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Abstract: The SWI/SNF chromatin-remodeling complex plays an essential role in several 

cellular processes including cell proliferation, differentiation, and DNA repair. Loss of normal 

function of the SWI/SNF complex because of mutations in its subunits correlates with tum-

origenesis in humans. For many of these cancers, cytotoxic chemotherapy is the primary, and 

sometimes the only, therapeutic alternative. Among the antineoplastic agents, anthracyclines 

are a common treatment option. Although effective, resistance to these agents usually develops 

and serious dose-related toxicity, namely, chronic cardiotoxicity, limits its use. Previous work 

from our laboratory showed that a deletion of the SWI/SNF factor SNF2 resulted in hypersen-

sitivity to doxorubicin. We further investigated the contribution of other chromatin remodeling 

complex components in the response to cytotoxic chemotherapy. Our results indicate that, of 

the eight SWI/SNF strains tested, snf2, taf14, and swi3 were the most sensitive and displayed 

distinct sensitivity to different cytotoxic agents, while snf5 displayed resistance. Our experi-

mental results indicate that the SWI/SNF complex plays a critical role in protecting cells from 

exposure to cytotoxic chemotherapy and other cytotoxic agents. Our findings may prove useful 

in the development of a strategy aimed at targeting these genes to provide an alternative by 

hypersensitizing cancer cells to chemotherapeutic agents.

Keywords: chromatin remodeling, cancer, DNA damage/repair, heat-shock response, oxida-

tive stress

Introduction
Chromatin remodeling plays a crucial role in gene expression. The SWI/SNF complex 

was identified in Saccharomyces cerevisiae by mutations, which resulted in altered 

regulation of the HO gene that encodes a site-specific endonuclease required for 

gene switching at the MAT locus through the generation of a DNA double-strand 

break, preventing a mating-type switch.1 Similarly, defects in the expression of the 

SUC2 genes encoding the invertase sucrose hydrolyzing enzyme2 were found to 

be the result of mutations in SNF (sucrose nonfermenting) genes,3 and were first 

linked with chromatin through the study of suppressors of defective subunits of the 

complex.4 In vitro DNase accessibility assays confirmed that the SWI/SNF complex 

could modify the histone-DNA structure,5 while in vivo studies proved that SWI/

SNF activity allows for increased access of polymerases and transcription factors 

to DNA.6

Chromatin remodeling involves biochemical modifications to histones, includ-

ing methylation, acetylation, and phosphorylation.7 These various modifications 

affect the chromatin status, affecting large regions of the genome.8,9 The SWI/SNF 
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 chromatin-remodeling complex is essential in several cel-

lular processes including cell proliferation, differentiation, 

and DNA repair.10 Loss of normal function of the SWI/SNF 

complex as a result of mutations in its subunits correlates 

with tumorigenesis in humans,11 and the status of some of 

the subunits, such as BRG1 and BRM, can serve as prog-

nostic indicators in patients diagnosed with certain cancers. 

Individuals whose cancers were positive for both nuclear 

BRG1 and BRM had a 5-year survival of 72% compared with 

33.6% for those with loss of these ATPases.12 The SWI/SNF 

complex has been implicated in the development of cancer, 

as its subunits have been shown either to function as tumor 

suppressors or to interact with known tumor suppressors and 

oncogenes.13 The cancers with the highest rates of mutations 

on SWI/SNF were ovarian clear cell (75%), clear-cell renal 

carcinoma (57%), hepatocellular carcinoma (40%), gastric 

cancer (36%), melanoma (34%), and pancreatic cancer (26%). 

Across all tumor types, the average frequency of SWI/SNF 

mutations (19%) approached that of TP53 (26%), the single 

most mutated tumor suppressor gene.14

Anthracycline antibiotics are commonly used as anti-

cancer agents for a wide range of solid tumors and hemato-

logical neoplasias. Although initially an effective therapy, 

drug resistance can develop during the course of treatment. 

Anthracycline resistance cannot be overcome by increasing 

the dose due to the increased risk of serious side effects, 

such as the development of dilated cardiomyopathy.15 

Cytotoxic therapy is still a relevant therapeutic approach, 

and efforts to make it more effective and less toxic remain 

an important goal.

We previously reported a genome-wide genetic screen-

ing in S. cerevisiae that identified 71 deletion strains display-

ing varying levels of sensitivity to doxorubicin. Of these, the 

snf2 deletion, involving a gene that encodes components of 

the SWI/SNF complex, showed significant sensitivity.16 To 

further investigate the contribution of chromatin remodeling 

factors in the survival of cells exposed to cytotoxic stresses, 

we evaluated the survival of SWI/SNF mutant strains 

treated with the commonly used chemotherapeutic agents, 

doxorubicin and cisplatin, and other cytotoxic stresses that 

mediate the action of these agents, such as oxidative stress, 

DNA damage, and protein denaturation (heat). Our results 

indicate that, of the eight SWI/SNF strains tested, snf2, 

taf14, and swi3 were the most sensitive mutants, and suggest 

that the potential targeting of the human homologues may 

result in cancer cells’ hypersensitization to chemotherapy, 

while deletion of SNF5 rendered cells resistant to some 

cytotoxic agents.

Materials and methods
general genetic methods and strains
Yeast extract/peptone/dextrose (YPD; 1% yeast extract, 

2% peptone, 2% dextrose, and 2% agar) and synthetic 

 complete (0.67% yeast nitrogen base without amino acid, 

0.087% amino acid mixture, 2% dextrose, and 2% agar) media 

or the corresponding drop-out media were as described.17,18 

Homozygous haploid deletion strains library (parental 

strain BY4741: MATa his3∆1 leu2∆0 met15∆0 ura3∆0) 

was obtained from Thermo Fisher Scientific (Waltham, MA, 

USA). The gene deletions present in the strains used in this 

study have been validated by polymerase chain reaction 

(data not shown).

chemicals
Yeast nitrogen base, yeast extract, peptone, and dextrose were 

purchased from Thermo Fisher Scientific (Waltham, MA, 

USA); doxorubicin-HCl (2 mg/mL) and cisplatin (1 mg/mL) 

were obtained from Bedford Laboratories (Eatontown, NJ, 

USA); and menadione sodium bisulfite was purchased from 

Sigma-Aldrich (St Louis, MO, USA). Working solution 

concentrations were as follows: doxorubicin (20 µmol/L), 

 cisplatin (80 µmol/L), menadione (6.6 mmol/L), and etopo-

side (1 mmol/L), prepared under sterile conditions. The con-

centrations of the drugs used were selected to only marginally 

affect the wild-type (WT) strain, but be very toxic to the 

control strains. Drugs were aliquoted and stored at -20°C.

sensitivity of strains to chemotherapeutic 
agents and cytotoxic stressors
The concentration of the drugs used for strain exposure was 

determined experimentally using the WT parental strain 

BY4741 as previously described.16 Briefly, single colonies 

were grown overnight in liquid YPD media, at 30°C with 

shaking. Cells were then washed and resuspended in ultra-

pure sterile water. Strains were then separated into control 

and treatment groups, and exposed to drug or vehicle for 

3 hours. After exposure, the cells were once again washed 

and suspended in sterile water. Serial dilutions were spotted 

onto YPD agar plates and incubated at 30°C. Heat-shock 

treatment was performed by plating serial dilutions of the 

strains and incubating at 37°C. Cell growth was monitored 

daily, and colonies were counted at day 3. Survival was 

calculated relative to the corresponding untreated control, 

and sensitivity was determined relative to the survival of the 

WT strain. Survival, as indicated in the “Results” section, 

is specific for that drug concentration. Each trial involved 

the testing of five independent colonies for each cytotoxic 
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agent, and three trials were performed. The survival of the 

WT strain was defined as 100% to be able to calculate the 

survival between the different trials for each drug as well as 

to compare the sensitivity of the strains to different drugs.

statistical analysis
Data analysis and graphing was performed using the Graph-

Pad Prism 4 software package. Specific analysis for each 

experiment is indicated in Figures 1–5. The mean of at least 

three trials is plotted, together with the standard deviation. 

Differences between mean values and multiple groups 

were analyzed by one-way analysis of variance (ANOVA). 

 Statistical significance was set at P,0.05.

Results
Determination of the sensitivity of sWi/
snF deletion strains to chemotherapeutic 
agents doxorubicin and cisplatin
To determine the contribution of the factors comprising the 

chromatin remodeling complex (SWI/SNF complex) to the 

response to chemotherapeutic agents, we determined the sur-

vival of single-gene deletion mutants after exposure to doxo-

rubicin and cisplatin. The concentration of the drugs used in 

the assays was determined empirically using the WT strain 

(BY4741) and corresponding positive controls ( sensitive 

strains) as indicated in the “Materials and methods” section. 

There are eleven genes that encode for components of 

the SWI/SNF complex in S. cerevisiae, as indicated in 

Table 1. The deletion strains used are derived from the paren-

tal strain (BY4741) and are haploids. For this reason, the 

role of three genes could not be tested because their deletion 

strains were nonviable (ARP7, ARP9, and SWI10).

Exposure of the strains to doxorubicin clearly shows 

distinct levels of survival to the anthracycline. As shown 

in Figure 1A, no considerable growth defect is observed 

between the strains in the absence of the drug. The concen-

tration of doxorubicin used only marginally affects the WT 

strain but, as expected, is very toxic to the control strains ssz1 

(3% survival) and ydj1 (3% survival),16 which corresponds 

to a 14-fold and 33-fold higher sensitivity to the WT strain 

(P,0.05) (Figure 1A, B, and Table 2). The SWI/SNF defec-

tive strains that displayed the lowest survival were snf6 (16% 

survival), snf2 (10% survival), and taf14 (4% survival), which 

correspond to 6.3-fold, 10-fold, and 25-fold higher sensitivity 

compared to WT (Figure 1B and Table 2). Interestingly, the 

taf14 strain showed lower survival to doxorubicin than the 

positive control ssz1. Our data confirm that components of 

the SWI/SNF complex are necessary for cell viability upon 

exposure to doxorubicin, each providing distinct levels of 

protection. However, some deletion strains did not display 

significantly reduced survival to doxorubicin, such as snf11 

(59% survival) and snf5 (76% survival, P=0.043), suggesting 

they may not play a major role in the response to this agent.

Exposure of the strains to cisplatin revealed that, as 

with doxorubicin, snf2 and taf14 were the most sensitive 

strains, with a survival of 17%, which constitutes a 5.8-fold 

higher sensitivity than the WT strain, for both mutants 

(Figure 2A, B, and Table 2). Among the least sensitive 

strains, snf5 displayed .80% survival. In addition, two 

other strains presented marginally reduced survival: snf5 

(85% survival, 1.2-fold increase sensitivity relative to WT) 

and swp82 (76% survival, 1.3-fold higher sensitivity relative 

to WT) (Figure 2A, B and Table 2), a behavior that contrasts 

to their sensitivity to doxorubicin. The positive controls 

used for this assay were ssz1 and ydj1; these deletion strains 

behaved as expected, displaying the lowest levels of survival 

to cisplatin, with 11% survival for ssz1 (a 9-fold increase 

in sensitivity relative to WT) and 8% survival for ydj1 

(a 12.5-fold increase in sensitivity relative to WT).

Determination of the sensitivity  
of sWi/snF deletion strains  
to cytotoxic stressors
Doxorubicin and cisplatin exert their antineoplastic activ-

ity through multiple mechanisms, including DNA damage 

by DNA intercalation (doxorubicin) or DNA cross-linking 

(cisplatin); protein damage by direct binding, or through the 

generation of reactive oxygen species (ROS), which also 

damages various cellular structures. To further elucidate the 

involvement of the SWI/SNF complex in the response to these 

types of injuries, we determined the sensitivity of the deletion 

strains to the oxidative stress agent menadione, the DNA-

damaging chemotherapeutic agent etoposide, and the protein 

denaturing effect of heat shock.

Menadione shares the same quinone ring as doxorubicin. 

This structure generates ROS intracellularly and mimics 

this property of anthracyclines. As shown in Figure 3A, the 

strains that displayed the lowest survival were snf2 (18% 

survival), snf6 (21% survival), and swi3 (30% survival) 

(Figure 3B), which, respectively, correspond to 5.5-fold, 

4.7-fold, and 3.3-fold higher sensitivity to menadione 

than WT (Table 3). In contrast, the snf5 and snf11 strains 

exhibited no significant change in survival to menadione 

exposure, with a 130% and 102% survival (76-fold and 

98-fold sensitivity relative to WT, respectively). The posi-

tive controls sod1 and ydj1 are highly sensitive to oxidative 
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+ DoxoA

Dil:

WT

snf2

snf5

snf6

snf11

swi3

swp82

rtt102

taf14

ssz1

ydj1

10−1 10−2 10−3 10−4 10−1 10−2 10−3 10−4 10−510−5

− Doxo

Figure 1 sensitivity of sWi/snF deletion strains to chemotherapeutic agent doxorubicin.
Notes: (A) The survival of the strains to 20 µmol/l doxorubicin was determined as described in the “Materials and methods” section. serial dilutions (1:10–1:105) of the 
treated cultures were spotted onto YPD plates. growth was scored after 3 days of incubation at 30°c. The serial dilutions of the strains are shown. Positive controls sensitive 
to doxorubicin are the ssz1 and ydj1 deletion strains. (B) Quantification of the survival of the tested strains. Survival was determined by counting the number of colonies 
in the respective dilutions and calculated on the basis of the growth of strains not treated with doxorubicin. at least three sets of experiments were used in the statistical 
analysis. average survival plus standard deviation is shown. The P-values are indicated for each mutant.
Abbreviations: YPD, yeast extract/peptone/dextrose; WT, wild type; Dil, serial dilutions; Doxo, doxorubicin.
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Figure 2 sensitivity of sWi/snF deletion strains to chemotherapeutic agent cisplatin.
Notes: (A) strains were exposed to cisplatin (80 µmol/l). serial dilutions (1:10–1:105) of the treated cultures were spotted onto YPD plates. growth was scored after 
3 days of incubation at 30°c. The serial dilutions of the strains are shown. Positive controls sensitive to cisplatin are the ssz1 and ydj1 deletion strains. (B) Quantification 
of the survival of the tested strains. survival was determined by counting the number of colonies in the respective dilutions and calculated on the basis of the growth 
of strains not treated with cisplatin. at least three sets of experiments were used in the statistical analysis. average survival plus standard deviation is shown. 
Abbreviations: YPD, yeast extract/peptone/dextrose; WT, wild type; Dil, serial dilutions; cis, cisplatin.
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+ MenadioneA
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Figure 3 sensitivity of sWi/snF deletion strains to menadione.
Notes: (A) sWi/snF deletion mutants exposed to menadione (6.6 mM) were plated onto YPD agar plates. serial dilutions of the treated strains are presented. Positive 
controls sensitive to menadione are the ssz1 and ydj1 deletion strains. (B) survival was determined by growth of treated strain relative to the growth of its non-treated 
control. at least three sets of experiments were used in the statistical analysis. average survival plus standard deviation is shown.
Abbreviations: YPD, yeast extract/peptone/dextrose; WT, wild type; Dil, serial dilutions.
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stress as expected, with sod1 displaying 9% survival (11-fold 

more sensitive than WT). Our assay indicates that some 

SWI/SNF components are necessary for cell viability when 

exposed to ROS-generating agents such as menadione.

To test the effect of DNA damage, exclusively, on the 

SWI/SNF defective strains, we exposed the deletion mutants 

to the DNA-damaging agent etoposide. This agent, as with 

doxorubicin, inhibits DNA topoisomerase II, resulting in the 
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Figure 4 sensitivity of sWi/snF deletion strains to etoposide.
Notes: (A) The survival of the strains to etoposide was determined. serial dilutions of the treated strains were spotted onto YPD agar plates containing etoposide (1 mM) and 
incubated at 30°c. growth was scored at 72 hours. Positive controls sensitive to etoposide is the rad52 deletion strain. (B) survival was determined by growth of the treated 
strain relative to the growth of its untreated control. at least three sets of experiments were used in the statistical analysis. average survival plus standard deviation is shown. 
Abbreviations: YPD, yeast extract/peptone/dextrose; WT, wild type; Dil, serial dilutions.

accumulation of DNA double-strand breaks. When exposed to 

etoposide (1 mM), the majority of the SWI/SNF mutants did 

not display significantly reduced survival. At this drug concen-

tration, the positive control rad52 is highly sensitive, with 

a survival of 0.38% (267-fold higher sensitivity than WT). 

However, the most doxorubicin-sensitive strains, snf2, snf6, 

swi3, and taf14, showed survival of 61%, 93%, 87%, and 

108%, respectively, with P-values indicating that they are 

not significantly different from the WT strain (Figure 4A, B 

and Table 3). Furthermore, the rtt102 mutants (Figure 4A and 

B) displayed increased survival to etoposide, with a 394% 

survival (3.9-fold more resistant than WT; Table 3).
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Figure 5 sensitivity of sWi/snF deletion strains to heat shock.
Notes: (A) sWi/snF deletion strains were tested for heat sensitivity. serial dilutions of the cells were plated onto YPD agar plates and incubated at 30°c (untreated controls) and at 
37°c (heat shock). growth was scored at 72 hours. Positive controls sensitive to heat shock is the ydj1 deletion strain. (B) survival was determined by growth of the heat-shocked 
strain relative to the growth of non-heat-shocked cells. at least three sets of experiments were used in the statistical analysis. average survival plus standard deviation is shown.
Abbreviations: YPD, yeast extract/peptone/dextrose; WT, wild type; Dil, serial dilutions.

In thermotherapy, elevated body temperature can be an 

effective adjunct therapy when used with chemotherapy or 

radiotherapy in combating cancer.19 To investigate whether 

inactivation of SWI/SNF factors hypersensitizes cells to 

hyperthermia, we determined the viability of the deletion 

mutants to heat shock. The positive control ydj1 strain, which 

is defective in a heat-shock protein 40 (HSP40) and is  essential 

in the heat-shock response, is highly sensitive to growth at 
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Table 2 sensitivity of sWi/snF deletion strains to chemothe-
rapeutic agents doxorubicin and cisplatin

Strain Doxorubicin Cisplatin

Survival  
(% ± SEM)

Sensitivity  
(fold)

Survival  
(% ± SEM)

Sensitivity  
(fold)

Wild type 100 1 100 1
snf2 10±1.4 10 17±1.5 5.8
snf5 76±7.2 1.3 85±6.5 1.2
snf6 16±1.5 6.3 54±3.6 1.85
snf11 59±3.6 1.7 48±20 2.1
swi3 21±1.5 4.7 46±3.3 2.2
swp82 24±6.3 4.2 76±12.3 1.3
rtt102 27±3.5 3.7 39±11.8 2.5
taf14 4±1.2 25 17±10 5.8
ssz1 7±88 14 11±3.5 9
ydj1 3±1 33 8±3.4 12.5

Abbreviation: seM, standard error of the mean.

Table 1 Yeast sWi/snF complex subunits

Gene Open reading  
frame

Description Human 
homologue

ARP7* YPr034W actin-related protein involved in transcriptional regulation BaF53
ARP9* YMr033W actin-related protein involved in transcriptional regulation BaF53
RTT102 Ygr275W chromosome maintenance
SNF2 YOr290c Transcriptional regulation Brg1 or hBrM
SNF5 YBr289W Transcriptional regulation hsnF5
SNF6 Yhl025W Transcriptional regulation
SNF11 YDr073W Transcriptional regulation
SWI1* YPl016W regulates transcription by remodeling chromatin; required for transcription  

of many genes, including ADH1, ADH2, GAL1, HO, INO1, and SUC2
BaF250/hOsa1

SWI3 YJl176c regulates transcription by remodeling chromatin; required for transcription  
of many genes, including ADH1, ADH2, GAL1, HO, INO1, and SUC2

BaF155, BaF170

SWP82 YFl049W Role not identified yet
TAF14 YPl129W involved in rna polymerase ii transcription initiation and in chromatin  

modification

Note: *Deletion mutant is nonviable and was not included in this study.

high temperature. Among the SWI/SNF mutants, the snf6 and 

taf14 strains (Figure 5A) displayed the lowest survival, with 

54% and 2% (which is 2-fold and 50-fold more sensitive than 

WT; Figure 5B and Table 3), respectively. Conversely, the 

swp82, swi3, and rtt102 strains (Figure 5A) exhibited the 

least sensitivity to heat shock, with 136%, 111%, and 133% 

survival, respectively (Figure 5B and Table 3).

Discussion
Cytotoxic cancer treatment is often associated with side 

effects and the potential development of drug resistance. 

However, frequently, the limited number of biological targets 

leaves traditional cytotoxic chemotherapy as the only thera-

peutic alternative. For example, patients affected by triple 

negative breast cancer are presently treated with single-agent 

or combination therapies including doxorubicin, cisplatin, 

epirubicin, 5-fluorouracil, paclitaxel, cyclophosphamide, 

methotrexate, and gemcitabine.20,21 While effective, most of 

these chemotherapeutic agents are associated with serious 

side effects, such as cardiotoxicity, neutropenia, neuropathy, 

and persistent metastatic tumor progression.20,22 Current 

attempts to treat with options involving less toxicity yield 

a much poorer total response.23,24 Consequently, there is a 

need to enhance the therapeutic efficacy as well as to reduce 

toxic side effects.

Increasing the efficacy of chemotherapy may be achieved 

by hypersensitizing the cancer cells to the treatment. 

 Sensitization may allow for the use of lower dose therapy 

to attain comparable response, concomitantly decreasing the 

risk of dose-dependent adverse effects.

Previous work from our laboratory16 identified a deletion 

of the SNF2 gene which hypersensitizes cells to doxorubicin, 

suggesting that the SWI/SNF chromatin remodeling complex 

can serve as a novel target for cell sensitization to cytotoxic 

chemotherapy. We extended this observation by investigat-

ing the role of other SWI/SNF complex components in the 

response of cells to therapeutic agents, such as doxorubicin, 

cisplatin, and etoposide, and to defined cytotoxic stresses 

such as ROS and heat shock.

We tested all the nonessential mutants of the SWI/SNF 

complex (Table 1) to determine which deletion strains 

exhibited higher sensitivity in response to various forms 

of cytotoxic stress. Two deletion mutants, snf2 and taf14, 

were found to be consistently hypersensitive to all agents, 

except for heat shock which only significantly affected the 

taf14 strain.

Among the chemotherapeutic agents evaluated, doxo-

rubicin was the most effective one, with the majority of the 

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Biologics: Targets and Therapy 2014:8submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

278

Freeman et al

Table 3 sensitivity of sWi/snF deletion strains to cytotoxic stressors

Strain Menadione Etoposide Heat shock

Survival  
(% ± SEM)

Sensitivity  
(fold)

Survival  
(% ± SEM)

Sensitivity  
(fold)

Survival  
(% ± SEM)

Sensitivity  
(fold)

Wild type 100 1 100 1 100 1
snf2 18±7.3 5.5 61±15 1.6 78±2.3 1.3
snf5 130±75 0.76 119±6 0.8 81±2.3 1.2
snf6 21±11 4.7 93±2.3 1.1 54±4.3 1.9
snf11 102±41 1.0 193±50 0.5 77±3.5 1.3
swi3 30±8.2 3.3 87±32 1.2 111±12.5 0.9
swp82 39±17 2.5 98±18 1.0 136±7.7 0.7
rtt102 49±17 2 394±92 0.3 133±11.6 0.8
taf14 79±4 1.3 108±26 0.9 2±0.6 50.0
sod1 9±6 11 – – – –
ydj1 45±27 2.2 – – 0±0 .105*
rad52 0.38±0.14 267

Notes: *The ydj1 strain, which serves as the sensitive control for heat shock, is unviable at 37°c. The sensitivity is then estimated based on the higher serial dilution (1:105) 
to be at least .105-fold higher than the wild-type strain.
Abbreviation: seM, standard error of the mean.

mutants displaying significant sensitivity relative to the WT 

strain. It is worth emphasizing that the concentration of the 

drugs used was selected to identify hypersensitive strains. 

Increasing the dose will eventually kill all strains,  including 

the WT, and would not allow us to discriminate the hypersen-

sitive strains from those unaffected. While snf2 and taf14 were 

hypersensitive, snf6, swi3, and swp82 displayed intermediate 

sensitivity and snf5, snf11, and rtt102 displayed different 

levels of resistance, depending on the agent. The snf5 mutant 

was not affected by doxorubicin, cisplatin, or etoposide, and 

was resistant to menadione. Similarly, the snf11 mutant was 

resistant to etoposide and menadione, and the rtt102 strain 

was highly resistant to etoposide. Proper controls were 

included in each experiment, with well-known hypersensitive 

strains, to confirm the effectiveness of the dose used.

The distinctive mechanisms of our chemotherapeutic 

agents may contribute to each SWI/SNF factor’s ability to 

protect the cell from incurring cytotoxic damage. Direct 

DNA damage was induced with cisplatin, which forms 

adducts on DNA leading to cross-linking.25 Doxorubicin has 

multiple cytotoxic mechanisms, including DNA damage by 

 intercalation15 as well as the generation of free radicals15 that 

damage various cellular structures. To determine the mecha-

nisms of the chemotherapeutic drugs responsible for causing 

the  cytotoxicity in the SWI/SNF mutant strains, we selected 

single-action agents, such as the DNA-damaging agent 

etoposide, which, like doxorubicin, also inhibits DNA topoi-

somerase II; menadione, which generates oxidative stress; 

and the protein denaturing property of direct heat shock.

Interestingly, while the majority of the strains were 

 sensitive to doxorubicin, none of them, except for snf2, 

was sensitive to etoposide and only partially mimicked 

the response when exposed to oxidative stress induced 

by  menadione. These results suggest that anthracycline’s oxi-

dative stress and DNA damage synergize to kill the cells.

The diverse response of the deletion strains tested may be 

explained by their specific interactions with distinct  factors. 

Among the most interesting genes from our study are those 

that, when deleted, lead either to hypersensitivity: snf2, taf14, 

swp82; or to resistance: snf5, to any particular agent.

The SNF2 protein has several roles in transcriptional regu-

lation, facilitated by its interactions with over 140 genes.26 It is 

required for adenosine triphosphate (ATP) hydrolysis and the 

conversion of the energy to power ATP-dependent chromatin 

remodeling, maintaining the structural integrity of the SWI/

SNF complex,27 and essential for both telomere and ribosomal 

DNA silencing.28 The SNF2 gene has also been found to 

genetically interact with the DNA repair gene RAD2629 as well 

as the heat-shock gene HSP82. Interestingly, HSP82 interacts 

with SNF2, within a network of genes also interacting with 

SIN4, TUP1, SMT3, UBI4, SPT15, and SNF11.

TAF14 is a component of the yaf9, taf14, and sas5 YEATS 

domain in S. cerevisiae, which in humans includes proteins 

involved in acute leukemia. The YEATS domain family is 

essential, as a yaf9, taf14, sas5 triple mutant is nonviable.30 

The YAF9 gene, which TAF14 interacts with, has been found 

to be required for the proper gene expression and histone 

acetylation near telomeres. The TAF14 gene also shows 

extensive genetic and physical interactions with RNA poly-

merase factors and TATA-binding protein-associated factors. 

Proper function of Taf14 is essential for RNA polymerase II 

transcription initiation and chromatin modification.
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inactivation of chromatin remodeling factors

The Snf5 protein, which is encoded for by the SNF5 gene, 

is involved in the downregulation of transcriptional gene 

silencing (prevention of gene expression) through interac-

tions with histone H2A and H2B31 proteins that are needed 

for the assembly of chromatin and the proper function of 

chromosomes. The SNF5 gene interacts with every factor 

of the SWI/SNF complex.26

The biological process of Swp82, as well as its molecular 

function, remains unknown. SWP82 interacts with 34 genes, 

including histones, ubiquitin protease, transcription factors, 

and the other subunits of the SWI/SNF complex.26

Several of the SWI/SNF genes that display sensitivity 

to our induced cytotoxic stress, such as SNF2, SWI3, and 

SNF5, have human homologues BRG1 or hBRM, BAF155, 

BAF170, and SNF5/INI1 or BAF47, respectively. The poten-

tial targeting of these factors to hypersensitize cancer cells 

to chemotherapy is an attractive possibility and has support 

from a recent study which showed that BRCA1 CpG island 

promoter hyper-methylation-associated silencing predicts 

enhanced sensitivity to platinum-derived drugs such as 

cisplatin.32

While subunits of the SWI/SNF complex may be mutated 

in human cancers, only the SNF5/INI1 (BAF47) subunit 

of the mammalian SWI/SNF complex, a homologue of 

S. cerevisiae SNF5,33 has been shown to function as a tumor 

suppressor.34 A recent report correlating the expression levels 

of the SWI/SNF factor with cancer prognosis suggests that 

other components of the complex may, as well, act as tumor 

suppressors.35

Considering the direct role of the SWI/SNF complex in 

the assembly of nucleosomes, alterations in the composition 

of the complex may play a significant role in the expres-

sion of genes directly involved in the sensitivity to drugs. 

 Reorganization of nucleosomes may occur in the mutant 

strains, which alters expression of genes, concomitantly 

affecting drug resistance. In fact, a recent report describes the 

reactivation of drug resistance by reassembly of nucleosomes 

at sites that block expression of MLH1.36 It would be inter-

esting to determine the expression differences between the 

SWI/SNF mutant strains to determine the genes involved in 

the cellular response to cytotoxic drugs, and correlate these 

expression changes with nucleosome repositioning in the 

genome in these strains.

Additional research will elucidate the role of these genes 

in mammalian cells as a required step to consider these genes 

and/or the pathways they participate in as potential drug-

gable targets that can be used to enhance chemotherapeutic 

treatment.
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