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Abstract: Antisense-mediated splicing modulation is a tool that can be exploited in several 

ways to provide a potential therapy for rare genetic diseases. This approach is currently being 

tested in clinical trials for Duchenne muscular dystrophy and spinal muscular atrophy. The 

present review outlines the versatility of the approach to correct cryptic splicing, modulate 

alternative splicing, restore the open reading frame, and induce protein knockdown, providing 

examples of each. Finally, we outline a possible path forward toward the clinical application of 

this approach for a wide variety of inherited rare diseases.
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Introduction
Genetic diseases are generally rare diseases caused by mutations in specific genes. 

Sometimes mutations in different genes can give rise to similar phenotypes, eg, there 

have been dozens of genes identified in patients suffering from muscular  dystrophies.1 

However, mutations in a single gene can also give rise to multiple diseases with 

varying phenotypes. Probably the most notorious example is the LMNA gene, in 

which mutations are associated with multiple phenotypes, including Emery–Dreifuss 

muscular dystrophy, familial partial lipodystrophy, limb girdle muscular dystrophy, 

dilated cardiomyopathy, Charcot–Marie–Tooth disease, restrictive dermopathy, and 

Hutchinson–Gilford progeria syndrome (HGPS).2 For a significant number of patients 

with, or suspected of having a genetic disease, the mutation in the causative gene has 

not yet been identified. However, with the rapid advances made by “next generation 

sequencing”, it is anticipated that mutations will soon be identified for almost all 

patients with genetic disorders; the International Rare Disease Research Consortium 

(IRDiRC) has set itself an ambitious goal of having the means available to diagnose 

most rare genetic diseases by 2020 (http://www.irdirc.org).

With the availability of next generation sequencing, it is now possible to perform 

a more in-depth analysis of candidate genes. In the past, generally only exons and the 

donor and acceptor splice sites (ie, the first and last two base pairs of an intron, respec-

tively) were analyzed. However, it is now feasible to analyze complete introns and there 

are multiple publications that report deep intronic mutations that activate cryptic splice 

sites and thus disrupt normal transcript processing.3 In parallel, antisense-mediated 

splicing modulation has been developed from preclinical cell and animal models into 

the clinical trial phase for Duchenne muscular dystrophy (DMD) and spinal muscular 

atrophy (SMA).4–8 This approach makes use of antisense oligonucleotides (ASOs, small 
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pieces of chemically modified DNA or RNA) and would 

offer a potential treatment for genetic disorders caused by 

mutations that disrupt splicing, but can also be exploited in 

other ways to address genetic mutations.9 ASOs need to be 

chemically modified to improve stability to nucleases and 

provide favorable pharmacokinetic and pharmacodynamic 

characteristics for in vivo use. The most commonly used 

ASO chemistries are the 2′-O-methyl RNA phosphorothio-

ate chemistry, which is negatively charged, and the charge 

neutral phosphorodiamidate morpholino oligomer. For 

more background on ASO chemistry, we refer the reader to 

a recent book chapter.10 This review will describe different 

ways antisense-mediated splicing modulation can be used 

to treat genetic diseases. Since there are already numerous 

reviews describing exon skipping for DMD and SMA,11–14 

we have chosen to discuss these neuromuscular applications 

only briefly and to focus on the potential of the exon skipping 

approach for other genetic diseases. For each approach we 

have chosen a few illustrative examples, focusing on those 

where data from animal models is available.

Cryptic splicing
Cryptic splice sites are sequences in the pre-messenger RNA 

(pre-mRNA) that are not normally used as splice sites, but 

which are activated by mutations that either inactivate the 

canonical splice sites or create splice sites where one did 

not exist before.15 The classical example of this phenomenon 

is in the β-globin gene, where mutations in the canonical 

splice sites cause activation of cryptic splice sites, leading 

to the inclusion of aberrant exons, resulting in nonfunctional 

transcripts,  defective β-globin expression, and consequently 

β-thalassemia.16 For the majority of patients, the disease is 

caused by mutations that activate cryptic splice sites.17 In 

the early 1990s, ASOs were developed by Dominski and 

Kole using this paradigm (Figure 1A): by targeting the 

cryptic splice sites with 2′-O-methyl RNA ASOs to block 

the access of the spliceosome to these sites, their group 

was able to restore normal β-globin splicing in cells18 and 

normal hemoglobin expression, to some extent, in a thalas-

semia mouse model.19 The restoration of normal splicing 

by suppressing cryptic splicing, therefore, represents the 

very earliest manifestation of ASOs being used to modu-

late splicing for therapy. Even despite this early progress, 

clinical applications of this technology for the treatment of 

β-thalassemia have not materialized, likely as a result of the 

need to generate, validate, and trial specific ASOs for each 

type of mutation in patients, and the fact that ASO therapy 

only leads to a transient correction of splicing. As a result, 

most gene therapy research in the field has concentrated on 

viral-mediated transduction of β-globin into hematopoietic 

stem cells as a means of achieving durable and long-term 

correction of β-globin expression, with one patient achiev-

ing independence from transfusions, the usual treatment for 

β-thalassemia.20

Even though in β-thalassemia, ASO-mediated correc-

tion is being side-lined in favor of other approaches, for 

other diseases targets that could be amenable to ASO-

mediated cryptic splice site suppression continue to be 

identified. A recent example is Usher syndrome type 1C, 

characterized by congenital deafness, retinitis pigmentosa, 

and vestibular dysfunction (Figure 1B). This is caused 

by defects in the USH1C gene that encodes harmonin. 

 Harmonin is an actin-binding scaffold protein that, together 

with myosin VIIa and cadherin 23, are required to ensure 

that the stereocilia in the inner ear cohere together.21,22 The 

USH1C216G.A mutation, found in all Louisiana Acadian 

cases of Usher syndrome type 1C, creates a cryptic 5′ splice 

site within exon 3 of the gene, which is used preferentially 

over the canonical 5′ splice site, and the creation of a frame-

shift and premature truncation of the harmonin protein.23 In 

a collaborative project, Lentz et al were able to show that 

an ASO targeted to the cryptic 5′ splice site was able to 

correct the splicing of USH1C transcript, restore harmonin 

expression, and rescue cochlear hair cells, vestibular func-

tion, and hearing for at least 6 months when given to an 

animal model of USH1C216G.A.24

Alternative splicing
In humans, a myriad of proteins is responsible for most of the 

functions that form the basis of life. However, this array of dif-

ferent proteins is coded by a much (3–4-fold) smaller number 

of genes. This puzzled the field at first,25 but can be explained 

by the occurrence of alternative splicing, a mechanism that 

allows the production of several proteins from the same gene 

by means of the exclusion, inclusion, or trimming of specific 

exons. In fact, 95% of human pre-mRNA is alternatively 

spliced.26 Alternative splicing is responsible for generating 

proteins with very different, sometimes even antagonistic 

roles. Alternative splicing can also introduce stop codons that 

cause nonsense-mediated decay, and therefore, suppress the 

expression of the gene.27 In healthy individuals, this flexibility 

contributes to the clockwork functioning of human biology. 

However, aberrant alternative splicing can also be the origin 

of disease, eg, a shift from an antiproliferative isoform to 

a proproliferative isoform can underlie tumor formation. 

From the therapeutic viewpoint, this provides researchers 
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the opportunity to use ASOs as tools to knowingly shift 

alternative splicing to treat disease.

A first example involves lamin A, a nuclear envelope 

protein involved in the regulation of gene expression, nuclear 

stability, and chromatin structure that is encoded by the 

LMNA gene. A point mutation in this gene leads to a shift in 

alternative splicing,28 and increased production of progerin, 

a truncated form of lamin A that is present in small amounts 

in normal aging, but which accumulates in high levels in 

HGPS. This leads to accelerated aging and shortened life 
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Figure 1 Schematic depiction of antisense-mediated splicing modulation approaches.
Notes: (A) Restoration of cryptic splicing for β-globin mutations. Due to a mutation in intron 3, a cryptic exon is included into the β-globin mRNA, abrogating the 
production of β-globin proteins. ASOs targeting the cryptic splice sites prevent the inclusion of the cryptic exon, restoring normal splicing and production of β-globin protein. 
(B) Restoration of cryptic splicing for USH1C. Due to a mutation in exon 3, a cryptic splice site within exon 3 is activated, leading to the exclusion of the last part of the exon 
from the USCH1C transcript and loss of harmonin protein production. Using ASOs targeting the cryptic splice site in exon 3 reactivates the original splice site and restores 
normal splicing and protein production. (C) Shifting of alternative splicing. The STAT3 gene produces STAT3α and STAT3β proteins based on the use of a proximal or more 
distal acceptor splice site in exon 23 during pre-mRNA splicing. ASOs targeting the proximal acceptor splice site lead to a shift into the production of the proapoptotic 
STAT3β protein. (D) Isoform-specific knockdown. The APOB gene gives rise to APOB100 and APOB48 proteins. The latter derives from RNA editing in exon 26. Skipping 
of exon 27 gives rise to a prematurely truncated APOB protein with cholesterol-lowering properties, without affecting the APOB48 isoform.
Abbreviations: APOB, apolipoprotein B100; ASOs, antisense oligonucleotides; LDL, low-density lipoprotein; mRNA, messenger RNA; STAT3, signal transducer and 
activator of transcription 3; USH1C, Usher syndrome type 1C gene.
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span due to growth impairment, lipodystrophy, dermal and 

bone abnormalities, and cardiovascular alterations.29 This 

shift in the standard splicing of the LMNA gene favoring the 

truncated progerin protein represents an ideal example of 

how the usually firmly kept balance can be disturbed by the 

presence of this cryptic splice site: the new protein is only 

50 amino acids shorter than the original one, but lacks a vital 

target sequence for protein cleavage,30 and this in turn leads 

to the deleterious effects experienced by HGPS patients. 

A phosphorodiamidate morpholino oligomer ASO masking 

the progerin splice site has been successfully used in fibro-

blast cultures from HGPS patients to restore normal splicing 

and correct nuclear abnormalities and mislocalization of 

other nuclear envelope proteins.31 Following these advances, 

in a recent study on a murine model that recapitulates the 

main clinical signs of HGPS, vivo-morpholino ASOs were 

able to reverse many of the phenotypical alterations seen in 

these mice.32

Signal transducer and activator of transcription 3 

(STAT3) is involved in the activation of several oncogenic 

pathways. It is usually spliced to the isoform STAT3α, but an 

alternative acceptor site in exon 23 leads to the expression of 

isoform STAT3β, which lacks the C-terminal transactivation 

domain. Overexpression of STATβ can induce apoptosis and 

inhibit tumor growth. Zammarchi et al developed an ASO 

targeting a splicing enhancer site that was able to shift the 

balance of STAT3 expression to favor STAT3β expression 

(Figure 1C).33 This approach has been tested in cell and ani-

mal models and has served a double purpose: on one hand it 

allowed a detailed study of the precise functions of STAT3β 

in its physiological environment. On the other hand, ASOs 

that shift splicing to the STAT3β isoform have antitumor 

applications.

Knockdown
Exon-skipping ASOs can also be used to knockdown the 

function of an undesired gene, by inducing exon skipping 

and creating mRNA isoforms that encode nonfunctional 

proteins or trigger nonsense-mediated decay of the mRNA,34 

to inhibit the expression of the undesired gene; or encode 

alternative isoforms with desired physiological or therapeutic 

functions that could modify or antagonize the effect of an 

undesired gene. The use of exon-skipping ASOs for the first 

purpose is not generally widespread except in the special 

case of zebrafish genetics.35 Other methods, such as RNA 

interference,36 ASOs that trigger RNase H-mediated deg-

radation of mRNAs,37 or translation inhibition,38 are more 

generally used if simple knockdown is desired. An example 

of this is the knockdown of apolipoprotein B100 (APOB100) 

as a means of reducing low-density lipoprotein (LDL) secre-

tion and cholesterol levels in familial hypercholesterolemia.39 

Both RNase H “gap-mer” ASOs and RNA interference have 

been used for this purpose, reducing LDL cholesterol in 

vivo.40,41 These simple knockdown approaches, however, have 

the undesired effect of knocking down the APOB48 isoform, 

and therefore reduce chylomicron secretion.42 This will inter-

fere with fat transport from the intestine and malabsorption 

of fat-soluble vitamins such as vitamin K.43

Exon-skipping ASOs offer a distinct advantage over 

simple knockdown, as engineered alternative isoforms may 

possess their own therapeutic properties, inhibit the function 

of a normal isoform, and/or avoid side effects of knockdown 

of the normal isoform. Capitalizing on this advantage, exon-

skipping exon 27 of the APOB gene using ASOs causes a 

reduction of LDL particle secretion and an increase in LDL 

affinity for the LDL receptor (Figure 1D).44 These two effects 

combine to cause a powerful reduction of LDL cholesterol 

when the “APO-skip” ASOs are introduced into hypercho-

lesterolemic mice transgenic for human APOB, validating the 

therapeutic concept.45 Importantly, exon 27 skipping does not 

affect APOB48 expression, as the RNA editing necessary for 

APOB48 expression occurs in exon 26.45 In this example, 

therefore, exon-skipping technology enables the reengineer-

ing of gene expression to produce a desired outcome with 

clear therapeutic advantages over other approaches to the 

same problem.

Reading frame correction
The coding sequence for proteins is dispersed over exons, and 

the location where introns interrupt the code can be in three 

phases in relation to the coding sequence: either between 

complete codons (phase 0 introns), interrupting after the first 

nucleotide of the codon (phase 1 introns), or interrupting after 

the second nucleotide of the codon (phase 2 introns). As this 

will apply to both the beginning and the end of each exon, 

each exon will have two jigsaw-like ends that will require a 

complementary exon before and after to maintain the open 

reading frame (ORF).46 Therefore, a symmetrical exon can be 

deleted without interrupting the ORF, but others, if deleted, 

would cause a disruption in the ORF (Figure 2). For most 

genes, the deletion of an exon would result in a nonfunctional 

protein regardless of whether the ORF is disrupted by the 

deletion, since the majority of proteins do not have redundant 

domains. However, there are some exceptions where deletions 

that maintain the ORF allow the production of internally 

deleted but partially functional proteins. This concept is best 
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illustrated in the neuromuscular disorder DMD, an early 

onset, severely progressive muscle-wasting disorder.47 In the 

majority of DMD patients, deletions or duplications of one or 

more exons cause a disruption of the ORF and the deficit of 

its encoded protein, dystrophin.48 In a stark contrast to DMD, 

another disorder in which one or more exons are also deleted 

from the DMD gene, Becker muscular dystrophy, has a much 

milder progression. The difference is that in Becker patients, 

the deletions do not disrupt the ORF and a shorter, but partially 

functional dystrophin protein is produced.48 The existence of 

Becker muscular dystrophy is the conceptual basis for the 

model of exon skipping: ASOs are used to “mask” specific 

exons to the splicing machinery to restore the ORF and partial 

dystrophin function for DMD patients.

From early proof of concept experiments to the latest clin-

ical trials, the developments in the use of ASOs as a potential 

therapeutic agent in DMD have been fast: restoration of 

dystrophin has been achieved following intramuscular49,50 

and systemic4,5,51 injections of ASOs targeting DMD exon 51, 

and these and several other ASOs targeting other exons are 

progressing through clinical trials.52

SMA, the most common genetic cause of death in 

infants under the age of 2 years, is caused by deletions and 

mutations of SMN1, and consequently low levels of SMN 

protein, a ubiquitously expressed protein involved in RNA 

processing.53 Although a duplicate of SMN1, SMN2 also 

exists within the genome and also encodes SMN; it is usually 

inefficiently spliced due to minor differences in and around 

exon 7. As a result, only 20% of SMN2 mRNA transcripts 

include exon 7, which is necessary for the stability of SMN 

protein.54 In healthy individuals, this is irrelevant, but in 

SMA patients, increasing the amount of exon 7 inclusion 

from SMN2 transcripts could allow the generation of suffi-

cient amounts of SMN protein to ameliorate their disease. In 

fact, several studies using ASOs have already demonstrated 

in vitro and in vivo that this is possible,6,55–58 and clinical 

trials are underway.

Toward clinical application
From the above, it is clear that antisense-mediated splicing 

modulation may offer a potential treatment for rare inherited 

diseases, and as such, can be seen as a platform approach. 

For DMD and SMA, the approach has made it to the clini-

cal trial phase, whereas other genetic diseases are still in 

preclinical development. While each of these diseases will 

have their own quirks and challenges (eg, delivery to the tar-
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Figure 2 effect of exon deletions on the open reading frame.
Notes: (A) Different ways in which codons in exons may be split by introns: in phase 0 introns, the codon ends at the end of the exon, while in phase 1 and phase 2 introns 
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get tissue and dosing regimens will vary between diseases), 

there will be common challenges and hurdles as well, since 

they all use the exon-skipping platform. Furthermore, 

there is no reason why people embarking on developing 

exon skipping for their disease of choice should have to 

repeat mistakes others have made in the past. Therefore, 

networking between scientists involved in this endeavor 

is warranted. The European Cooperation of Science and 

Technology (COST) provides funding for networking to 

overcome challenges such as these, and has funded the 

Action “Networking towards clinical application of anti-

sense-mediated exon skipping for rare diseases” (BM1207, 

see http://www.cost.eu and http://www.exonskipping.eu).59 

Within this Action, regular workshops are organized to 

discuss common challenges, such as delivery to the target 

tissue, ASO chemistry and safety, and to align preclinical 

work. Furthermore, the Action focuses on the development 

of new regulatory models and has recently had a workshop 

on translational and regulatory challenges with representa-

tives from patient organizations, academia, and regulatory 

agencies,60 following a larger workshop organized by the 

Translational Research in Europe – Assessment and Treat-

ment of Neuromuscular Diseases (TREAT-NMD) network 

and hosted by the European Medicines Agency that focused 

on the particulars of exon skipping for DMD.61

One of the key factors for clinical development will be 

the harmonization of outcome measures. While the regulators 

will provide market approval only when clinically relevant 

benefit has been convincingly shown, biochemical out-

come measures can provide additional information, eg, by 

 confirming mechanism of action of ASOs. Lessons could be 

learned from the case of DMD: when the first clinical trials 

using ASOs were outlined, methods to measure dystrophin 

restoration relied heavily on standard clinical diagnostic 

techniques and academic protocols, and each research cen-

ter used their own version of the methods.4,5,49,51,52 The most 

commonly used method was immunofluorescent staining, but 

the large size and low expression level of the protein made 

accurate quantification technically challenging, especially 

when the amount of restored dystrophin is relatively small 

and it needs to be distinguished from preexisting dystrophin-

positive revertant fibers and residual trace dystrophin expres-

sion.52,62 To overcome some of those difficulties, refinements 

developed, in particular using better software analysis.63,64 

A group of laboratories from academia and industry have 

embarked on an effort to provide a data-driven reproducible 

 methodology for dystrophin quantification that could be 

used in future  trials. This group has revised methodologies, 

validated them among their laboratories, and proposed a 

standard operating procedure.52,65

Conclusion
ASO-mediated splicing modulation holds potential for 

treating rare genetic diseases as outlined in this review, and 

as corroborated by the advances made for DMD and SMA. 

International networks on exon skipping aim to help sci-

entists developing this approach for other diseases benefit 

from the experience gained from the DMD field, to jointly 

overcome challenges and further this approach toward 

clinical application for as many rare genetic diseases as 

possible.
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