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Abstract: Amphotericin B (AmpB) is active against leishmaniasis, but its use is hampered due 

to its high toxicity observed in patients. In this study, a nanoparticles-delivery system for AmpB 

(NQC-AmpB), containing chitosan and chondroitin sulfate molecules, was evaluated in BALB/c 

mice against Leishmania amazonensis. An in vivo biodistribution study, including biochemical 

and toxicological evaluations, was performed to evaluate the toxicity of AmpB. Nanoparticles 

were radiolabeled with technetium-99m and injected in mice. The products presented a similar 

biodistribution in the liver, spleen, and kidneys of the animals. Free AmpB induced alterations 

in the body weight of the mice, which, in the biochemical analysis, indicated hepatic and renal 

injury, as well as morphological damage to the kidneys of the animals. In general, no significant 

organic alteration was observed in the animals treated with NQC-AmpB. Mice were infected 

with L. amazonensis and treated with the nanoparticles or free AmpB; then, parasitological and 

immunological analyses were performed. The NQC-AmpB group, as compared to the control 

groups, presented significant reductions in the lesion size and in the parasite burden in all evaluated 

organs. These animals presented significantly higher levels of IFN-γ and IL-12, and low levels of 

IL-4 and IL-10, when compared to the control groups. The NQC-AmpB system was effective in 

reducing the infection in the animals, and proved to be effective in diminishing the toxicity evoked 

by AmpB, which was observed when it was administered alone. In conclusion, NQC-AmpB could 

be considered a viable possibility for future studies in the treatment of leishmaniasis.

Keywords: in vivo treatment, Leishmania amazonensis, nanoparticles, chitosan, chondroitin sulfate

Introduction
Leishmaniasis is a disease with a wide spectrum of clinical manifestations caused by 

protozoa belonging to the Leishmania genus.1 Currently, nearly 350 million people 

in 98 countries are at risk of contracting the infection,2 whereas between 700,000 and 

1.2 million cases of cutaneous leishmaniasis, and about 500,000 cases of visceral 

leishmaniasis, are diagnosed annually worldwide.3

The first choice to treat leishmaniasis has been the employ of pentavalent antimony; 

however, the side effects, such as myalgias, arthralgias, pancreatitis, leukopenia, and 

cardiotoxicity, are problems reported by patients.4,5 Amphotericin B (AmpB), a polyene 

used in the treatment of the disease, is a highly hydrophobic antifungal drug. It is active 

against Leishmania, but its clinical use is hampered mainly due to its high toxicity, 

including nephrotoxicity, hemolysis, and liver damage, as well as nausea and fever.6,7

To improve the therapeutic index and reduce the toxicity of this drug, lipid-based 

formulations have been developed. In this context, the World Health Organization 
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has recommended the use of liposomal AmpB.8 Despite the 

improvement in the therapeutic index for its formulations, 

its use still remains limited due to the high cost.9 Therefore, 

the development of other delivery systems by incorporating 

effective drugs to treat leishmaniasis, and aimed at reducing 

their side effects, as well as presenting an accessible cost, 

could be considered desirable.10

Delivery systems using nanospheres, liposomes, or micro-

spheres could result in a higher concentration and a slower 

distribution of drugs in organs, such as the spleen, liver, and 

kidneys.11–16  In one prior study performed by our group, an 

optimized nanoparticles system composed of chitosan (Cs), 

chondroitin sulfate (ChS), and AmpB (namely, NQC-AmpB); 

was developed and evaluated to determine its in vitro antil-

eishmanial activity against extracellular promastigotes and 

intracellular amastigotes of L. amazonensis and L. infantum.17 In 

this study, the Cs nanoparticles (NQ), Cs–ChS nanoparticles 

(NQC), and NQC-AmpB nanoparticles all presented an in 

vitro antileishmanial activity, associated with a low toxicity 

in murine macrophages, as well as a null hemolytic activity in 

type O+ human red blood cells, whereas the use of AmpB in 

a free form evoked a high toxicity in the mammal cells. The 

study concluded that the engineered NQC-AmpB nanoparticles 

presented the best results against Leishmania, and led to the 

possibility of this nanosystem being evaluated in in vivo models 

against leishmaniasis.17

In this context, the present study aims to investigate 

NQC-AmpB nanoparticles by evaluating their in vivo 

biodistribution profile in mice, as well as toxicological and 

biochemical parameters in the treated animals, to verify the 

effectiveness of this system in treating mice infected with 

L. amazonensis, in an attempt to find better chemotherapeutic 

alternatives against leishmaniasis.

Materials and methods
Ethics statement
Experiments were performed in compliance with the National 

Guidelines of the Institutional Animal Care and Use Commit-

tee for the Ethical Handling of Research Animals (CEUA) 

from the Federal University of Minas Gerais (UFMG) (Law 

number 11.794, 2008), which approved this study under 

protocol number 182/2012.

Mice 
Female BALB/c and Swiss mice (8 weeks age) were 

obtained from the breeding facilities of the Department 

of Biochemistry and Immunology, Institute of Biological 

Sciences, UFMG, and were maintained under specific 

pathogen-free conditions. All animals used in the present 

study were euthanized at the end of the experiments, with 

the toxicological, biochemical, parasitological, and/or 

immunological analyses being used as the murine endpoints 

in the experiments.

Preparation of NQ, NQC,  
and NQC-AmpB nanoparticles 
All nanoparticles used in this study were prepared and 

characterized by polyelectrolyte complexes technique, as 

described.17

In vivo biodistribution studies
The in vivo biodistribution studies were conducted using 

nanoparticles radiolabeled with technetium-99m (99mTc). The 

prepared nanoparticles were radiolabeled with 99mTc, accord-

ing to the following procedure. Briefly, 1 mL of aqueous 

solution containing the nanoparticles (1 mg/mL), 10 µL of a 

SnCl
2
2H

2
O solution (diluted in 0.25 N HCl 1 mg/mL), and 

10 µL of a NaHB
4
 solution (diluted in 0.25 N NaOH 5 mg/mL) 

were added to a vial, with the pH adjusted to 7.0. After, the 

vial was sealed, and a vacuum was made. Next, an aliquot 

containing 37 MBq of Na99mTcO
4
 was added to the mixture. 

The solution was stirred at 60°C for 30 min and filtered using 

a sterile syringe filter with a 0.45 µm pore size hydrophilic 

PVDF membrane (Thomas Scientific, Swedesboro, NJ, USA). 

Radiochemical purity of 99mTc nanoparticles was determined 

by means of two chromatographic systems: ascending 

chromatography on a silica gel strip (Merck KGaA, Darm-

stadt, Germany) using methyl ethyl ketone to determine the 

amount of pure technetium (99mTcO
4
−); and by descending 

chromatography on a strip of Whatman paper No. 1 that had 

been previously saturated with 1% serum bovine albumin 

solution, using saline to determine the amount of hydrolyzed 

technetium (99mTcO
2
). Radioactivity was measured using an 

automatic gamma counter (Wallac 1470 Wizard Gamma 

Counter, Perkin Elmer, Turku, Finland).18–20

For scintigraphic images, Swiss mice (n=8 per group) 

were assigned to one of the following groups: NQ, NQC, and 

NQC-AmpB nanoparticles. Aliquots containing 3.7 MBq 

of the respective 99mTc nanoparticles were administered 

intravenously into the animals. At 0.5, 2, 4, 8, and 24 hours 

after administration, mice were anesthetized and placed in 

a supine position under a gamma camera (Mediso Medical 

Imaging Systems, Budapest, Hungary) using a low-energy 

high-resolution collimator. Images were acquired using a 

256×256×16 matrix size, with a 20% energy window set at 

140 keV for a period of 600 seconds. For the in vivo biodis-

tribution analyses, Swiss mice (n=8 per group) were placed 

in those groups that received NQ, NQC, or NQC-AmpB 
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nanoparticles. For this, 3.7  MBq of the respective 99mTc 

nanoparticles were administered intravenously into the 

animals, which were anesthetized and euthanized at 0.5, 2, 

4, 8, and 24 hours, after this administration. Blood samples, 

heart, lungs, spleen, liver, and kidneys were harvested for 

analysis. Each organ or tissue was weighed, and its associ-

ated radioactivity was determined in an automatic gamma 

counter. A standard dose, containing the same amount 

of radioactivity injected into the animals, was analyzed 

simultaneously and defined as 100% of radioactivity. The 

results were expressed as the percentage of the injected 

dose per gram of tissue (% ID/g) according to the follow-

ing equation:

	
% ID/g

cpm/g (tissue)

standard dose
= ×100 	 (1)

In vivo toxicity studies
Swiss mice (n=8 per group) were treated daily, from day 

0  to 10 days after the first administration of the dose, by 

intravenous injection, as described below:

1.	 Control group: mice received 100 µL of a phosphate-

buffered saline (PBS) 1× solution.

2.	 AmpB group: mice received 100 µL of a solution contain-

ing 1 mg/kg body weight of AmpB.

3.	 NQ group: mice received 100  µL of Cs nanopar-

ticles, with the same amount of Cs in the NQC-AmpB 

nanoparticles.

4.	 NQC group: mice received 100 µL of Cs–ChS nanopar-

ticles, with an equivalent distribution of these molecules 

in the nanoparticles.

5.	 NQC-AmpB group: mice received 100  µL of AmpB-

loaded Cs–ChS nanoparticles containing 1 mg/kg of body 

weight of AmpB.

During 12 days, variations in the body weight of the mice 

were monitored, as was the time at which toxicity appeared 

or death occurred. In addition, 2 days after the end of the 

treatment, blood samples were collected for biochemical and 

hematological analysis. The cardiac function was analyzed 

by the dosage of creatine kinase-myocardial band isoen-

zyme (CK/MB); and the hepatic function was analyzed by 

dosages of gamma-glutamyl transferase (GGT), aspartate 

aminotransferase (AST), and alanine aminotransferase 

(ALT). Nephrotoxicity was evaluated in the blood samples 

by examining the levels of blood urea nitrogen (BUN) and 

serum creatinine. All biochemical assays were performed 

using commercial kits (Labtest Diagnostica, Minas Gerais, 

Brazil) and an auto-analyzer apparatus (Thermo Plate TP 

analyzer), according to manufacturer instructions.

For the histopathological analyses, heart, liver, and spleen 

were removed from the animals, 2 days after the end of the 

treatments. The organs were washed in a NaCl 0.9% solution, 

and set in 10% buffered formalin. All tissues were embed-

ded in paraffin blocks, sectioned in 5 µm thickness using a 

microtome (Leica RM2245; Leica Microsystems, Wetzlar, 

Germany), and placed onto glass slides. After hematoxylin–

eosin staining, slides were observed and photos were taken 

using an optical microscope.

In vivo treatment
Experiments were carried out using L. amazonensis 

(IFLA/BR/1967/PH-8). Parasites were grown at 24°C in 

Schneider’s medium (Sigma-Aldrich Co., St Louis, MO, 

USA), supplemented with 10% heat-inactivated fetal bovine 

serum (Sigma-Aldrich Co.), 20 mM L-glutamine, 200 U/mL 

penicillin, and 100  µg/mL streptomycin, at pH 7.4. The 

soluble Leishmania antigen (SLA) extract was prepared 

from 1×1010 stationary-phase promastigotes, as previously 

described.21

BALB/c mice (n=8 per group) were infected through 

subcutaneous injection with 5×106  stationary-phase pro-

mastigotes of L. amazonensis, and the development of 

lesions was monitored using an electronic caliper (799–

6/150 model; Starrett®, Brazil). After the development of 

ulcerated lesions (at approximately 87–94 days postinfec-

tion), the animals were divided into groups according to 

lesion size to ensure similar average lesion sizes among 

the treated groups. Animals were then treated daily for 

10 days, receiving intravenous injections containing one 

of the following regimens:

1.	 Control group: mice received 100  µL of a PBS 1× 

solution.

2.	 AmpB group: mice received 100 µL of 1 mg/kg body 

weight of AmpB.

3.	 NQ group: mice received 100 µL of Cs nanoparticles, at 

equivalent amounts of Cs in relation to the NQC-AmpB 

nanoparticles. 

4.	 NQC group: mice received 100 µL of empty Cs–ChS 

nanoparticles, at equal amounts of Cs–ChS in relation 

to the NQC-AmpB nanoparticles. 

5.	 NQC-AmpB group: mice received 100  µL of AmpB-

loaded Cs–ChS nanoparticles in the dosage of 1 mg/kg 

body weight of AmpB.

During and after treatment, lesion size was followed 

weekly to measure the diameter of the lesions.22  Further 

evaluations, through the careful observation of the lesions – 

including observations of the appearance of relapses and 

nodules, as well as metastasis in other regions of the body of 
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the animals – were also performed. The infected mice were 

observed for an additional 30-day period after the interrup-

tion of treatment.

Animals were euthanized at 30  days after the end of 

treatment. Efficacy was evaluated by measuring the lesion 

size and the parasite load at the site of infection, as well as 

in the spleen, liver, and draining lymph nodes (dLN), using 

a limiting dilution technique.23 Briefly, organs were weighed 

and homogenized, using a glass tissue grinder in sterile PBS 

1×. Tissue debris was removed by centrifugation at 150× g, 

and cells were concentrated by centrifugation at 2,000× g. 

The pellet was resuspended in 1 mL of Schneider’s medium 

supplemented with 20% fetal bovine serum. Two hundred 

and twenty microliters of the resuspension was plated onto 

96-well flat-bottom microtiter plates (Nunc, Nunclon, 

Roskilde, Denmark), and diluted in log-fold serial dilutions 

in supplemented Schneider’s culture medium with a 10-1 to 

10-12 dilution. Each sample was plated in triplicate and read 

7 days after the beginning of the culture, at 24°C. Pipette tips 

were discarded after each dilution to avoid carrying adhered 

parasites from one well to another. Results are expressed as 

the negative log of the titer (ie, the dilution corresponding to 

the last positive well) adjusted per microgram of tissue. 

Splenocyte cultures and cytokine assays were performed 

at 30  days after the end of the treatment, as previously 

described.21  Briefly, single-cell preparations from spleen 

tissue were plated in duplicate in 24-well plates (Nunc) at 

5×106  cells per mL. Cells were incubated in Dulbecco’s 

Modified Eagle’s Medium (nonstimulated, background 

control), or separately stimulated with SLA (50 µg⋅mL-1) or 

with the respective nanoparticles (10 µg⋅mL-1), at 37°C in 

5% CO
2
 for 48 h. IFN-γ, IL-4, IL-10, and IL-12 levels were 

assessed in the supernatants by a sandwich enzyme-linked 

immunosorbent assay (ELISA) provided in commercial kits 

(BD OptEIA TM set mouse IFN-γ, IL-4, IL-10, and IL-12; 

Pharmingen, San Diego, CA, USA), following the manufac-

turer’s instructions. 

Statistical analysis
Statistical analyses were performed using GraphPad PrismTM 

(version 6.0 for Windows). Results are expressed as mean ±  

standard deviation. The normality and homogeneity of 

the variance analysis of the data was performed using the 

Kolmogorov–Smirnov and Bartlett’s tests, respectively. 

In the biodistribution assays, two-way analysis of variance 

(ANOVA) was used to compare differences between the 

groups. To analyze the variation in body weight, the value 

before treatment was used as the covariate,24 and one-way 

ANOVA, followed by Bonferroni’s post-test, was used to 

compare differences between the groups. To analyze bio-

chemical parameters, the computed normalized absorbance 

ratios were used, by correcting the mean optical density 

value for each sample from NQ, NQC, NQC-AmpB, and free 

AmpB groups, and dividing it by the mean optical density 

value from the control group. As a consequence, the normal-

ized absorbance ratios represent multiples of reactivity in 

relation to the control group.25 To analyze the lesion size, 

parasite burden, and immunological response between the 

groups, the two-way ANOVA and the area under the curve, 

followed by Bonferroni’s post-test, were used. Differences 

were considered statistically significant when P0.05. Data 

shown are representative of two independent experiments, 

which presented similar results.

Results
In vivo biodistribution studies
The NQ, NQC, and NQC-AmpB nanoparticles radiolabeled 

with 99mTc presented radiochemical purities of 89.4%±3.2%, 

86.3%±2.0%, and 84.0%±2.0%, respectively, thus allow-

ing for further in vivo assays. The NQC and NQC-AmpB 

nanoparticles presented similar biodistribution profiles in the 

spleen and liver of the treated animals, during the period of 

time that they were evaluated; however, at 24 h after admin-

istration, the NQC presented a higher presence in the spleen, 

when compared to the NQC-AmpB nanoparticles (Figure 

1A). This evaluation could be also observed in the scinti-

graphic images, demonstrating a decreasing of the biodistri-

bution profile of the nanoparticles in the abdominal region of 

the animals, after 24 h of administration (Figure 1B). 

In vivo toxicity studies
Some clinical symptoms, such as ataxia and weakness, were 

observed in the free AmpB-treated mice, while in the ani-

mals treated with NQ, NQC, or NQC-AmpB nanoparticles, 

no clinical alteration was observed. No death was reported 

in any group during the experiments. The body weight of 

the mice was monitored from 0 to 12 days during the treat-

ment, and Figure 2  shows the results. The control group 

(nontreated and noninfected) presented a positive variation 

in weight, reaching a maximum of up to 6% relative to the 

weight of the animals, as compared to the beginning of 

the treatment. The NQ and NQC groups presented a light 

negative variation in weight of up to 4%. The NQC-AmpB 

group presented a negative variation in weight, reaching a 

maximum of 5%. However, for the free AmpB group, the 

loss of body weight presented a negative variation of 15%, 
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Figure 1 In vivo biodistribution profile of engineered nanoparticles. 
Notes: (A) Biodistribution profile of nanoparticles in the tissues and organs at the different periods of time (0.5, 2, 4, 8, and 24 hours). Values of % ID/g are expressed 
as mean ± standard deviation of the groups (n=8 mice per group). Significant differences were considered as P0.05. aRepresents a significant difference in relation to the 
NQ and NQC-AmpB groups at 24 hours. bRepresents a significant difference in relation to the NQ group at 24 hours. (B) Scintigraphic images obtained after intravenous 
administration of radiolabeled nanoparticles at different periods of time (0.5, 2, 4, 8, and 24 hours). 
Abbreviations: % ID/g, percentage of the injected dose per gram of tissue; AmpB, amphotericin B; ChS, chondroitin sulfate; Cs, chitosan; NQ, Cs nanoparticles; NQC, 
Cs–ChS nanoparticles; NQC-AmpB, AmpB–Cs–ChS nanoparticles.

possibly reflecting the high toxicity of this drug observed in 

the animals (Figure 2).

The results of dosage of markers of cardiac, hepatic, and 

renal damage are shown in Figure 3A. The administration of 

free AmpB did not affect the CK/MB levels, indicating no 

cardiac damage, but the levels of GGT, AST, ALT, BUN, and 

serum creatinine increased in these animals. In the animals 

treated with NQ, NQC, and NQC-AmpB nanoparticles, no 

alteration was observed. Thus, this finding indicates that 

the NQC-AmpB system may well be able to diminish the 

hepatic and renal toxicity caused by free AmpB. Moreover, 

no hematological alteration was observed in any of the evalu-

ated groups (data not shown). 

The histological photomicrographs of animals 

treated with free AmpB exhibited mild to moderate 

renal tubular nephrosis, with glomerulonephritis; loss 

of the morphology of the proximal tubules and capillar-

ies; hyperemic and shapeless blood vessels; and loss of 

the morphology of the animals’ tissue cells (Figure 3B). 

Interstitial and intraluminal calcified foci appeared as a 

result of the mineralization of injured support and epi-

thelial cells. A mild damage in the kidneys of two of the 

eight mice treated with NQC-AmpB was observed, and no 

morphological alteration was found in the animals treated 

with NQ or NQC nanoparticles.

In vivo efficacy against L. amazonensis 
infection
The lesion development in the infected animals was moni-

tored for 115 days. The saline (control), NQ, NQC, NQC-

AmpB, and free AmpB were administered for 10 days. In 

the results, a significant reduction in the average lesion size 
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could be observed in the animals treated with NQ, NQC, 

and NQC-AmpB nanoparticles, as well as in the free AmpB 

group, when compared to the saline group (Figure 4A). No 

significant difference could be found between the NQ and 

NQC groups. The NQC-AmpB group presented a smaller 

lesion size, which was sustained up to 30 days after the treat-

ment in relation to the AmpB group and others, when the area 

under the curve was calculated (Figure 4B). To evaluate the 

parasite burden in the animals, the infected footpad, liver, 

spleen, and dLN were collected and cultured. All groups pre-

sented reductions in the parasite load in the evaluated organs, 

when compared to the control group (Figure 4C); however, 

animals treated with NQC-AmpB, when compared to the 

others, displayed better results in reducing the parasite load, 

thus demonstrating that this preparation was more effective 

in treating the infected animals.

Immune-response profile
To evaluate if the treatment regimens were able to alter the 

immunological response associated with the resistance and/or 

susceptibility of BALB/c mice infected with L. amazonensis, 

the IFN-γ, IL-12, IL-4, and IL-10 cytokines were evaluated 

in the spleen cells, at 30 days after treatment. As shown in 

Figure 4D (see also Figure S1), spleen cells from mice treated 

with NQ, NQC, and NQC-AmpB nanoparticles produced sig-

nificantly higher levels of SLA-specific IFN-γ and IL-12 than 

did those produced by spleen cells of animals treated with 

free AmpB or the control group, suggesting a polarized 

T helper (Th) 1 response in these animals. The ratio between 

IFN-γ/IL-4, IFN-γ/IL-10, IL-12/IL-4, and IL-12/IL-10 was 

also calculated, and the results showed that nanoparticles 

primed the infected animals to produce high levels of IFN-γ 

and IL-12, corroborating with the significant reduction 

observed in the parasite burden (Figure 4D). Nevertheless, 

spleen cells of animals treated with free AmpB, as compared 

to the NQC-AmpB group, also presented significantly higher 

IFN-γ/IL-4 and IFN-γ/IL-10 ratios, but lower IL-12/IL-4 and 

IL-12/IL-10 ratios.

Discussion
Current treatments for leishmaniasis have been considered to 

have low satisfaction, mainly due to the high toxicity of the 

products. For instance, some attempts have been made over 

the years to reduce the side effects evoked by AmpB.26 Lipid-

based formulations, such as AmBisome®, AmhocilH®, and 

Abelcet®, have been developed and, despite improvements 

in the therapeutic index of these drugs, their uses still remain 

limited, mainly due to the high cost.9 In this context, this study 

aims to use an in vivo model to validate a preparation based 

on engineered nanoparticles carrying AmpB, using BALB/c 

mice challenged with L. amazonensis.

In a previous study, Ribeiro et al developed an AmpB 

delivery system based on Cs–ChS nanoparticles loaded with 

this drug (NQC-AmpB).17 To the best of our knowledge, this 

is the first time that the formulation of a Cs–ChS-based system 

for AmpB delivery has been developed to treat leishmaniasis. 

In this context, the in vivo biodistribution profile and the effi-

cacy of NQC-AmpB nanoparticles to treat BALB/c mice that 

were chronically infected with L. amazonensis, as well as the 

biochemical, hematological, immunological, and morphologi-

cal alterations induced by this preparation, as compared to the 

use of free AmpB, were also investigated.

Some prior studies developed by our group have 

focused on experiments to evaluate in vitro biodistribution 

profiles using products radiolabeled with 99mTc.27,28  In the 

present work, these experiments were also applied, and 

in vivo biodistribution studies and scintigraphic images 

showed a high radioactivity uptake of NQC-AmpB in the 

liver and spleen of the animals, up to 24 hours after their 

Figure 2 Body-weight variation observed after treatment with engineered 
nanoparticles. 
Notes: Mice received a saline solution (control group) for 12 days, or were treated 
with NQ, NQC, and NQC-AmpB nanoparticles, or free AmpB. The results of 
the variation in body weight were represented by mean ± standard deviation of the 
groups (n=8 mice per group). aRepresents a significant difference in relation to the 
AmpB group at 24 hours.
Abbreviations: AmpB, amphotericin B; ChS, chondroitin sulfate; Cs, chitosan; 
NQ, Cs nanoparticles; NQC, Cs–ChS nanoparticles; NQC-AmpB, AmpB–Cs–ChS 
nanoparticles.
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Figure 3 Evaluation of the in vivo toxicity. 
Notes: (A) Levels of CK/MB, BUN, CRTN, GGT, AST, and ALT (x-axis) in mice that received saline (control group), or that were treated with NQ, NQC, or NQC-AmpB 
nanoparticles or free AmpB. The values of the treated groups were normalized by the control group. Each bar represents mean ± standard deviation of the groups (n=8 mice 
per group). aRepresents a significant difference in relation to the NQ, NQC, and NQC-AmpB groups. (B) Photomicrographs of renal tissue using hematoxylin/eosin staining 
(40× magnification) from mice that received saline (a–c), or that were treated with NQC-AmpB (d–f) or AmpB (g–i). The arrows indicate: (a) the renal corpuscles delimited 
with a well-defined cell wall, glomerular capillaries with visible blood cells, and Bowman’s capsule and proximal tubule microvilli; (b) well-defined blood vessel walls; (c) thick 
segments of Henle’s loop and the presence of well-defined collecting tubules; (d) the renal corpuscles delimited with a well-defined cell wall; (e) indication of misshapen blood 
vessel and hyperemia; (f) loss of cellular morphology; (g) glomerulonephritis, loss of the morphology of the proximal tubules and capillaries; (h) hyperemia and shapeless 
blood vessel; and (i) loss of cellular morphology.
Abbreviations: ALT, alanine aminotransferase; AmpB, amphotericin B; AST, aspartate aminotransferase; BUN, blood urea nitrogen; ChS, chondroitin sulfate; CK/MB: 
creatine kinase-myocardial band isoenzyme; CRTN, creatinine; Cs, chitosan; GGT, gamma-glutamyl transferase; NQ, Cs nanoparticles; NQC, Cs–ChS nanoparticles; NQC-
AmpB, AmpB–Cs–ChS nanoparticles.
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administration. The moderate levels of radioactivity observed 

in the kidneys could be explained by the leakage of 99mTc from 

the nanoparticles, most likely as a result of the degradation 

process of them, as well as due to the slight uptake of the 

delivery system in the heart, probably due to the positive 

charge of the nanoparticles.20  It has been postulated that 

particulate drug carriers can substantially influence not only 

pharmacokinetics, but also the biodistribution of drugs.29 In 

this context, the particulate nature of vehicles may well 

facilitate the passive guidance of entrapped molecules to the 

inside of the macrophages.30,31

Recently, He et al described that the control of particle 

size and surface charge has a direct effect on biodistri-

bution, and is a significant issue in the rational design 
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Figure 4 In vivo biological activity of engineered nanoparticles. 
Notes: Mice were subcutaneously infected with 5×106 stationary-phase promastigotes of Leishmania amazonensis, and the course of infection was monitored for 115 days. 
When the animals developed ulcerated lesions presenting an average diameter of 2–4 mm, they were divided into groups according to lesion size. After, they were treated 
for 10 days (from day 97 to 107, with the therapeutic window represented as a gray square in A). (A) Lesion size expressed as mean ± SD of the lesion size (n=8 mice per 
group). (B) The AUC of the footpad swelling of the different evaluated groups (represented on the x-axis) is represented. (C) The parasite burden in the infected footpads, 
spleen, liver, and dLN (represented on the x-axis) of the animals in the different evaluated groups. Each bar represents the mean ± SD of the groups. (D) Spleen-cell cultures 
were stimulated with SLA (50 µg⋅mL−1) for 48 hours at 37°C, 5% CO2. The IFN-γ, IL-12, IL-4, and IL-10 levels were measured in the culture supernatants by enzyme-linked 
immunosorbent assay. The ratios of IFN-γ/IL-4, IFN-γ/IL-10, IL-12/IL-4, and IL-12/IL-10 are shown (represented on the x-axis). Each bar represents the mean ± SD of the 
groups. aRepresents a significant difference in relation to the control group; brepresents a significant difference in relation to the NQ and NQC groups; crepresents a 
significant difference in relation to the free AmpB group.
Abbreviations: AmpB, amphotericin B; AUC, area under the curve; ChS, chondroitin sulfate; Cs, chitosan; dLN, draining lymph nodes; NQ, Cs nanoparticles; NQC, 
Cs–ChS nanoparticles; NQC-AmpB, AmpB–Cs–ChS nanoparticles; SD, standard deviation; SLA, soluble Leishmania antigen extract.

of drug nanocarriers.32  In the present study, all of the 

obtained nanoparticles presented a positive charge and 

sizes of approximately 79–136  nm.17  Furthermore, posi-

tively charged nanoparticles accumulate in mononuclear 

phagocytes at about two-fold more than negatively charged 

carriers.33,34 Danesh-Bahreini et al described that the posi-

tively charged nanoparticles, as compared to negative or 

neutral charged nanoparticles, are more quickly taken up 

by macrophages through phagocytosis.35

The mechanism of action proposed for the toxic effect of 

AmpB is derived from its interaction with sterols in bilayer 

membranes, such as cell walls, causing pore formation in 

the membrane, in turn leading either to its destruction or to 

the inhibition of membrane repair. In this context, AmpB 

could also form pores in cholesterol-containing membranes, 

explaining the high toxicity observed in the host cells.35 

In a controlled drug-delivery system, an active product is 

incorporated into a polymeric network structure in such a 

way that the drug is slowly released and in a predefined 

manner.36,37 Depending on the drug delivery and the appli-

cation route, the release time may be a few hours to several 

years.38 In this context, it can be suggested that the reduced 

toxicity of AmpB in the NQC-AmpB preparation observed 

in this study could be attributed to the slower release of the 

drug, when incorporated in the nanoparticles system, inside 

the macrophages, in turn favoring its leishmanicidal activity 

and the low toxicity.

The biodistribution profile observed in the present 

study demonstrates higher accumulation of the NQC-

AmpB nanoparticles in the spleen and liver of the animals, 

which corroborates with findings evaluating other nano-

structured systems, such as polymeric micelles39 and gold 
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nanoparticles.40 Akiyama et al reported that ChS is able to 

induce the Th1-type cytokine (such as IFN-γ, IL-2, and 

IL-12) secretion and suppress the Th2-type cytokine (such 

as IL-5 and IL-10) secretion in ovalbumin-sensitized sple-

nocytes of mice. The authors showed that O-sulfo groups 

in the ChS molecule are important for the Th1-promoted 

activity of murine splenocytes, in terms of the cytokine 

production and Th1/Th2  balance.41  ChS has been found 

in many tissues42  and cells,43–45  and has been reported to 

interact with various biologically important molecules 

and regulate their functions. It has been reported that the 

Th1-promoted and Th2-inhibitory activity of ChS could 

be associated with its binding to adhesion molecules, such 

as L- and P-selectins, CD44, and chemokines. In the same 

study, authors reported that the immunostimulatory activity 

of ChS could be associated with its binding to L-selectins 

expressed on T-cells’ surface.41 As the spleen is considered a 

systemic organ of transit and homing of T-cells in mammal 

hosts, one could speculate that the higher presence of the 

NQC and NQC-AmpB nanoparticles in this organ, in detri-

ment to observed levels of NQ, could be due to the presence 

of a moderate to high number of T-cells in this organ, which 

could have their L-selectins adhered to ChS present in the 

nanoparticles. This fact could explain, at least in part, the 

higher presence of NQC and NQC-AmpB in the spleen of 

the treated animals.

In the present study, the liver could be also considered a 

site of accumulation of the nanoparticles in the mice; in this 

context, a toxicological study was performed on this organ. 

Clinically significant increases in hepatocyte-associated 

serum enzymes were observed in the animals treated with free 

AmpB, with a significant difference observed in the levels 

of GGT, AST, and ALT between the groups that received 

NQC-AmpB and free AmpB, which may well indicate a 

decrease in the hepatic toxicity when AmpB is administered 

in the NQC system, although used at the same dose.

The nephrotoxicity is considered perhaps the most 

described adverse drug event for AmpB.46 The pathophysi-

ology and pharmacology of this activity have been well-

documented, and the proposed mechanism has been 

described as being multifactorial.47,48 The BUN and serum 

creatinine showed significant increases in the animals treated 

with AmpB. The microscopic observation of kidneys of 

animals treated with AmpB is in accordance with previous 

studies.47–49  By contrast, in the animals treated with NQ, 

NQC, and NQC-AmpB nanoparticles, no significant altera-

tion could be observed. It can therefore be concluded that the 

decrease in toxicity of AmpB in the NQC-AmpB preparation, 

in relation to free AmpB, may well have occurred because 

AmpB encapsulated in the nanoparticles does not interact 

well with the epithelial cell membranes within the kidney 

tubule, which would minimize the nephrotoxicity. More 

recently, other groups have used the same strategy to obtain 

a less toxic product than free AmpB.50–54

In the present work, the clinical symptoms, as well as 

hematological and biochemical alterations, were evaluated 

in the animals after the intravenous administration of saline, 

NQ, NQC, or NQC-AmpB nanoparticles, or free AmpB. As 

found in prior reports,55,56 clinical symptoms such as ataxia, 

weakness, and loss of body weight were associated with the 

treatment using free AmpB. These animals presented a sig-

nificant loss of body weight when compared to the animals 

that received NQC-AmpB, indicating that the controlled 

release of this drug could well be responsible for the lower 

incidence of toxic side effects.17 Mice that received NQ and 

NQC treatment showed a loss of body weight, which could 

be associated with the recent role of Cs, which is involved 

in the modulation of adipokines.57

L. amazonensis is a member of the L. mexicana complex 

and is the etiological agent for a broad spectrum of leishma-

niasis in South American countries.58 Among the causative 

species of cutaneous leishmaniasis in Brazil, recent data 

indicate that about 8% are attributed to L. amazonensis.59 The 

present study evaluated the efficacy of NQ, NQC, and NQC-

AmpB nanoparticles in treating chronically L. amazonensis-

infected BALB/c mice, as compared to treatment with free 

AmpB. Both the NQC-AmpB and AmpB treatments were 

able to promote a significant reduction in both the lesion 

size and parasite load of the infected animals. The lesion 

size of the NQ and NQC groups was lower than the control 

group, but higher than that found in the NQC-AmpB and free 

AmpB groups, although the parasitism levels in the treated 

mice with NQ and NQC were similar to that obtained in the 

AmpB group, showing the antileishmanial activity of Cs and 

its synergic effect with ChS.

The immune response of the treated and infected animals 

was also evaluated. Mice treated with nanoparticles presented 

higher levels of IFN-γ and IL-12, and lower levels of IL-4 and 

IL-10. By contrast, control animals displayed high levels of 

IL-4 and IL-10 in their splenic cultures. These results are in 

concordance with Asthana et al, who showed that low lev-

els of IL-4 and IL-10, associated with a high production of 

IFN-γ and IL-12 by splenic cultures of infected hamsters, are 

related to the efficacy of the treatment using a template-based 

nanoemulsion loaded with AmpB.33 Altogether, these results 

indicate that treatment with NQC-AmpB nanoparticles was 
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able to induce a Leishmania-specific Th1 immune response 

in the treated mice.

Traditionally, the systemic treatment of leishmaniasis 

has been with pentavalent antimony compounds (usually 

performed using 20 mg per kg per day, given by intravenous 

or intramuscular routes), over a 20-day period. This regimen 

is able to cure about 85%–90% of the patients; however, the 

treatment is associated with side toxic effects, such as elec-

trocardiographic changes, ventricular tachyarrhythmias, and 

laboratory abnormalities, like elevated liver and pancreatic 

enzymes, and bone marrow suppression.60,61 The development 

of lipid formulations for AmpB has greatly reduced the toxic-

ity of this drug in the treatment of disease. In this context, 

lipid-based AmpB products can be considered as alternatives 

to treatments of leishmaniasis.17 In general, this formula-

tion is less nephrotoxic than free AmpB, since it is taken up 

selectively by macrophages. Some adverse effects including 

mild urticarial rash and renal impairment are resolved after 

therapy.63 The liposomal formulation AmBisome®, the AmpB 

colloidal dispersion (Amphocil™), and the AmpB lipid com-

plex (Abelcet®) have been used in the treatment.62–64 However, 

the main restriction against the widespread use of the current 

approved lipid-AmpB formulations is their high cost. So, the 

search remains to obtain a low-cost formulation, which should 

have also an effective activity against Leishmania.64

The NQC-AmpB nanoparticles described in this study 

present characteristics that could be attractive to the treat-

ment of leishmaniasis. Firstly, the dosage employed of the 

drug in this system is considered low (1 mg per kg per day), 

which could be impacting in the null side effects observed 

in the treated mice. Although the mouse model cannot be 

extrapolated to the model, it is a good perspective that NQC-

AmpB could also be less toxic in the patients. Secondly, 

although NQC-AmpB does not at present have an estimated 

value of sale, due to the fact that this product is composed of 

two known commercial products – ChS and Cs – one could 

speculate that the NQC-AmpB nanoparticles may well have 

a lesser cost in comparison to the other available commercial 

lipid-AmpB formulations.17 

Therapeutic and vaccine studies concerning leishmania-

sis call for the critical evaluation of the parasitological and 

immunological parameters of the most common animal models 

today. It is extremely important to optimize the conditions of 

the artificial infection to the point where it can be firmly argued 

that the conditions best represent those of the natural infec-

tion caused by the sand fly.65 The present study showed that 

BALB/c mice, when infected with a highly infective inoculum, 

developed an exponential parasite burden in organs such as 

dLN, footpad, spleen, and liver, which suggests a chronic 

infection in the animals, and makes it very difficult to control 

the replication of parasites.66 In this context, one could specu-

late that even using a very effective treatment regimen, the 

infected animals would not be able to clear all parasites in the 

different organs. In this light, the NQC-AmpB nanoparticles 

could be considered as effective therapeutic agents; once the 

results obtained in the animals treated with this product were 

compared with the data shown in the free-AmpB-treated group, 

although not all parasites had been eliminated. However, addi-

tional studies are certainly necessary to improve the therapeutic 

index of NQC-AmpB, either by increasing the number of doses 

of the product, or the duration of the treatment; in order to 

clear the largest possible number of parasites in the infected 

animals. On the other hand, the evaluation of the treatment 

in other mammal models could also be of interest, in order to 

estimate the efficacy of the nanoparticles, in mammals that are 

not as susceptible as BALB/c mice. 

Conclusion
In conclusion, based on the results involving the in vivo 

biodistribution, and with the evaluation of the biochemical, 

toxicological, parasitological, and immunological para

meters associated with the treatment of mice infected with 

L. amazonensis, the NQC-AmpB nanoparticles could be 

applied as an alternative AmpB delivery system, maintaining 

the high activity of this drug against Leishmania, but reduc-

ing by significant levels its toxicity, compared to when it is 

administered in a free form. Therefore, this new formulation 

presents a high potential for use in future clinical studies 

aimed at treating leishmaniasis.
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Nanoparticles containing amphotericin B against Leishmania amazonensis
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Figure S1 Analysis of the cellular response. 
Notes: Single-cell suspensions were obtained from the spleen of mice, 30 days after the end of the treatment, and cells were nonstimulated (medium; background control), 
or separately stimulated with SLA (50 µg⋅mL−1), or separately stimulated with the respective nanoparticle (10 µg⋅mL−1), for 48 hours at 37°C, 5% CO2. IFN-γ, IL-12, IL-4, 
and IL-10 levels were measured in culture supernatants by capture enzyme-linked immunosorbent assay. Mean ± standard deviation of the cytokine levels was determined 
(n=8 mice per group). *Represents a significant increase (P,0.05) in relation to the NQ, NQC, and NQC-AmpB groups.
Abbreviations: AmpB, amphotericin B; ChS, chondroitin sulfate; Cs, chitosan; NQ, Cs nanoparticles; NQC, Cs–ChS nanoparticles; NQC-AmpB, AmpB–Cs–ChS 
nanoparticles; SLA, soluble Leishmania antigen extract.
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