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Abstract: Alzheimer’s disease (AD) is the most prevalent type of dementia, and its neuropa-

thology is characterized by the deposition of insoluble β-amyloid peptides and intracellular 

neurofibrillary tangles and the loss of diverse neurons. Although much is known about the 

neurobiology of AD, few treatments are available to arrest or slow the illness. There is an urgent 

need for novel therapeutic approaches for AD. We reviewed the recent improvements in the 

neurorastorlogy strategies for AD, including medicine, bioengineering and neuromodulation and 

clinical cell therapy. We emphasized that cell therapy may be an promising treatment for AD.
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Introduction
Alzheimer’s disease (AD) is the most prevalent type of dementia, and its neuropathology 

is characterized by deposition of insoluble β-amyloid (Aβ) peptides, intracellular 

neurofibrillary tangles, amyloid angiopathy, age-related brain atrophy, synaptic 

pathology, white matter rarefaction, granulovacuolar degeneration, neuron loss, and 

neuroinflammation.1 Currently, it is estimated that 5.2 million Americans of all ages 

have AD. Among them, 5 million people are aged 65 years of age.2

With the exception of the rare cases of AD caused by known genetic mutations, 

AD, similar to other common chronic diseases, develops as a result of multiple factors 

rather than a single cause. The known risk factors for AD include age, family history, 

presence of the apolipoprotein (Apo)E ε4 gene, mild cognitive impairment, traumatic 

brain injury, cardiovascular disease risk factors, lack of social and cognitive engage-

ment, and lower education level.1,2

Abnormal accumulation of Aβ peptide is widely believed to be the underlying 

mechanism of pathologic and clinical changes seen in AD.1,3 Aβ appears earliest in 

the cerebral neocortex, prior to onset of symptoms, and reaches the cerebellar cor-

tex in advanced clinical disease.4 Although Aβ plaques may play a key role in AD 

pathogenesis, the severity of cognitive impairment correlates best with the burden of 

neocortical neurofibrillary tangles.5 Cholinergic dysfunction in the basal and rostral 

forebrain is associated with even early cognitive impairments observed in AD.6 In 

addition to abnormal accumulation of the Aβ peptide, the formation of neurofibrillary 

tangles, and the degeneration of the cholinergic pathway, AD has also been associated 

with environmental and genetic factors, mitochondrial dysfunction, vascular factors, 

immune system dysfunction, and infectious agents. Neurovascular dysfunction plays 

an essential role in this multifactorial pattern. The neurovascular unit encompasses 
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neurons, interneurons, astrocytes, smooth muscle cells, 

pericytes, endothelial cells, and the extracellular matrix.7 A 

broad spectrum of insults to the neurovascular unit, such as 

blood–brain barrier break down, cerebral amyloid angiopathy, 

loss or abnormal cholinergic innervation of blood vessels, 

arterial hypercontractility, atherosclerosis, vascular anatomi-

cal defects, mitochondrial abnormalities of the endothelial 

cells, and degeneration of pericytes, has been implicated.8,9

The treatment of AD mainly includes nonpharmaco-

logic and pharmacologic therapies. None of the treatments 

available for AD, except for neurorestorative strategies, 

have been shown to slow or stop the malfunction and death 

of neurons in the brain that cause AD symptoms. Here, 

we review the recent clinical progress of neurorestorative 

strategies.

Clinical progress of 
neurorestorative strategies
Medicine and factors
Currently, no single molecule has been approved for the treat-

ment of AD since the advent of cholinesterase inhibitors and 

memantine. However, potential neurorestorative treatments 

that have been tested in AD patients are emerging.

γ-secretase inhibitors (GSIs) and modulators
γ-secretase cleaves amyloid precursor proteins (APPs) 

to release Aβ peptides, which play a causative role in the 

pathogenesis of AD. GSIs have been developed and used 

for clinical studies. Studies in animal models of AD have 

indicated that GSIs administered by the oral route are able 

to lower Aβ concentrations. However, GSIs cause nondis-

criminatory inhibition of Notch (a transmembrane receptor 

involved in regulating cell-fate decisions) signaling, overall 

APP processing, and other substrate cleavages. These findings 

have called for the development of disease-modifying agents 

called γ-secretase modulators, which target γ-secretase activ-

ity and lower Aβ42 production without blocking the overall 

processing of γ-secretase substrates. Animal studies of this 

generation of γ-secretase modulators have shown encourag-

ing preclinical profiles.10,11

Two large Phase III clinical trials of semagacestat 

(LY-450139) in patients with mild to moderate AD were 

prematurely interrupted due to the observation of detrimental 

effects on cognition and functionality in patients receiving 

the drug compared with those receiving placebo.12 Two large 

Phase III studies of tarenflurbil (r-flurbiprofen), a putative 

γ-secretase modulator, in patients with mild AD were also 

completely negative. The failures were ascribed to the 

inhibition of the cleavage of Notch, and low potency and 

brain penetration.13,14

Immunology
Active and passive immunotherapy targeting either Aβ or 

tau has been successful in repeated AD model animal tri-

als.15,16 In the last decade, an increased number of clinical 

trials for AD immunotherapy have started, failed, and are 

continuing to be pursued.17 AN-1792 was the first drug to 

actively immunize humans with Aβ peptide. Approximately 

5% of treated patients presented with meningoencephalitis, 

which halted its Phase II trial prematurely. It is likely that 

the severe inflammatory symptoms from AN-1792 related 

significantly to the immunological adjuvant.18 Bapineuzumab 

(AAB-001) is a humanized mouse monoclonal antibody to 

the N-terminal portion of Aβ. Its Phase II trial has shown 

increased side effects, including vasogenic edema of the 

brain, in ApoEε4 carriers, but evidence suggestive of a benefit 

has also been found, particularly in noncarriers of the ApoE 

ε4 allele. A different humanized mouse monoclonal antibody 

to the midportion of Aβ, solanezumab (LY2062430), has 

been shown to clear soluble Aβ, accompanied by biomarker 

changes in cerebrospinal fluid (CSF) in a Phase II trial.

Pilot studies of human intravenous immunoglobulin 

(IVIG) resulted in the stabilization of cognitive functioning in 

patients with mild to moderate AD. The putative mechanism 

for IVIG involves low levels of polyclonal anti-Aβ antibody 

that possibly modify the immune response. However, the 

subsequent Phase III trial found no evidence for slowing of 

AD progression. These disappointing results have reduced 

enthusiasm for IVIG as a possible treatment for AD.19

Anti-inflammatory drugs
Long-term use of nonsteroidal anti-inflammatory drugs 

(NSAIDs) reduces the risk of developing AD and delays 

its onset, as shown by epidemiological studies. In addition, 

a subset of NSAIDs, such as ibuprofen, indomethacin, and 

flurbiprofen, may have direct Aβ-lowering properties in 

cell cultures as well as in transgenic models of AD-like 

amyloidosis.20 However, treatment for 1 to 3 years with 

naproxen or celecoxib did not protect against cognitive 

decline in older adults with a family history of AD.21

Neurotrophic factors (NTFs)
Based on current scientific knowledge, treatment with NTFs 

would be a desirable intervention for brain diseases with a 

complex pathology, such as dementia. Unlike the classical 

single-target molecules used for current therapies, NTFs 
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allow for designing treatment strategies based on multimodal 

activity (Figure 1).

Cerebrolysin® is a parenterally administered neuropep-

tide preparation that contains active fragments of some 

important NTFs and has displayed activity closely matching 

that of endogenous NTFs in preclinical research models of 

neurological disorders; it exerts neuromodulatory thera-

peutic effects, including pleiotropic neuroprotective effects 

(such as antiapoptotic, anti-inflammatory, and antioxidative 

activity and the reduction of toxic protein aggregates) 

and neurorestorative effects (including the stimulation of 

neurogenesis, neuronal sprouting and synaptogenesis, oli-

godendrogenesis, and neurite remodeling). Cerebrolysin 

reduces toxic protein aggregation as well as activation of 

proapoptotic genes by modulating key regulatory elements 

of the neurotrophic signaling pathway, namely glycogen 

synthase kinase-3β (GSK3β) and cyclin-dependent kinase-5 

(CDK5).22 Cerebrolysin has been shown to protect brain 

tissue against amyloid plaque formation by modifying APP 

maturation, a process regulated by these phosphorylating 

enzymes. By modulating the activity of these enzymes, 

Cerebrolysin reduces the cellular transport of APP to synaptic 

sites, thus lowering the titer of Aβ peptides released into the 

extracellular matrix, which results in reduced formation of 

amyloid plaques. Treatment with Cerebrolysin also results in 

a significant decrease in the levels of tau tangles, by modulat-

ing activity of the same enzymes.23

Several clinical trials have been performed to investigate 

the safety and efficacy of Cerebrolysin in patients suffer-

ing from mild to moderately severe AD. Clinical data have 

strongly shown that Cerebrolysin is an effective therapeutic 

option for patients diagnosed with AD.24–29 Most of the ran-

domized, double-blind, placebo-controlled trials have shown 

significant improvement in cognitive, behavioral, functional, 

and global domains after treatment with Cerebrolysin. These 

effects were largely maintained over several months, indicat-

ing a long-term beneficial influence of Cerebrolysin on the 

disease. Due to the drug’s multimodal activity and pleiotropic 

neuroprotective effects, which target distinct molecular path-

ways in the pathologic cascade, treatment with Cerebrolysin 

+ + − −

Neurotoxic stress
Aging
Familial AD mutation Cerebrolysin

Dynamic crosstalk

A B

GSK3β CDK5 GSK3β CDK5

AAP Tau tangles AAP

AAP maturation
cellular transport
to synaptic sites

Tau tangles

NeuroprotectionNeurodegeneration

Figure 1 Mode of action of the pleiotropic multimodal drug Cerebrolysin® in AD.
Notes: (A) Both genetic and environmental factors contribute to activation of CDK5 and GSK3β signaling pathways. Both kinases are involved in promoting neurofibrillary 
and Aβ neurodegeneration pathology. (B) Cerebrolysin treatment modulates the activity of both CDK5 and GSK3β kinases, leading to decreased APP maturation, decreased 
APP cellular transport to synaptic sites, and decreased tau phosphorylation.
Abbreviations: Aβ, β-amyloid; AD, Alzheimer’s disease; APP, amyloid precursor protein; CDK5, cyclin-dependent kinase-5; GSK, glycogen synthase kinase.
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goes far beyond pure symptomatic improvement, suggesting 

a potential delay in disease progression.30–32

It is well known that there are close interactions between 

AD and vascular dementia; in the majority of cases, it is dif-

ficult to determine the difference between these two types 

of dementia.33,34 Coexistence of degenerative and vascular 

pathology has both additive and synergistic effects on 

dementia progress. Cerebrolysin also has beneficial effects 

on cognitive and global function in elderly patients with 

vascular dementia of mild to moderate severity, as shown in 

a recent Cochrane review.35

Bioengineering
Genetically modified neural stem/progenitor cells (NSCs) 

and mesenchymal stromal cells (MSCs) that stably express 

and secrete Aβ-degrading enzyme, human choline acetyl-

transferase, and nerve growth factor (NGF) gene have been 

tested in transgenic mouse models of AD. These approaches 

was shown to enhance synaptic plasticity, elevate acetyl-

choline level, and improve the cognitive function in AD 

animal models.36–43 Tuszynski et  al44 performed a Phase I 

trial by implanting autologous fibroblasts genetically modi-

fied to express human NGF into the forebrain of eight indi-

viduals with mild AD. No long-term adverse effects of NGF 

occurred. A cognitive evaluation suggested improvement, 

and robust growth responses to NGF were observed in one 

brain autopsy. Injections of DNA coding for brain-derived 

neurotrophic factor (BDNF) has been the subject of a Phase 

I experiment.45As NGF or BDNF are not the sole candidates 

as a possible contributor to brain homeostasis among 50 

different trophic factors in the brain, their neuroprotective 

effect are still being considered.

Clinical cell therapy
Cortical cholinergic loss is strongly associated with the 

reduction of progenitors.46 However, viable precursor cells 

do remain in AD and aged normal control brain specimens 

and can be induced to differentiate.47 Lower stem cell factor 

plasma levels were found in AD patients.48 These results raise 

the possibility of stimulation of inherent precursor cells of 

aged individuals or AD patients to replace neurons lost in 

aging and/or neurodegeneration.49

Sanchez-Ramos et  al34 investigated the effects of a 

5-day schedule of granulocyte colony stimulating fac-

tor (G-CSF) administration in eight patients with mild to 

moderate stage AD and found it was tolerated and safe, 

and it improved cognition. A South Korea group conducted 

a Phase I trial in nine patients with mild to moderate AD, 

using umbilical cord stromal cells. The cells were injected 

bilaterally in the hippocampus and in the right precuneus. 

There were no serious adverse events. The Alzheimer’s 

Disease Assessment Scale-Cognitive subscale (ADAS-cog) 

suggested possible improvements in two patients; seven 

patients showed cognitive decline at 1 month and 3 months. 

Pittsburgh compound B (PiB) positron emission tomography 

(PET) scans showed a decreased PiB retention ratio in four 

patients, but five patients showed an increased PiB retention 

ratio at 1 month and 3 months. Among 12 Neuropsychiatric 

Inventory (NPI) items, the scores in ten items decreased at 

3 months and the scores in two items increased at 3 months 

compared with baseline.50

Neuromodulation
Deep brain stimulation (DBS)
By targeting specific structures within known memory 

circuits, including the entorhinal, and hippocampal areas, 

and activating the brain’s default mode network, DBS can 

have effects in AD patients and is therefore a potentially 

promising avenue for novel dementia treatments. It has been 

shown that no complications occurred and that the stimulation 

was perfectly tolerated, after DBS treatment in AD patients. 

After 1 year of stimulation, the memory scores were either 

stabilized or possible improved compared with baseline, in 

pilot studies.51,52

Repetitive transcranial magnetic stimulation (rTMS)
rTMS is a noninvasive tool for modulating cortical activ-

ity and a potential therapy choice for AD. However, no 

recommendation for rTMS was suggested in AD patients.53 

Nevertheless, high-frequency rTMS seems to have better 

effects on improving cognitive function in AD patients com-

pared with low-frequency rTMS, especially in combination 

with cognitive therapy.54,55

Discussion
The rationality for cell therapy in AD
The rationale for cell therapy in AD is based on the follow-

ing findings:

Impaired neurogenesis in the subventricular zone has 

been found in early AD.56,57 Aβ impairs the proliferation 

and neuronal differentiation of neuronal precursor cells 

and contributes to the depletion of neurons and cognitive 

impairment in AD.58 APP, especially APP possessing the 

protease inhibitor domain, regulates the growth of neu-

ronal precursor cells during development of the nervous 

system.59

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Journal of Neurorestoratology 2015:3 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

5

Clinical neurorestorative progress in Alzheimer’s disease

Either a wild-type or a familial AD (FAD) mutant PS-1 

transgene can reduce the number of neural progenitors in 

the dentate gyrus. However, the wild-type, but not the FAD 

mutant, PS-1 promoted the survival and differentiation 

of progenitors, leading to the generation of more imma-

ture granule cell neurons in PS-1 wild-type-expressing 

animals.60

As well, some evidence shows compensatory increase 

in neurogenesis after PS-1 mutation, which represents FAD 

pathogenesis.61

Finally, in separate work, the deafferented hippocampus 

provided proper microenvironment for the survival and neu-

ronal differentiation of neural progenitors.62

The mechanism of cell therapy in AD
Cell types that have been used in AD include NSCs, MSCs, 

embryonic stem cells (ESCs), and induced pluripotent stem 

cells. These cell types have been shown to be beneficial for 

increasing neurogenesis and neuronal differentiation, enhanc-

ing Aβ clearance, inhibiting cell death, recovering acetyl-

choline levels, and improving clinical symptoms, including 

memory and visuospatial impairment (Figure 2).

Increased neurogenesis
MSCs increase hippocampal neurogenesis, neuronal dif-

ferentiation, and the formation of neurites. These outcomes 

may be achieved by enhancing the Wnt signaling pathway 

in AD models.63,64

Inhibition of cell apoptosis and cell death
MSCs can inhibit cell apoptosis and cell death caused by 

either Aβ or tau,65,66 which are accompanied by memory 

improvement.67

Clearance protein aggregates
MSCs have capacity to clear Aβ but not tau. The possible 

mechanism for clearing Aβ is by enhancing autophagy 

function.51,68,69

Increased trophic factors
Human adipose tissue-derived MSCs could enhance the 

concentrations of BDNF and NGF, which would be accom-

panied by an improvement in cognitive function.70 Another 

group showed that MSCs, via intravenous or intracerebral 

transplantation, significantly rescued memory deficit and 

neuropathology, by upregulating cytokine interleukin (IL)-10 

and vascular endothelial growth factor (VEGF).71

Induction of acetylcholine production in AD
Increasing the acetylcholine level is crucial for current 

therapy methods for AD. In neurorestorative treatment, two 

methods can be used to achieve the goal of increasing the 

acetylcholine level: bioengineering and cell therapy. As 

mentioned above, the acetylcholine level could be increased 

by gene expression via a vector. For the latter, several cell 

types have been shown to have the potential to differentiate 

into cholinergic cell phenotypes. Transplanted NSCs were 

Normal neuron

Aβ aggregates Clear
aggregates

Induce cholinergic
neuron and
acetylcholine
production

Neuron loss and brain atropyh

Neuron death

Inhibit cell
apoptosis and
cell death

Increase
trophic
factors

Increase neurogenesis

Improve cognitive
and daily living
ability

Cognitive decline, AD

Cholinergic neuron death

Figure 2 The potential mechanism of cell therapy in AD.
Notes: In AD models, cell therapy has been shown to be beneficial for increasing neurogenesis and neuronal differentiation, enhancing Aβ clearance, inhibiting cell death, 
recovering acetylcholine levels, and improving cognitive impairment. The gray area shows the basic pathophysiologic changes in AD, and the red area represents the possible 
restoring mechanism of cell therapy in AD.
Abbreviations: Aβ, β-amyloid; AD, Alzheimer disease.
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shown to differentiate into cholinergic neurons in a rat AD 

model.72 Transplantation of mouse ESC-derived neuronal 

precursor cells, following commitment to a cholinergic cell 

phenotype, were able to promote behavioral recovery in 

a rodent model of AD. No tumors were formatted, which 

indicated that ESCs may be safe for transplantation.73

Neuronal precursors with cholinergic neuron phenotype 

derived from human induced pluripotent stem cells survived 

in APP mouse hippocampus and improved their spatial 

memory loss.74 Induced pluripotent stem cells derived from 

dermal fibroblasts of AD patients and differentiated into 

cholinergic neurons might be a promising novel tool for 

disease modeling and drug discovery for the sporadic form of 

AD75 and FAD.76 In one study, human adipose tissue-derived 

MSCs were intravenously or intracerebroventricularly trans-

planted into the brains of 18-month-old mice. Transplantation 

improved both locomotor activity and cognitive function in 

the aged animals, in parallel with recovery of acetylcholine 

levels in brain tissues.

Inducing endogenous cell in AD therapy
AD subjects have significantly fewer viable precursor cells 

in the hippocampus compared with age-matched normal 

control subjects. However, viable precursor cells remain-

ing in AD and aged normal control brain specimens can be 

induced to differentiate.77 These endogenous precursor cells 

can be induced to show neuroprotective effects by chemical 

compounds and stimulating factors, such as allopregnanolone 

(Apα), fluoxetine, G-CSF, AMD3100, stromal cell-derived 

factor-1a (SDF-1α), and others.78

Recent studies have proposed that chronic treatment 

with antidepressants increases neurogenesis in the adult 

hippocampus. Chang et al79 showed the dose-dependent effects 

of fluoxetine, a common antidepressant, on the proliferation 

and neural differentiation of fetal derived NSCs. Fluoxetine, 

even at nanomolar concentrations, stimulated proliferation 

and differentiation of NSCs. In addition, fluoxetine has pro-

tective effects against cell death induced by Aβ.42 Chadwick 

et al80 showed amitriptyline, another common antidepressant, 

mediated cognitive enhancement in aged AD mice that was 

associated with neurogenesis and neurotrophic activity.

Even though the distribution of G-CSF and G-CSF recep-

tor has not been shown to substantially differ between AD and 

control brains, even in the hippocampus,81 there are studies 

suggesting that G-CSF can be used in AD treatment. G-CSF 

application was shown to improve memory and neurobehavior 

in an Aβ-induced experimental model of AD.82,83 G-CSF has 

also been shown to decrease the brain amyloid burden.84

SDF-1α is an effective adjuvant in inducing migration of 

endogenous bone morrow-derived hematopoietic progenitor 

cells, which are mobilized by G-CSF, into the brain, sug-

gesting that these two molecules can act synergistically to 

produce a therapeutic effect in AD.85

GLP-1 is a growth factor that has neuroprotective 

properties. GLP1 receptors are present on neuronal progeni-

tor cells, and the GLP1 analogue liraglutide was shown to 

increase cell proliferation and differentiation into neurons in 

an AD mouse model.86

The therapy time for AD
MSCs can promote the reduction of Aβ and the improvement 

of synaptic transmission, both in AD mice and in predementia 

AD mice, which indicates that MSCs may exert their effects 

in different stages of AD.

The aging effect
AD is common in the elderly, and it is not known whether 

transplanted cells can work in the aging environment. 

Human adipose tissue-derived MSCs were intravenously 

or intracerebroventricularly transplanted into the brains 

of 18-month-old mice. Transplantation improved both 

locomotor activity and cognitive function in the aged ani-

mals, in parallel with recovery of acetylcholine levels in 

brain tissues through enhanced concentrations of BDNF 

and NGF.

Conclusion
Although much is known about the neurobiology of dementia 

and AD, very few conventional therapies are available to 

arrest or slow the illness. There is an urgent need for novel 

therapeutic approaches for AD. Translating neurorestorative 

strategies with positive preclinical results for AD into clinical 

studies has allowed patients to receive clinical neurorestora-

tion to a certain extent, via medicine/factors, cell therapy, neu-

romodulation, neurorehabilitation and combined therapies. 

Cell-based neurorestorative strategies are promising for AD. 

To gain better neurorestorative effect, earlier interventional 

neurorestorative strategies for AD should be recommended 

because dementia and other clinical presentations occur 

well after the pathological findings in AD. In the future, 

there should be greater encouragement to translate effective 

preclinical neurorestorative strategies to clinic practice as 

quickly as possible. 
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