Research and Reports in Neonatology downloaded from https://www.dovepress.com/

For personal use only.

Research and Reports in Neonatology

3

Dove

REVIEW

The potential of erythropoietin to treat
asphyxia in newborns

Gillian C Pet
Sandra E Juul
Department of Pediatrics, Division

of Neonatology, University of
Washington, Seattle, WA, USA

Correspondence: Sandra Juul
Department of Pediatrics, Division of
Neonatology, University of Washington,
1959 NE Pacific St, Box 356320, Seattle,
WA 98195-6320, USA

Tel +1 206 221 6814

Fax +1 206 543 8926

Email sjuul@uw.edu

This article was published in the following Dove Press journal:
Research and Reports in Neonatology

18 November 2014

Number of times this article has been viewed

Abstract: Perinatal asphyxia is a cause of significant neonatal morbidity worldwide. Lack
of oxygenation and perfusion to the neonatal brain leads to energy failure and cell death.
Currently, therapeutic hypothermia is the standard of care for term infants with hypoxic-
ischemic encephalopathy, but as it has shown only modest effects on survival and morbidity,
additional neuroprotective agents are needed. Erythropoietin has been extensively studied as
a neuroprotective agent for infants who suffer a hypoxic-ischemic brain injury. It has multiple
mechanisms of action, in both preventing cell death and promoting tissue repair. Studies have
progressed over time from in vitro to in vivo studies, first in animals and now in humans, with
several Phase I/II trials completed and Phase III trials underway. As therapeutic hypothermia
has become the standard of care in treating term infants with hypoxic-ischemic encephalopathy,
studies must now evaluate other neuroprotective agents, including erythropoietin, used in concert
with therapeutic hypothermia. Erythropoietin has shown promise as a neuroprotective agent in
animal and human models, both alone and together with hypothermia.
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Perinatal asphyxia

Lack of oxygen and tissue perfusion in the perinatal period can lead to neonatal
hypoxic-ischemic encephalopathy (HIE), which occurs in one to three/1,000 live
births in developed countries.! In 2008, it was estimated that birth asphyxia caused
between 563,000 and 997,000 deaths worldwide, 9% of all deaths in children younger
than 5 years of age.? Recently, therapeutic hypothermia has proven to be effective at
improving mortality and neurodevelopmental outcomes in infants with moderate-to-
severe HIE.>* However, even with therapeutic hypothermia, HIE still causes significant
morbidity and mortality, with approximately 48% of infants dying or having major
neurodevelopmental disability at 18 months of age.* Additional interventions are
clearly needed to further improve outcomes, and these must be tested in the context
of therapeutic hypothermia.

Mechanisms of brain injury

Perinatal asphyxia results from disruption in cerebral perfusion and oxygenation, often
caused by an interruption in blood flow and gas exchange across the placenta. The
resulting brain injury is characterized by an evolving process, which spans the period
of initial interruption of blood flow through the period of recovery after reperfusion.
The first phase occurs during the period of decreased oxygen delivery to the infant. The
body must switch to anaerobic metabolism, resulting in significantly less adenosine

submit your manuscript
Dove

http:

Research and Reports in Neonatology 2014:4 195-207 195
© 2014 Pet and Juul. This work is published by Dove Medical Press Limited, and licensed under Creative Commons Attribution — Non Commercial (unported, v3.0)

Al License. The full terms of the License are available at http://creati fl /by-nc/3.0/. Non- ial uses of the work are permitted without any further
permission from Dove Medical Press Limited, provided the work is properly attributed. Permissions beyond the scope of the License are administered by Dove Medical Press Limited. Information on
how to request permission may be found at: http://www.dovepress.com/permissions.php



http://www.dovepress.com/permissions.php
http://creativecommons.org/licenses/by-nc/3.0/
http://www.dovepress.com/permissions.php
www.dovepress.com
www.dovepress.com
www.dovepress.com
http://dx.doi.org/10.2147/52375.S0
mailto:sjuul@uw.edu

Pet and Juul

Dove

triphosphate (ATP) being generated for each molecule of
glucose metabolized. The decreased availability of ATP
causes failure of the ATP-dependent Na+/K+ pump, leading
to a sodium influx into cells. The sodium influx is followed
by chloride and water influx, leading to cellular swelling and,
eventually, lysis with cell death by necrosis.’ The failure of
the ATP-dependent Na+/K+ pump also causes membrane
depolarization, leading to increased glutamate release and
decreased glutamate uptake. The increased concentration of
extracellular glutamate, along with activation of ion-gated
calcium channels and failure of energy-dependent processes
of calcium removal from the cell, causes accumulation of
calcium in the cytosol, which has significant negative effects
including membrane injury, generation of free radicals and
nitric oxide, and further decreases in ATP production.>¢ The
number of cells that die during this initial phase is related
to the severity of the insult, with a higher number of cells
dying in the initial phase after a more severe insult.® The next
phase consists of secondary energy failure that occurs 6 to
48+ hours after the original injury and involves inflamma-
tion, cytotoxic edema, nitric oxide synthesis, mitochondrial
dysfunction, and further accumulation of excitotoxins.*’ This
phase correlates best with neurodevelopmental outcomes
and has the potential to be affected by neuroprotective
interventions.*%* Hypoxia and ischemia can cause injury to
both white and gray matter regions, depending on the type,
duration, timing, and other circumstances of the injury. In
term infants, the most common patterns of injury include
watershed injury (plus cortical gray matter injury when
severe), deep gray matter injury (involving deep grey nuclei,
hippocampi, and perirolandic cortex, with additional corti-
cal damage when severe), and multicystic encephalopathy
in infants who experience an acute event superimposed on
more chronic mild-to-moderate hypoxia.’

Mechanisms of cell death

Three mechanisms of cell death can occur in response to
hypoxic-ischemic injury: necrosis, apoptosis, and autophagy.
These cell death programs are complex, interrelated, and
involve signaling pathways which can potentially be inter-
rupted or modified, allowing for targeted neuroprotective
strategies.!® Necrotic cell death tends to occur early following
HIE. It is characterized by profound cellular swelling lead-
ing to cell rupture, membrane disintegration, and release of
intracellular contents.> Necrotic cell death requires less energy
than apoptosis or autophagy, but still involves activation
of specific signaling pathways.!"'?> Neuronal necrosis that
occurs in the context of excitotoxicity and hypoxic-ischemic

injury is mediated by membrane depolarization caused by
glutamate-triggered influx of calcium into the cell. Necrosis
occurs predominantly in sites of profound energy deprivation,
such as the core of an ischemic region, and is responsible for
much of the immediate cell death during the first phase after
injury, but there is a continuum between necrotic and apoptotic
cell death.'*!* In contrast to necrosis, apoptosis is a form of
programmed cell death characterized by immunologically
silent cell shrinkage with nuclear pyknosis and intact plasma
membranes.’ It can be activated by intrinsic or extrinsic path-
ways. The intrinsic, or mitochondrial, pathway depends on the
balance of antiapoptotic proteins (such as Bel-2 and Bel-xL)
and proapoptotic proteins (such as BAX and BAD).!3!6
Apoptosis can also be triggered by external signals such as
Fas ligand and tumor necrosis factor-alpha (TNF-a.) activation
of proapoptotic receptors on the cell surface, which is known
as the extrinsic pathway. Proapoptotic proteins cause permea-
bilization of the mitochondrial membrane, allowing factors
including cytochrome c to be released into the cytosol, leading
to apoptosis.!” Neuroapoptosis following hypoxic-ischemic
injury typically occurs in the ischemic penumbra during the
secondary phase of brain injury, making this pathway an
excellent target for neuroprotection.'®!

Autophagy is a homeostatic process by which unwanted
proteins and damaged organelles are eliminated from cells.
It is a catabolic process involving intracellular degradation of
cytosolic proteins and organelles by autophagosomes, which
fuse with lysosomes to form autolysosomes.'® Autophagy is
now recognized as a distinct mechanism of cell death that is
interrelated to both necrosis and apoptosis.' There are several
proposed mechanisms for the role of autophagy in cell death
following hypoxic-ischemic injury, including as an indepen-
dent mechanism and as a trigger for apoptotic cell death.'

The mechanism of cell death that predominates in
hypoxic-ischemic injury is influenced by characteristics of
the individual including age (neonates are more sensitive to
apoptosis than adults, and the location of calcium permeable
membrane receptors switches from white matter to gray mat-
ter over time), sex (different specific pathways predominate
in males compared to females), and other factors, such as
energy availability.??2 Many cells die from hybrids of mul-
tiple pathways (such as apoptosis and necrosis or apoptosis
and autophagy), as there are significant interconnections
between pathways.?*?* The overlap in cell death pathways
makes identifying targets for neuroprotective agents complex,
because cell death can proceed down an alternative pathway
if one pathway is inhibited.!® Each pathway is important for
normal development, thus blocking all pathways completely
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can have negative effects.>?® As understanding of the
complex interactions between mechanisms of cell death and
survival improves, neuroprotective strategies may include
use of multiple complimentary agents, either to target dif-
ferent pathways or to use one drug to extend the therapeutic
window for another.

Therapeutic hypothermia

Therapeutic hypothermia has become the standard of care
treatment for HIE.>% It has multiple neuroprotective effects,
including decreased energy depletion, inhibition of glutamate
release and decreased impairment in glutamate reuptake,
deceased free radical generation and inflammation, and block-
ade of pathways leading to apoptosis (Figure 1).° It has been
shown in trials to reduce the risk of death or major neurode-
velopmental disability by approximately 50% with a number
needed to treat of 7-9.*° As hypothermia has become the
standard of care, research into other neuroprotective agents,
particularly in humans but also in animal models, has shifted
from study of a neuroprotective agent alone to investigation of
the combined effects of the agent along with hypothermia.

Erythropoietin
Erythropoietin (Epo) is a 30.4 kDa hematopoietic cytokine
that was originally recognized for its role in erythropoiesis.

AT
-
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It is produced primarily in the kidney of adults and the
liver of fetuses, although Epo production also occurs in
the brain, testis, and placenta.’!? Endogenous Epo is
required for normal brain development, function, and repair.
Epo is primarily produced by astrocytes but can also be
detected in oligodendrocytes, neurons, endothelial cells,
and microglia.*** In the setting of hypoxia-ischemia, Epo
receptors (EpoRs) in neurons, astrocytes, and microglia are
massively upregulated.*>** Increased Epo expression follows,
via hypoxia-mediated stabilization of neuronal transcrip-
tion factor hypoxia-inducible factor 1o, if the insult is of
sufficient duration.**> Hypoxia-inducible factor-2 (HIF-2)
has also been found to regulate the production of Epo in
response to hypoxia in many tissues, though its precise role
is less clear.** In the absence of Epo—EpoR binding, cells
are predisposed to apoptosis, while, in the presence of Epo,
cells are preserved.”’*8 This creates an important rationale
for exogenous Epo administration, given that brain injury can
occur after brief but catastrophic insults, such as placental
abruption or cord accidents, which are insufficient to stimu-
late an increase in endogenous Epo synthesis.*

Mechanisms of action of Epo
Epo binds to the EpoR homodimer, which activates Jak2
kinase to phosphorylate Jak2 and EpoR (Figure 2).52

Hypothermia Epo
v v
v v
v v
v v
v v
v v
v v

v
v
v

Figure | Comparison of mechanisms of neuroprotection between therapeutic hypothermia and erythropoietin (Epo).
Notes: Mechanisms of brain injury and recovery after injury are listed. Therapeutic hypothermia and Epo have many similar mechanisms of action, but Epo has additional
effects of prevention of necrosis and promotion of angiogenesis and neurogenesis beyond hypothermia alone.
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Figure 2 Molecular mechanism of erythropoietin (Epo).
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Notes: Epo production is upregulated after hypoxia via stimulation of HIF-1, but it can also be given exogenously. Epo binds to the Epo receptor (EpoR) homodimer,
causing JAK2 kinase phosphorylation of JAK2 and the EpoR, which triggers a signaling cascade that involves STAT5, NF-kB, PI3K/AKT, and MAPK/ERK. Together, this leads
to production of antiapoptotic proteins, including Bcl-2 and Bcl-xL, and also inhibition of proapoptotic proteins, including Bad and Bax. The balance of proapoptotic and
antiapoptotic proteins affects release of substances such as cytochrome c from the mitochondria which then leads to apoptosis.

This activates multiple signaling cascades, including MAPK/
ERK, PI3K/Akt, Stat5, and NF-kB.*% NF-xB and Stat5
move into the nucleus and act as transcription factors in the
production of Bcl-2 and Bcl-xL, which are antiapoptotic
proteins.*>> Epo also inhibits the function of Bax and Bad,
which are proapoptotic, via AKT. The balance of these pro-
teins determines whether a cell undergoes apoptosis.*’ In
addition to the EpoR homodimer, other receptor complexes
have been implicated in the neuroprotective effects of Epo. In
particular, the common beta receptor (CBR)—EpoR heterodi-
mer has been found in some studies to be essential in Epo
neuroprotective abilities, but other studies have not confirmed
these findings.***” These signaling pathways have multiple
downstream neuroprotective and neurotrophic effects.

Epo appears to have both acute and long-term effects
following brain injury (Figure 1). Through multiple mecha-
nisms, Epo decreases cell death acutely and also promotes
cell and tissue repair, affecting many components of the
neurovascular unit. Many studies have demonstrated Epo’s
antiapoptotic effects.’535%¢ Additionally, Epo has also
been shown to have anti-inflammatory, neurotrophic, and
antioxidant properties, along with having a role in promoting
angiogenesis, neurogenesis, and oligodendrogenesis.*’-7%

Epo may protect the brain from edema by upregulation of
aquaporin channels.®! Epo also increases reticulocytosis in
preterm infants, which in turn increases iron utilization.
When iron is unbound, it can produce free radicals that cause
oxidative injury, so, by increasing iron utilization, Epo may
secondarily decrease injury.®*#

Animal and human studies of Epo

The effects of Epo on neonatal brain injury have been studied
in multiple animal models (Table 1), most commonly in the
rat model of unilateral carotid ligation followed by hypoxia
(Vannucci model) and the middle cerebral artery occlusion
model.## These models are commonly used to produce
gray matter injury similar to that seen in term infants who
experience hypoxic-ischemic injury or perinatal stroke,
respectively. Animal models have been used both to demon-
strate Epo’s neuroprotective effects on gross and histological
brain injury and neurobehavioral outcomes and to elucidate
the mechanism of neuroprotection. There is some variability
in the results of these studies, likely related to variability in
methodology, including duration of hypoxia/ischemia; tim-
ing, dose, and frequency of Epo administration; and timing of
the outcome studied. Overall, however, Epo has been shown
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3
133

34
135

Increased brain weight at 6 and 12 weeks post-injury, decreased infarct volume at 6 weeks (greater effect in
females than males), increase in size of lesion by 12 weeks in Epo-treated males but not females, improved

Decreased tissue loss overall in brain, decreased number of astrocytes, and increased neurogenesis in

and showed nonsignificant trends toward improvement in other behavioral tests at 3 months post-injury;
reduced tissue loss and increased neocortex, visual cortex, striatum, and hippocampus volumes at
Increased subventricular zone neural stem cell lineage cells in injured striatum and neural stem cell-derived
neurogenic activity, increased oligodendrocyte precursors, and decreased astrocytes in striatum at 72 hours

damaged striatum, without changes in subventricular zone volume or density of newly generated cells in
Three-dose regimen of Epo significantly improved spatial memory and vision and motor-based function

neurobehavioral outcomes at 6 and 12 weeks post-injury (again greater effect in females)

injured striatum at 6 weeks post-injury

3—4 months post-injury
and 2 weeks post-injury

1,000 U/kg %3 (after injury and at | and 7 days
1,000 U/kg at reperfusion and | and 7 days later

1,000 U/kg ip at 15 minutes, | day, and 2 days
post-injury)

post-injury
Epo, either 5,000 U/kg x| after injury or

Epo 5,000 U/kg x| after injury

In utero ischemia (prenatal or term)

Rat/P7/MCAO
Rat/P10/MCAO x45 minutes
Rat/P10/MCAOQO %45 minutes
Rat/P7/MCAO after

injection of Lentivirus to label
subventricular zone cells at Pl

Either 3,500 U/kg at 30 minutes of life followed Prevented death and moderate-to-severe cerebral palsy (assessed through 9 months post-injury); improved 49

by 2,500 U/kg at 24, 48, and 168 hours or

Monkey/P0 (term)/umbilical

cord occlusion

motor and cognitive responses, cerebellar growth, and DTI measures on MRI without adverse drug reactions

or changes in hematology, liver, or kidney laboratory values

1,000 U/kg at 30 minutes and 24, 48, and

168 hours, all 1V, plus hypothermia x72 hours

Abbreviations: ADC, apparent diffusion coefficient; asialoEpo, asialoerythropoietin; bax, Bcl-2-associated X protein; Bcl-2, B-cell lymphoma 2; Bcl-xL, B-cell lymphoma-extra large; DFO, desferoxamine; DTI, diffusion tensor imaging;

Epo, erythropoietin; ERK, extracellular signal-related kinase; FA, fractional anisotropy; HI, hypoxia-ischemia; IL- I, interleukin-1beta; ip, intraperitoneal; IV, intravenous; Jak2, Janus kinase 2; MCAO, middle cerebral artery occlusion; MRI,

magnetic resonance imaging; nanoEpo, nanoerythropoietin; NF-kB, nuclear factor kappa-light-chain-enhancer of activated B-cells; sq, subcutaneous; Stat5, signal transducer and activator of transcription 5 ; P7, postnatal day 7; m, minutes,

h, hours.

to be protective over a wide range of doses, in multiple animal
models, by multiple investigators (see Table 1).

As hypothermia became the standard of care for neonates
with HIE, Epo began to be incorporated in animal studies of
HIE.*-887 Fan et al published a study in 2012 comparing no
treatment, hypothermia alone, Epo alone, and hypothermia +
Epo on brain injury and behavior in rats subject to a hypoxic-
ischemic insult using the Vannucci model.*” Hypothermia in
this study consisted of 3 hours at 32.5°C-33°C immediately
after the hypoxic period was complete. Epo was dosed at
5,000 U/kg given intraperitoneally immediately after hypo-
thermia and repeated 24 and 48 hours later. The investigators
found that administration of Epo alone modestly improved
behavioral outcomes at 2 and 5 weeks post-injury (measured
using the cylindrical rearing test) but had no effect on histo-
logic brain injury. Similarly, Epo in addition to hypothermia
had a mildly additive effect on hypothermia alone in improv-
ing behavioral outcomes but no additive effect for histological
injury. Interestingly, the authors found that the neuroprotec-
tive effects of hypothermia were more pronounced in female
animals, while Epo did not have sex-specific effects. In the
same journal, Fang et al published a similar study evaluating
the effects of Epo and hypothermia on neonatal rats subjected
to hypoxic-ischemic injury using the Vannucci model.?¢ In
this study, therapeutic hypothermia consisted of 8 hours at
32°C and Epo was dosed at 1,000 U/kg, given immediately
after injury but prior to hypothermia and repeated at 24 hours
and 7 days post-injury. The authors found no differences
between untreated animals and animals treated with hypo-
thermia, Epo, or both in either histopathological or behavioral
outcomes other than improved histopathological outcomes
in male animals treated with Epo. Traudt et al completed a
study in 2013 comparing hypothermia alone to hypothermia
+ Epo in a nonhuman primate (pigtail macaque) model of
perinatal asphyxia.* The macaques were exposed to 15 or 18
minutes of umbilical cord occlusion and were then treated
with 72 hours of therapeutic hypothermia at 33.5°C with
or without Epo or were untreated. Epo was initially dosed
intravenously at 3,500 U/kg for one dose, followed by three
doses of 2,500 U/kg given at 24 and 72 hours and 7 days
post-injury, but was then switched to 1,000 U/kg for all four
doses based on pharmacokinetic data. The authors found
that, among macaques exposed to umbilical cord occlusion,
there was a 44% incidence of death or moderate-to-severe
cerebral palsy in the untreated animals and a 43% incidence
in the animals treated with hypothermia alone compared to
a 0% incidence in the hypothermia + Epo group. Animals
treated with hypothermia + Epo also showed improvement
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in motor and cognitive outcomes, cerebellar growth, and
diffusion tensor imaging (DTI) measures.

These three studies clearly have disparate results
regarding the efficacy of both hypothermia and Epo. This
variability could be related to many factors, including dif-
ferences in the models used, Epo dosing, and the duration
and degree of hypothermia.® Traudt’s study is the first study
of Epo and hypothermia in a nonhuman primate model of
HIE. Large-animal models of brain injury offer both advan-
tages and disadvantages compared to small animal models.
Large animals (sheep, piglets, nonhuman primates) are
expensive and require more resources for their care, thus it
is not possible to include the same number of subjects as
are typically included in small-animal studies. However, in
many ways, their brains are more similar to those of humans.
Large animals possess a gyrencephalic brain, a white to
gray matter ratio that better approximates that of humans,
and similar vascular patterns to humans and they can be
monitored and cared for in a manner similar to neonates in
an intensive care unit.¥

Human studies of Epo

In the past 5 years, several studies on the neuroprotec-
tive effects of Epo on human infants with HIE have been
published (Table 2). The initial study by Zhu et al in 2009
compared Epo to supportive care in infants with moderate-
to-severe encephalopathy.”® Epo was dosed at either 300 or
500 U/kg and given subcutaneously immediately following
injury and repeated every other day for 2 weeks intravenously.
The authors demonstrated decreased incidence of moderate-

Table 2 Human infant studies of Epo

to-severe disability or death at 18 months of age in infants
given either of the two doses of Epo, particularly in infants
with moderate compared to severe HIE, without adverse
hematopoietic side effects. The second study, by Elmahdy
et al in 2010, compared Epo to supportive care in infants
with mild-to-moderate HIE.®! Epo was dosed at 2,500 U/kg
subcutaneously, started within 4-6 hours of injury, and
repeated daily for five total doses. These authors also dem-
onstrated improved outcomes in infants treated with Epo,
including decreased seizure activity, decreased endogenous
nitric oxide production, and improved neurodevelopmental
outcomes up to 6 months. The third study, by Wu et al in 2012,
was a Phase I/II study of the safety and pharmacokinetics
of Epo at escalating doses in infants with HIE being treated
with therapeutic hypothermia.”? Doses ranged from 250 to
2,500 U/kg and were administered intravenously, starting
at less than 24 hours of age and continuing every 48 hours
for up to six total doses. The authors showed that dosing
at 1,000 U/kg produced plasma concentrations similar to
those found to be neuroprotective in animals and was well
tolerated. At mean age 22 months, infants who received
Epo exhibited a relatively low rate of moderate-to-severe
disability, even in the setting of significant brain injury.”
The most recent study, by El Shimi et al in 2014, examined
whether a single dose of Epo was as safe and effective as
hypothermia in treating HIE, given that hypothermia was
not available in many lower-resource nations, despite being
the standard of care for HIE in developed nations.** Epo was
dosed at 1,500 U/kg given subcutaneously on day 1 of life.
Hypothermia was accomplished using cold packs to maintain

Subjects/treatment groups/type Dosel/timing Outcomes Reference
153 infants with moderate-to-severe Either 300 U/kg or 500 U/kg Overall improvement in rate of death/moderate-to- 90
HIE (73 given one of two different given every other day for severe disability in infants with moderate HIE in Epo
doses of Epo and 80 controls); 2 weeks starting <48 hours groups at |8 months; improvement in behavior as
randomized trial after birth early as day 7; no negative hematopoietic side effects;
no difference in outcomes between doses
30 infants with HIE (15 controls and 2,500 U/kg given subcutaneously Improvement in blood NO concentrations and EEG 91
15 given Epo) plus |5 controls; daily for 5 days background; fewer neurologic and developmental
case-control study abnormalities; no difference in MRI findings
24 infants undergoing hypothermia for 250 U/kg, 500 U/kg, 1,000 U/kg,  No deaths or serious adverse events; nonlinear 92

HIE given Epo at varying doses (Phase | or 2,500 U/kg given every

safety and pharmacokinetics study) 48 hours for six doses starting
at <24 hours of age
Single 1,500 U/kg dose given

on day | of life

30 infants with perinatal hypoxia
(randomized as: ten to supportive care,
ten given moderate hypothermia, ten
given Epo) and 15 healthy infants;
case-control study

pharmacokinetics; plasma concentrations that are
neuroprotective in animals seen at 1,000 U/kg dosing

Infants given hypothermia had the best survival, followed 94
by infants given Epo and then the control group, though
differences not statistically significant; significantly higher
brain-derived neurotrophic factor in hypothermia and

Epo groups than in supportive care group

Abbreviations: EEG, electroencephalography; Epo, erythropoietin; HIE, hypoxic-ischemic encephalopathy; MRI, magnetic resonance imaging; NO, nitric oxide.
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a rectal temperature between 33°C and 34°C for 72 hours.
This small study showed improved survival in the infants
treated with hypothermia compared to single-dose Epo and
supportive care, particularly in infants with moderate or
Sarnat stage II encephalopathy. There was a trend toward
improved MRI brain injury score and functional outcomes
in infants treated with hypothermia. Larger Phase 111 studies
to test efficacy are planned or under way in France (Neurepo,
NCT01732146), Australia (PAEAN), and the US (NEAT O,
NCT01913340).

Epo dosing and adverse effects

The optimal dosing regimen in human neonates is unknown.
Epo is ineffective at promoting neuroprotection at very
low doses and may cause harm at very high doses.®>%
Kellert et al’s dose comparison study in rats demonstrated
that three doses of 5,000 U/kg resulted in the most consistent
neuroprotection with the lowest total dose exposure.®
Traudt et al’s study, which showed strong benefits of Epo
when used in conjunction with hypothermia, found that dos-
ing hypothermic macaques at 1,000 U/kg produced similar
pharmacokinetic parameters to rats dosed at 5,000 U/kg.*
Interestingly, these authors noted that a dosing regimen in
hypothermic macaques produced a 25% higher peak Epo
concentration than expected based on pharmacokinetic
data obtained in normothermic human neonates, suggest-
ing that hypothermia alters Epo’s pharmacokinetics. Wu
et al’s pharmacokinetic study of Epo in human neonates
undergoing therapeutic hypothermia for HIE also found
that 1,000 U/kg of Epo produced similar pharmacokinetic
parameters as doses that have been found to be neuroprotec-
tive in animal models.”

The significance and severity of adverse effects related
to Epo administration also remain controversial. As Epo is
used primarily as an erythropoietic agent, it certainly has
effects on red blood cell formation. Polycythemia has not
been seen in trials of neuroprotection in term infants, and two
trials did not find a significant difference in hematocrit and
number of red blood cell transfusions between treated and
untreated infants, although Zhu et al’s trial did show that use
of Epo prevented the decrease in hematocrit over time seen
in control and hypothermia-only infants.”** In adults, Epo
has been associated with an increased risk for hypertension,
but this has not been the case in neonates.®** In premature
infants, Epo has been linked to several possible adverse
effects. Early studies demonstrated a risk of neutropenia
after treatment with Epo, but this has not been confirmed
in later studies of erythropoietic or neuroprotective dosing

of preterm infants.?*°7-'% There has also been concern
about increased risk of retinopathy of prematurity in pre-
term infants treated with Epo, particularly early in life,
but the data are conflicting and this is not relevant to term
infants.?8-191-104 Tn one retrospective study, an increased risk
of cutaneous hemangiomas was reported with Epo exposure
in preterm infants, but, as cutaneous hemangiomas are
common in preterm infants, a causal relationship has not
been established. 105108

There are theoretical concerns regarding clotting abnor-
malities in infants treated with both Epo and therapeutic
hypothermia. Hypothermia has negative effects on hemosta-
sis and leads to increased risk of disseminated intravascular
coagulation.'®!"° Epo may also affect clot formation, as use
of Epo has been associated with increased risk for throm-
boembolic events in adults with strokes.!!! At this time, no
studies of normothermic or hypothermic neonates treated
with Epo have demonstrated increased risk of clotting
abnormalities, but we must continue to be vigilant about
this potential adverse effect. Overall, significant adverse
effects have not been seen in term or preterm infants treated
with Epo.

Limitations of studies to date

Animal models

The animal models described previously all attempt to repro-
duce hypoxic-ischemic injury in term infants.!'> While these
models can simulate the human neonatal experience, they are
not exact reproductions. Infants that meet clinical criteria
for HIE can have had very different antenatal and perinatal
experiences. HIE may be caused by a single acute event,
such as a placental abruption or umbilical cord prolapse;
a more chronic process like intrauterine growth restriction
or infection; or a combination of events, such as a difficult
delivery in a stressed infant who does not tolerate delivery
well due to maternal chorioamnionitis or longstanding pla-
cental insufficiency. Thus, infants with HIE who meet entry
criteria for a study may in fact have disparate mechanisms of
injury, which likely helps to explain variability in response
to treatments and, therefore, outcomes. Additionally, it is
likely that infants with mild, moderate, and severe HIE will
respond differently to neuroprotective therapies.>*° Many of
the studies on the neuroprotective effects of Epo following
HIE use the Vannucci model, which models acute, severe
hypoxic ischemic brain injury, but does not reflect more
chronic or combined inflammatory and hypoxic injuries.
Thus, it is important to glean information from a wide variety
of animal models and, as clinical trials are planned, to target
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neuroprotective therapies toward specific mechanisms of
injury that show improvement in preclinical trials.

Human studies

There is currently a paucity of human trials available from
which to assess the efficacy of Epo neuroprotection for HIE.
Phase I/II trials have been undertaken to establish rudi-
mentary safety, pharmacokinetics, and feasibility of larger
studies and have provided limited long-term outcome data.
Because of the nature of these studies, there is also significant
heterogeneity in study design, with Epo doses ranging from
250-2,500 U/kg, dosing intervals ranging from 24—48 hours,
and dose numbers ranging from one to seven. Despite these
limitations, these studies have laid the groundwork for future
Phase III studies in which the safety and efficacy of Epo
neuroprotection can be rigorously tested.

Conclusion

In the past 5 years, there has been a significant advance-
ment in treatment of HIE. Therapeutic hypothermia has
been proven to improve outcomes, with a number needed
to treat of 7. Despite this, infants with moderate-to-severe
HIE who receive hypothermia still experience high rates of
death (26%) and, among survivors, developmental delay
(23%), cerebral palsy (19%), deafness (4%), and blindness
(6%). The overall rate of death or major disability despite
hypothermia thus remains unacceptably high (48%).*
Adjuvant therapies are therefore needed to further improve
outcomes.

As we further our understanding of how cells die after
neonatal hypoxic-ischemic brain injury, we can develop new
neuroprotective strategies that promote or inhibit specific
pathways. The complex and interconnecting pathways of
cell death illustrate the need to approach neuroprotection
from multiple angles. Several agents, including Epo, have
shown promise as neuroprotective agents and are being
studied further. If these therapies interact at different points
in tissue response and healing pathways following injury, it
is possible that, ultimately, a “cocktail” of therapeutic agents
will be used to promote optimal healing.
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