the metastatic 

potential of this tumor cell line.11 Other researchers used 

microgravity stimulation as an approach for the development 

of a large amount of β-cell spheroids, which once transplanted 

in mice are able to improve the symptoms of diabetes.12

Among different tissues, bone is particularly affected by 

altered gravity conditions: evidence regarding bone regen-

eration suggests that hypergravity exposure – conversely to 

microgravity, which negatively affects osteogenesis – may 

enhance the osteogenic potential of osteoblast precursors.13 

The ability of mesenchymal stem cells (MSCs) to differ-

entiate into osteoblasts is well known, but the osteogenic 

potential of MSCs decreases with the prolonged culture 

duration necessary to obtain an appropriate number of cells 

for clinical applications.14 Some countermeasures to this 

issue could come from nanotechnology, which proposes 

many different typologies of nanoparticles (NPs) for stem 

cell labeling, tracking, delivery, and stimulation,15 including 

several examples of nanomaterials able to foster osteogenesis 

in MSCs.16–18

Our group, as an example, successfully exploited barium 

titanate NPs (BTNPs; Figure 1A) as a possible agent for 

the improvement of osteogenic differentiation of MSCs.19 

BTNPs belong to a class of ferroelectric materials show-

ing high piezoelectricity,20 and with regard to biomedical 

applications, they demonstrate high cytocompatibility,21 

excellent properties as nonlinear imaging probes,22 and the 

ability to deliver doxorubicin in cancer cells by improving 
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Figure 1 Barium titanate nanoparticles (BTNPs) and experimental setup.
Notes: Scanning electron microscopy image of BTNPs (A). Glass slides on which cells were cultured were transferred to cylindrical vials and covered with appropriate cell-
culture medium (B). Delrin structure designed to support 30 cylindrical vials (C). The structure with the samples was inserted in the swinging gondola of the large-diameter 
centrifuge. The centrifuge system is composed of four large rotating arms with a gondola at each extremity, and allowed the achievement of the hypergravity condition (D).
Abbreviation: PDMS, polydimethylsiloxane.
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drug uptake.23 Moreover, as previously mentioned, BTNPs 

were proven to enhance the osteogenesis of MSCs, as dem-

onstrated by an increment of hydroxyapatite deposition.

Starting from these findings, we decided to develop a 

protocol for MSC stimulation by combining incubation 

with BTNPs with treatment in hypergravity, with the goal 

of improving the differentiation process toward osteoblasts, 

and thus to obtain stem cells with enhanced osteogenic differ-

entiation potential. Experiments were performed within the 

framework of the “Spin Your Thesis! 2013” campaign at the 

European Space Agency (ESA; Noordwijk, the Netherlands), 

taking advantage of the large-diameter centrifuge for the 

hypergravity treatment.

With the proposed experimental protocol, we had the 

aims of 1) investigating cell morphology and differentiation 

(at gene, protein, and phenotype level) following the combi-

nation of hypergravity treatment and BTNP administration, 

and 2) evaluating NP uptake by stem cells in altered gravity 

conditions, thus investigating the possibility of enhancing 

cellular internalization by simply exploiting an increased 

gravitational force.

Materials and methods
Cell culture and experimental procedures 
in the large-diameter centrifuge
Rat MSCs (SCR027; Millipore) were used at the second 

passage in all the experiments. For the maintenance of 

MSCs, the medium was composed of Dulbecco’s Modified 

Eagle’s Medium supplemented with 10% fetal bovine serum, 

100 U/mL penicillin, 100 mg/mL streptomycin, and 200 mM 

glutamine (all these reagents from Gibco). Cultures were 

maintained in an incubator at standard culture conditions 

(37°C, 5% CO
2
, and 100% humidity).

For all the experiments, MSCs were trypsinized and 

seeded on glass slides (diameter 13 mm) 48 hours before 

hypergravity treatment at 10,000/cm2 for tests in proliferation 

conditions and at 30,000/cm2 for tests under osteogenic dif-

ferentiation. Osteogenesis was induced in the differentiation 

samples immediately before the hypergravity treatment by 

supplementing the medium with 100 nM dexamethasone, 200 

µM ascorbic acid 2-phosphate, and 10 mM glycerol 2-phos-

phate (all these reagents from Sigma-Aldrich). Differentiat-

ing conditions were maintained throughout the hypergravity 

treatment and during poststimulation incubation.

Some samples (both proliferating and differentiating) 

were moreover provided with BTNPs (20 µg/mL), also in 

this case immediately before the hypergravity treatment. 

This dose was selected based on our previous results of an 

analysis of BTNP effects on MSCs, where 20 µg/mL was 

found to be the optimal concentration at which NPs did not 

negatively affect cellular functions.19 The NPs, obtained 

from Nanostructured and Amorphous Materials (Houston, 

TX, USA), were about 150 nm in radius, and were admin-

istered to the cell culture upon stabilization in gum Arabic 

(Sigma-Aldrich). Images of the final dispersion of BTNPs 

were acquired after gold-sputtering by scanning electron 

microscopy through a dual-beam system (FEI Helios 600; 

Figure 1A). Further details on NP characterization have been 

previously reported.19

Glass slides supporting the cell cultures were transferred in 

cylindrical vials filled with biocompatible polydimethylsiloxane 

(10:1 base:cross-linking agent ratio, curing temperature 60°C), 

and fully covered with 800 µL of the appropriate cell-culture 

medium to exclude shear-stress effects (Figure 1B). For the 

positioning of the samples, we used a Delrin structure designed 

to support 30 cylindrical vials (Figure 1C).

The large-diameter centrifuge system of the ESA was used 

for hypergravity induction. It is composed of four large rotat-

ing arms with a swing gondola at each extremity (Figure 1D), 

and can support hypergravity levels between 1 g and 20 g. 

We performed analyses on proliferating and differentiating 

rat MSCs provided with and without 20 µg/mL of BTNPs 

immediately before the altered gravity treatment, as previously 

described. The sample support was put in an incubator inside 

a gondola and accelerated at 20 g for 3 hours at 32°C.

At the end of the hypergravity stimulation, the prolifer-

ating samples were immediately processed for subsequent 

analysis, while differentiating samples were incubated for 

further 48 hours in differentiating conditions (in incuba-

tor, 37°C, 5% CO
2
) before the assessment of osteogenesis. 

Analogous experiments, as normal-gravity controls, were 

performed, maintaining cells at the same conditions of atmo-

sphere and temperature for 3 hours at 1 g. All the procedures 

were performed in duplicate.

In summary, we examined the following experimental 

classes: 1) proliferating cells at 1 g without BTNPs, 2) prolif-

erating cells at 1 g with BTNPs, 3) proliferating cells at 20 g 

without BTNPs, 4) proliferating cells at 20 g with BTNPs, 

5) differentiating cells at 1 g without BTNPs, 6) differentiating 

cells at 1 g with BTNPs, 7) differentiating cells at 20 g without 

BTNPs, and 8) differentiating cells at 20 g with BTNPs.

Cytoskeleton/focal adhesion staining 
and cell shape-descriptor analysis
Immediately after the treatment, some proliferative samples 

were processed in order to evaluate the effects of hypergravity 

and BTNPs on MSC adhesion and shape. To assess changes 

in morphology, cytoskeleton conformation, and adhesion, 
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immunofluorescence with the Cytoskeleton/Focal Adhesion 

Staining Kit (Millipore) was performed. Cells were incu-

bated for 45 minutes with a vinculin primary monoclonal 

antibody (mouse antirat, diluted 1:100 in 10% goat serum 

in phosphate-buffered saline [PBS]) after fixation with 4% 

paraformaldehyde in PBS for 20 minutes at 4°C, permea-

bilization for 15 minutes with 0.1% Triton X-100 (Sigma-

Aldrich), and treatment with a blocking solution (10% goat 

serum in PBS) for 1 hour. Thereafter, a staining solution 

composed of a green fluorescent labeled secondary antibody 

(goat antimouse, diluted 1:50 in 10% goat serum), 100 µM 

tetramethylrhodamine isothiocyanate–phalloidin for F-actin 

labeling, and 1 µM 4′,6-diamidino-2-phenylindole (DAPI) 

for nucleus counterstaining were added. Samples were finally 

washed several times with PBS before observation under a 

confocal laser-scanning microscope (C2s; Nikon).

Cell shape was analyzed on proliferative samples stained 

with Coomassie Brilliant Blue (0.2% for 5 minutes). Cell area 

and different shape descriptors were calculated with ImageJ 

software (http://rsb.info.nih.gov/ij) analyzing at least 50 well-

distinct cells, acquired with an inverted optical microscope 

(Nikon Eclipse Ti). In particular, the solidity (S), circularity 

(C), and roundness (R) of cells were investigated according 

to the following equations:24

	 Roundness R
a

b
= = � (1)

where a and b are the width and length of the minimum 

bounding (the smallest rectangle enclosing the selection), 

respectively,

	 Circularity C
A

P
= =

4
2

π
� (2)

where P is the perimeter and A is the cell area, and

	 Solidity S
A

ConvexA
= = � (3)

where ConvexA is the area enclosed by the smallest shell that 

borders all the points of the cell.

Nanoparticle-internalization analysis
NP internalization has been investigated by a multimodal 

microscope with an in-plane resolution of approximately 

300 nm and a resolution of 1 µm along the optical axis. Coher-

ent anti-Stokes Raman scattering (CARS) has been exploited to 

obtain images of cells, based on a degenerate pump-and-probe 

beam (PaPB) created by a Ti–Sa pulsed laser (Chameleon 

Vision II; Coherent) and a supercontinuum generator (photonic 

crystal fiber SCG-800; Newport) that produces a broadband 

Stokes beam. The beams were chirped through their transmis-

sion by two SF
6
 glass blocks – a 10 cm-long one for the PaPB, 

and a 15 cm-long one for the Stokes radiation – in order to opti-

mize the spectral resolution. For the excitation of CH
2
 bonds at 

a Raman shift of 2,850 cm-1 and thus for the cell imaging, we 

adjusted the delay between the PaPB and the Stokes beam. For 

the localization of BTNPs, an 806 nm PaPB was combined with 

Stokes photons producing a sum-frequency generation (SFG) 

signal from BTNPs at approximately 452 nm. The images were 

subject to analysis with ImageJ software, and the amount of 

BTNP internalization was calculated as the ratio of the area 

occupied by the NPs inside the cells and the total cell area, on 

at least 50 cells for each experimental treatment.

Quantitative real-time reverse-
transcription polymerase chain reaction
Quantitative real-time reverse-transcription polymerase chain 

reaction (qPCR) was used to investigate the messenger ribo-

nucleic acid (mRNA) transcription of osteogenesis-marker 

genes (runt related transcription factor 2 [RUNX2], collagen 

type I alpha-1 [COL1A1], and alkaline phosphatase [ALPL]) 

and of RHOA (Ras homolog gene family, member A), which 

regulates osteogenesis-activating RUNX2 following mechani-

cal stimulation.25

After the experimental procedures, cells were trypsinized 

and centrifuged, and the total RNA was extracted from the 

samples with the High Pure RNA Isolation Kit (Roche) 

according to the manufacturer’s instructions. The quantity 

and purity of RNA was verified through spectrophotometric 

analysis (NanoDrop; Thermo Scientific). Thereafter, comple-

mentary deoxyribonucleic acid was obtained from the reverse 

transcription of 100 ng of RNA through iScript™ Reverse 

Transcription Supermix (Bio-Rad). The following protocol 

was used for the retrotranscription: 25°C for 5 minutes, 

42°C for 45 minutes, 48°C for 15 minutes, and finally 85°C 

for 5 minutes. The amplification was carried out on the CFX 

Connect™ Real-Time PCR Detection System (Bio-Rad) ther-

mocycler with the SsoAdvanced™ SYBR® Green Supermix 

(Bio-Rad). The temperature steps for the amplification reac-

tion were: one cycle at 98°C for 30 seconds, 40 cycles at 98°C 

for 3 seconds, and 60°C for 7 seconds, a temperature ramp 

from 65°C to 95°C, with 0.5°C/second increments (for melting 

curve generation). The analysis was carried out in triplicate for 

each sample. The housekeeping genes adopted were GUSB 

and RPL19; the cycle threshold (C
t
) value relative to the 

control sample (cultures performed at 1 g, without NP treat-

ment) was considered as the reference for the calculation of 
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∆∆C
t
 (difference between ∆C

t
 values deriving from difference 

between ∆C
t
 of target and housekeeping genes) for the subse-

quent samples.26 Primer sequences (forward and reverse) of 

the investigated genes are reported in Table 1.

Western blotting
Western blotting was performed for protein-expression 

investigation. The analysis was focused on the main proteins 

involved in the early stage of osteogenesis (ALPL and COL1; 

glyceraldehyde-3-phosphate dehydrogenase [GAPDH] 

was adopted as the reference). For protein extraction, after 

trypsinization and centrifugation, cell pellets were lysed in 

50 mM Tris-HCl (pH 7.6), 2 mM ethylenediaminetetraacetic 

acid, 100 mM NaCl, 1% Nonidet P40, and antiproteases 1× 

(all these reagents from Sigma). Protein quantification was 

performed through the Pierce™ BCA Protein Assay Kit 

(Thermo Scientific) following the manufacturer’s protocol. 

Twenty micrograms of protein for each sample was sepa-

rated on a 4%–15% Mini-Protean® TGX Stain-Free™ Gel 

(Bio-Rad) under reducing conditions, and then transferred 

to nitrocellulose membrane. The membranes were saturated 

for 45 minutes with 4% nonfat dry milk in PBS for blocking 

nonspecific binding sites, and then probed with primary anti-

bodies against ALPL (rabbit antirat, diluted 1:8,000, Abcam 

Biotechnology), COL1 (rabbit antirat, diluted 1:1,000, 

Abcam Biotechnology), or GAPDH (mouse antirat, diluted 

1:2,000, Abcam Biotechnology) overnight at 4°C. Finally, 

specific secondary horseradish peroxidase-conjugated anti-

rabbit or antimouse antibodies (KPL, final concentration 

0.2 µg/mL) were used, and the immunocomplexes were 

detected by chemiluminescence (ECL Clarity; Bio-Rad) 

using the Chemi-Doc™ XRS+ System (Bio-Rad). The 

intensity of the bands was quantified through the Chemi-

Doc XRS+ software by adopting the 1 g sample values as 

reference for the relative expression and by normalizing to 

the GAPDH values.

Alizarin red staining
Alizarin red solution (Millipore) was used to stain in orange 

red the calcium deposits of the MSC cultures induced to dif-

ferentiate. Following paraformaldehyde fixation, cells were 

incubated with 500 µL of alizarin red solution at room tem-

perature for 30 minutes. After extensive washing steps with 

deionized water, cells were visualized in bright field under 

the optical microscope for image acquisition. ImageJ was 

used to detect and automatically quantify the size of alizarin 

red-positive areas for each experimental group, analyzing at 

least ten random fields per sample.

Statistical analysis
All the described experiments were carried out at least in trip-

licate, and all procedures were replicated twice. With regard 

to image analysis, data were tested with the nonparametric 

Kruskal–Wallis analysis followed by the Nemenyi–Damico–

Wolfe–Dunn post hoc test to assess significance using R soft-

ware (http://www.r-project.org). Data are presented as box 

plots. In particular, each box plot is composed of whiskers 

indicating the minimum and maximum of the data, while the 

top and the bottom of the box are the first and third quartiles, 

respectively; the band inside the box is the median. qPCR 

data were analyzed with Bio-Rad CFX Manager software. In 

all cases, data were considered significant at P0.05.

Results
Cell morphology and nanoparticle 
internalization
Immunofluorescent staining of cytoskeleton (F-actin in red, 

vinculin in green) of proliferating MSCs qualitatively showed 

Table 1 Primer sequences of target and housekeeping genes

Gene Symbol Sequence (5′–3′)

Runt-related transcription factor 2 RUNX2 F – CCCTGAACTCAGCACCAA
R – AGGATTGTGTCTGCCTGG

Collagen, type I, alpha-1 COL1A1 F – GCAAAGAAGACTTGGACTGT
R – TTCTGCGTCTGGTGATACA

Alkaline phosphatase, liver/bone/kidney ALPL F – GCACAACATCAAGGACATCG
R – CATCCAGTTCATATTCCACATCAG

Ras homolog family member A RHOA F – CTGGTGATTGTTGGTGATGG
R – AACTCTACCTGCTTCCCGT

Glucuronidase, beta GUSB F – TCACCATCGCCATCAACAACAC
R – GCTTATGTCCTGGACGAAGTAACC

Ribosomal protein L19 RPL19 F – AAGATTGACCGTCATATGTATCAC
R – CCTTGTCTGCCTTCAGTTTG
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evident effects following hypergravity treatment (Figure 2). 

In particular, 20 g-treated cells appeared more stretched and 

with F-actin organized in parallel fibers with respect to the 

1 g control cultures.

In order to gain quantitative data about the influence of 

hypergravity and NPs on cell morphology, we calculated 

cell area and cell-shape descriptors (solidity, circularity, 

roundness) on Coomassie blue-stained cultures in prolifera-

tive conditions immediately after the hypergravity treatment 

(Figure 3A). Concerning area evaluation (Figure 3B), we 

observed a significant increase when cells were treated with 

BTNPs (8,648±2,419 µm2), hypergravity (9,735±2,795 µm2), 

1 g 

20 g

100 µm

1 g + BTNPs

20 g + BTNPs

Figure 2 Immunofluorescence staining. Vinculin (green) and F-actin (red) in proliferating mesenchymal stem cells after the 3-hour treatment. Nuclei counterstained in blue.
Abbreviation: BTNPs, barium titanate nanoparticles.

or with the combination of the two stimuli (9,733±2,739 

µm2), compared to the control at 1 g not treated with the NPs 

(6,155±1,602 µm2) (P0.05 in all the three treatments with 

respect to the control). The solidity of the cells (Figure 3C) 

after hypergravity stimulation, independently of the presence 

of BTNPs (0.83±0.05 and 0.81±0.04 for 20 g and 20 g + 

BTNPs, respectively) was significantly lower than that of the 

cells grown at 1 g (0.93±0.02 and 0.98±0.02 for 1 g and 1 g +  

BTNPs, respectively; P0.05 in the 20 g treatments with respect 

to the 1 g treatments). A similar trend was observed for circular-

ity (Figure 3D), the distributions of which denoted a significant 

decrease of the values of proliferating MSCs subjected to 20 g 
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acceleration (0.44±0.10 and 0.46±0.06 for 20 g and 20 g + 

BTNPs, respectively) with respect to 1 g conditions (0.72±0.07 

and 0.77±0.08 for 1 g and 1 g + BTNPs, respectively) (P0.05). 

Finally, we found an analogous trend in the reduction of the 

roundness (Figure 3E) for the cells that underwent hypergravity 

treatment (0.42±0.13 and 0.54±0.10 for 20 g and 20 g + BTNPs, 

respectively) when compared to the controls at 1 g (0.71±0.11 

and 0.67±0.08 for 1 g and 1 g + BTNPs, respectively). Never-

theless, only the roundness reduction at 20 g was statistically 

significant with respect to 1 g (P0.05).

Results of nonlinear microscopy on proliferating and 

differentiating cells internalizing BTNPs at 1 g and 20 g are 

reported in Figure 4. Figure 4A depicts images representative 

of the four experimental conditions, highlighting a peri-

nuclear cytoplasmic accumulation of BTNPs. The CARS 

signal from cells is represented in green, the SFG signal 

from NPs in red: we can appreciate the emission spectrum 

from a bundle of NPs when irradiated with the PaPB and the 

Stokes beam in Figure 4B. Four individual bands are visible, 

originating from: a second harmonic generation SHG signal 

from the 806 nm pump beam, SFG from the combination of 

the 806 nm pump beam and the portion of the Stokes beam 

temporarily overlapping to it (ie, corresponding to approxi-

mately 1,045 nm), broadband second harmonic generation 

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


International Journal of Nanomedicine 2015:10submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

440

Rocca et al

Proliferation 1 g Differentiation 1 g

Proliferation 20 g

8 
µm

8,000

0

2

4

6

8

10

12

6,000

4,000

2,000

0
350

Wavelength (nm)

B C

A

B
TN

P 
in

te
rn

al
iz

at
io

n 
(a

re
a 

%
)

C
ou

nt
 (a

rb
itr

ar
y 

un
its

)

450 550 650 750 850 1 g 1 g20 g

*

*

20 g

Pump

Non resonant
CARS background

SGH from
stokes

SGH from
Pump + stokes

SGH from pump

Proliferation

Differentiation
Pump @ 806 nm
Stokes @ 1,000 nm to 1,100 nm

50 µm

PBS
Glass

Differentiation 20 g

Figure 4 Barium titanate nanoparticle (BTNP)-internalization assessment.
Notes: *P0.05. Single Z-slice, along a side projection, showing BTNPs (in red, owing to the sum-frequency generation [SFG] signal) inside the cells (in green, owing to 
the coherent anti-Stokes Raman scattering [CARS] signal from the CH2 bonds) (A). Four bands are visible from the emission spectrum from a bundle of nanotubes when 
illuminated with the pump-and-probe and Stokes beams: second harmonic generation (SHG) from the 806 nm beam, SFG from the combination of the 806 nm beam and 
the portion of the Stokes beam temporarily overlapping it (ie, corresponding to ~1,045 nm), broadband SHG from the Stokes beam, and nonresonant CARS signal (B). 
Quantification of BTNP internalization (C).

from the Stokes beam, and nonresonant CARS background. 

A fifth band indicates the pump beam partially repressed by 

a filter. A quantitative evaluation of NP uptake (Figure 4C) 

performed in terms of percentage of the cytoplasmic area 

occupied by the BTNPs revealed a strong enhancement of 

BTNP internalization in cells that underwent hypergravity 

stimulation (P0.05), both in differentiation (6.8±0.8% at 

20 g, 3.6±0.3% at 1 g) and in proliferation (2.7±0.3% at 20 g, 

1.4±0.1% at 1 g) conditions. The generally higher internal-

ization in differentiation conditions was simply due to a 

longer BTNP incubation time (3+48 hours for differentiation 

samples versus 3 hours for proliferation samples).
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Cell-differentiation assessment: gene and 
protein analysis and alizarin red staining
The evaluation of the gene transcription through qPCR of 

samples under differentiation conditions is shown in the 

plots of Figure 5A. RUNX2 was significantly upregulated 

in 20 g-treated samples (1.5-fold at 20 g, 1.8-fold at 20 g + 

BTNPs) with respect to the 1 g and 1 g + BTNP cultures. 

COL1A1 transcription was significantly enhanced (1.5-fold) 

only in the double-stimulation 20 g + BTNPs, while down-

regulation (0.6-fold) was noticed in cultures performed at 

1 g in the presence of the NPs. Finally, once again ALPL 

was significantly upregulated (1.6-fold) when cells were 

synergistically stimulated with hypergravity and NPs with 

respect to all the other treatments.

To evaluate how hypergravity affected the osteogenic 

pathway, we focused also on the transcription of RHOA in pro-

liferating cells (thus without any osteoinductive chemical cue) 

immediately after the hypergravity treatment, since RHOA codes 

for a small guanosine triphosphatase protein known to play a 

key role in osteogenesis following mechanical stimulation.27 

Figure 5B shows a significant upregulation (P0.05) of RHOA 

mRNA transcription in all treatments (1 g + BTNPs 2.0-fold, 

20 g 2.5-fold, 20 g + BTNPs 2.8-fold) with respect to the 1 g 

control not treated with BTNPs. Moreover, this is interesting 

to highlight, as the 20 g + BTNP group revealed a significant 

upregulation of RHOA with respect to the 1 g + BTNP group 

(1.4-fold, P0.05), thus suggesting a role of both NPs and 

hypergravity in the enhancement of MSC differentiation.

In order to assess the effects of our stimulation proce-

dures at the protein-expression level also, Western blotting 

of collagen type I and alkaline phosphatase was performed, 

and the results are reported in Figure 6A. Quantitative 

values obtained evaluating band intensities (Figure 6B) 

proved an enhancement of collagen type I expression in all 

the experimental groups with respect to the control at 1 g 

not treated with BTNPs, but only hypergravity conditions 

were statistically significant (20 g 1.3-fold, 20 g + BTNPs 

1.5-fold; P0.05). Moreover, the increasing expression of 

collagen type I in the synergic stimulation hypergravity + 

NPs is significant (P0.05) when compared to the 1 g + 

BTNP treatment (1.3-fold, Figure 6B). With regard to alka-

line phosphatase, no significant expression differences were 

detected among any of the treatments.

The alizarin red assay (Figure 7A) revealed an increase 

of the calcium deposition (in terms of size of calcium 

nodules) in samples treated with BTNPs both at 20 g 

(11,909±1,691 µm2, 45% higher with respect to 20 g without 

BTNPs – 8,192±1,988 µm2) and at 1 g (8,813±2,615 µm2, 74% 

higher with respect to 1 g without BTNPs – 5,071±2,265 µm2). 

Interestingly, there was also around a 35% increment in 20 g + 

BTNP cultures with respect to the 1 g + BTNP ones; however, 

statistically significant differences were only detected in the 

samples stimulated at 20 g + BTNPs with respect both to 1 g 

(134%, P0.005) and 20 g (45%, P0.005; Figure 7B).

Discussion
It is widely recognized that several kinds of cells, includ-

ing endothelial cells,28 osteoblasts,29 myoblasts,30 and stem 

cells,31 are sensitive to a change of gravity-force intensity. In 

particular, it was found that hypergravity treatments could 
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Figure 6 Protein-expression analysis.
Notes: Western blotting 48 hours after treatment for collagen type I (COL1; 
the largest band [150 kDa] corresponds to the two α1 chains, the smallest one 
indicates the α2 chain [170 kDa]) and for alkaline phosphatase (ALPL; 75 kDa). 
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used as the reference. 
Representative results (A) and quantitative evaluation of the relative intensities of 
the Western blotting bands (B).
Abbreviation: BTNPs, barium titanate nanoparticles.
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enhance osteogenesis in osteoblast-like cells.32 In this paper, 

we have reported on the hypothesis that upon hypergravity 

stimulation and BTNP administration, MSCs enhance their 

commitment toward osteogenesis.

Mechanical forces are well known to induce cytoskeleton 

rearrangements, and these conformation changes deeply 

affect stem cell behavior.33 To analyze these phenomena in 

our experimental conditions, we performed a quantitative 

evaluation of several cell-shape descriptors. The morpho-

metric analysis demonstrated that following a hypergravity 

treatment, cells were less circular, more spread, and cover 

a larger area when compared to the 1 g control. Overall, the 

characterization of cell shape and morphology showed that 

an increment of gravitational force, both in the presence or 

not of BTNPs, provided as a consequence a more irregular 

and spread morphology. This effect, consistent with other 

results available in the literature,34 could contribute to the 

maturation toward osteoblasts, given that spread cells are 

committed to osteogenesis, and conversely, a rounded shape 

promotes adipogenesis.35

Furthermore, the F-actin organization in parallel and well-

defined stress fibers qualitatively observed after hypergravity 

stimulation is a further hint of cytoskeleton-tension enhance-

ment, and consequently of the mechanotransduction leading 

to osteogenesis (mediated by RHOA and RUNX2).36

Among the impressive variety of inorganic nanomate-

rials investigated in nanomedicine, BTNPs are still rela-

tively unexplored yet most promising, owing to their good 

biocompatibility,21 osteoinductive properties,19 and nonlinear 

optical properties.22 Nonlinear microscopy performed thanks 

to these particular features allowed the enhancement of NP 

uptake following hypergravity treatment to be assessed. Our 

results proved that hypergravity enhances NP internalization, 

both in proliferation and differentiation cultures. This result is 

1 g 1 g + BTNPs

20 g + BTNPs20 g

500 µm

A

Figure 7 Mineralization evaluation.
Notes: *P0.005. Alizarin red assay (A) and size of calcium deposits (B) at 48 hours 
of differentiation posttreatment.
Abbreviation: BTNPs, barium titanate nanoparticles.
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particularly interesting for in vitro drug-delivery applications. 

A number of studies in the literature have aimed to enhance 

nanocarrier internalization by using physical approaches, 

such as ultrasounds37 or magnetic fields.38 However, these 

methods suffer some disadvantages related to cell dam-

age and/or undesired effects on metabolism and functions. 

Hypergravity could therefore represent a valid alternative 

for enhanced drug and gene delivery mediated by NPs for 

plenty of in vitro applications.

Since osteogenic differentiation was induced for just 

2 days (because of technical constrains at the ESA facilities), 

the mRNA-expression analysis was focused on genes involved 

in the early stage of osteogenesis (ie, RUNX2, COL1A1, 

ALPL). The obtained results, which indicated general gene 

upregulation following hypergravity and BTNP treatments, 

are particularly interesting, since RUNX2 encodes for the key 

transcription factor that induces osteogenic differentiation,39 

COL1A1 product is the major component of the bone organic 

matrix,40 and ALPL is involved in the mineralization process.41 

Corroborating our findings, similar results were obtained 

following MSC stimulation at 2 g and at 10 g.42,43

Our results highlight that the performed stimulations 

(hypergravity and incubation with BTNPs) can synergisti-

cally act in improving the early stage maturation of MSCs 

toward osteoblasts. Western blotting showed an increment 

of COL1 expression in hypergravity-stimulated cultures, 

these being data in line with other findings on osteoblast-

like cells treated for 24 hours at 13 g, which demonstrated a 

significant increment in collagen expression.44 In our case, 

moreover, the combination of hypergravity with BTNP 

incubation further increased collagen production. Therefore, 

increased COL1 mRNA expression was also translated to 

enhanced protein production; instead, concerning ALPL, we 

observed upregulation of the mRNA, but not enhancement of 

the protein expression, most probably because of a too-early 

stage of differentiation.45 Obviously, gene activation does not 

always result in an increase in protein levels, because of the 

translation-regulation and protein-degradation mechanisms; 

however, even though this point is interesting, it is out of the 

scope of this work to deeply analyze the molecular mecha-

nisms of transduction regulation involved in this process.

Finally, we investigated the osteoblast phenotype through 

the alizarin red assay, which revealed an enhancement of 

calcium deposits in the presence of BTNPs and hypergrav-

ity treatment with respect to the other experimental groups. 

Indeed, the size of calcium nodules in samples under 

hypergravity conditions and BTNP treatment was found to 

be significantly higher when compared to the hypergravity 

stimulation alone, thus further suggesting a synergic effect 

of the double stimulation. These data are consistent with 

the results obtained by Prodanov et al who demonstrated an 

increase of calcium content in MSCs cultured on nanotex-

tured substrate and subjected to a 10 g treatment.43

Taken together, all the obtained results suggest two 

hypotheses about the mechanism of MSC osteogenesis 

enhancement following hypergravity treatment and BTNP 

incubation. The first hypothesis is based on the already 

proven osteoinduction effectiveness of BTNPs:46 as NP 

uptake is increased following hypergravity treatment, osteo-

genic maturation is enhanced because of a higher number 

of internalized BTNPs. However, we have to consider also 

improvements of MSC maturation when hypergravity is 

applied without the presence of NPs.

In order to understand whether hypergravity could itself 

act as a mechanical cue able to induce osteogenesis, we 

performed an analysis of the transcription of RHOA, as the 

activity of this gene is altered following cell-shape changes, 

and more in general following mechanical stimulation of 

cells.47 Our results provide the evidence that a 3-hour 20 g 

stimulation makes cells more spread and elongated, reduc-

ing their circularity. Several studies have reported that cell 

shape affects RHOA regulation:48–50 spread cells cause RHOA 

activation that responds to mechanical stimuli enhancing cell 

tension and stiffness, and upregulating biochemical factors 

for the induction of the osteogenic pathway, while adipogen-

esis is inhibited. We therefore analyzed RHOA transcription 

in the absence of any osteoinductive chemical stimulation and 

immediately after the treatments. A significant increase of 

RHOA mRNA was observed in both 1 g + BTNP and in 20 g 

treatments, thus demonstrating that both stimuli are involved 

in the activation of RUNX2 transcription (triggered by RHOA 

product), and thus that both stimuli are osteoinductive. In a 

recent work,19 it was indeed demonstrated that BTNPs are 

able to mechanically stimulate MSCs by remodeling their 

cytoskeleton and by increasing their stiffness. Therefore, 

the RHOA upregulation we observed after BTNP treatment 

at 1 g is consistent with the reported mechanical stimula-

tion induced by the NPs. Interestingly, the combination of 

BTNPs and hypergravity had an even more pronounced 

effect on the upregulation of RHOA with respect to the single 

treatments, thus indicating that their combination intensifies 

osteogenesis. We can thus deduce that hypergravity acts as 

an osteoinductuive stimulus per se, and at the same time, by 

enhancing NP internalization, further increases the osteoin-

ductive potential of the BTNPs, thus achieving a double-level 

and synergic effect following the applied treatments.
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Conclusion
The goal of this research was to propose new strategies 

to overcome difficulties in the osteogenic differentiation 

of MSCs. Collected data demonstrated a short treatment 

(3 hours) at 20 g combined with incubation with 20 µg/mL 

of BTNPs synergistically promoted the osteogenesis of 

MSCs, evaluated both at the gene and phenotype levels. 

Hypergravity, in addition to providing per se osteogenic 

stimulation, is able to promote NP uptake, thus further 

enhancing NP effects at low doses. All the collected results, 

even if preliminary, are promising for the elaboration 

of new approaches in several biomedical fields, includ-

ing drug delivery, tissue engineering, and regenerative 

medicine.
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