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Abstract: A “Meeting on Upstream Rotavirus Vaccines and Emerging Vaccine Producers” 

was held at the World Health Organization in Geneva, Switzerland on March 28–30, 2006. 

The purpose was to discuss, evaluate, and weigh the importance of additional rotavirus vaccine 

candidates following the successful international licensure of rotavirus vaccines by two major 

pharmaceutical companies (GlaxoSmithKline and Merck) that had been in development for 

many years. Both licensed vaccines are composed of live rotaviruses that are delivered orally as 

have been all candidate rotavirus vaccines evaluated in humans. Each is built on the experience 

gained with previous candidates whose development had either been discontinued or, in the case 

of the previously licensed rhesus rotavirus reassortant vaccine (Rotashield), was withdrawn by 

its manufacturer after the discovery of a rare association with intussusception. Although which 

alternative candidate vaccines should be supported for development and where this should be 

done are controversial topics, there was general agreement expressed at the Geneva meeting 

that further development of alternative candidates is a high priority. This development will help 

insure that the most safe, effective and economic vaccines are available to children in Third 

World nations where the vast majority of the �600,000 deaths due to rotavirus occur each year. 

This review is intended to provide the history and present status of rotavirus vaccines as well 

as a perspective on the future development of candidate vaccines as a means of promulgating 

plans suggested at the Geneva meeting.
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Introduction
In January, 2006, reports on the safety and effi cacy of two rotavirus vaccine candi-

dates, that had recently been or were about to be licensed in several countries, were 

published back-to-back in The New England Journal of Medicine (Ruiz-Palacios 

et al 2006; Vesikari et al 2006). These reports represented the combined efforts of 

many hundreds of investigators, the cooperation of many thousands of study subjects 

and their parents, and the expenditure of several billion dollars by funding agencies 

and pharmaceutical companies. They also represented at least a temporary crest in 

the roller coaster ride that led to their development. The question now is, will this 

ride continue upward with these candidate vaccines and, if so, should it be joined by 

alternative rotavirus vaccine candidates. One purpose of this review is to list notable 

events that occurred over the past 60 years which have contributed to the successful 

licensure of these two vaccines. The second purpose is to describe the most viable 

alternative rotavirus vaccine candidates with particular emphasis on answering the 

question of why they are needed.

Discovery of rotavirus and its associated disease
The fi rst rotaviruses to be described, based on pathology and epidemiology, were 

murine strains which were classifi ed under the general description as the agents 
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responsible for “epizootic diarrhea of infant mice” ie, EDIM 

(Cheever and Mueller 1947; Pappenheimer and Enders 1947). 

Murine rotaviruses were also among the fi rst to be visualized 

by electron microscopy (Adams and Kraft 1963). Viruses 

with comparable morphologic features were observed in that 

same year in rectal swab specimens of monkeys (Malherbe 

and Harwin 1963). These agents were described as 70-nm 

particles that had a wheel-like appearance and, hence, were 

later designated “rota” viruses from the Latin word for wheel 

(Flewett et al 1974; Wyatt et al 1978). In 1969, Mebus et al 

(1969) demonstrated the presence of these particles in stools 

of calves with diarrhea, thus associating these viruses with 

a diarrheal disease in cattle. The correlation between these 

viruses and severe diarrhea in young children was reported 

fi rst in 1973 by Bishop et al (1973) who used electron micros-

copy to examine biopsy specimens of duodenal mucosa from 

children with acute gastroenteritis. Within a short time, these 

and other investigators confi rmed the association between the 

presence of rotavirus in feces and acute gastroenteritis.

In addition to their distinctive morphologic features, human 

rotaviruses along with their animal counterparts were shown to 

share a group antigen (Kapikian et al 1976; Woode et al 1976) 

and were classifi ed as members of the Rotavirus genus within 

the Reoviridae family (Matthews 1979). In 1980, particles 

that were indistinguishable morphologically from established 

rotavirus strains but lacked the common group antigen were 

discovered in pigs (Bridger 1980; Saif et al 1980). This fi nding 

subsequently led to the identifi cation of rotaviruses belonging 

to six additional groups (B to G) based on common group 

antigens, with the original rotavirus strains classifi ed as group 

A (Saif and Jiang 1994). Only groups A to C have been associ-

ated with human diseases, and most known cases of rotavirus 

gastroenteritis have been caused by group A strains.

Today, rotaviruses are recognized as the primary cause 

of severe infantile gastroenteritis worldwide (de Zoysa and 

Feachem 1985). In the United States, as in other developed 

countries, these viruses are responsible for numerous hospital-

izations in young children but are estimated to cause relatively 

few deaths (Glass et al 1991, 2006). On a world scale, however, 

rotaviruses are believed to be the cause of �600,000 deaths 

each year (Glass et al 2006; Parashar et al 2006). For these 

reasons, rotaviruses have received a high priority as a target 

for vaccine development (Institute of Medicine 1986; Research 

priorities for diarrheal diseases vaccines 1991; GAVI 2001).

What is rotavirus?
A computer-generated image of the rotavirus particle 

obtained by cryoelectron microscopy (Figure 1) showed 

that it is approximately 100 nm in diameter and has a capsid 

composed of three concentric protein layers (Shaw et al 

1993; Prasad and Chiu 1994). The outer layer contains the 

VP7 glycoprotein (780 molecules/virion) and 60 dimers 

or trimers of the VP4 protein (Yoder and Dormitzer 2006), 

the latter of which forms spikelike projections that extend 

through and 11–12 nm beyond the VP7 layer (Prasad and 

Chiu 1994; Shaw et al 1993; Yeager et al 1994). Cleavage 

of the VP4 protein prior to cell attachment by trypsin-like 

enzymes into two peptide fragments (VP5* and VP8*) 

that remain associated with the virus particle enhances its 

infectivity. The VP4 protein is anchored to the intermediate 

layer of the particle composed of 780 molecules of the VP6 

protein. The innermost layer contains 120 molecules of the 

VP2 protein that interact with 12 molecules each of the viral 

transcriptase (VP1) and guanylyltransferase (VP3) along with 

the 11 segments of double-stranded RNA genome. These seg-

ments encode the 6 structural proteins of the virus as well as 

6 non-structural proteins designated NSP1-NSP6 (Table 1). 

The smallest segment encodes both NSP5 and NSP6. The 

genome segments range in size from ca. 660 to 3300 base 

pairs; their encoded proteins, the functions of which are at 

least partially understood, have molecular weights of ca. 

12,000 to 125,000.

The genome segments of rotavirus can be extracted 

from viral particles and separated by polyacrylamide gel 

electrophoresis into 11 distinct bands visualized by ethidium 

bromide or silver staining (Figure 2). Each rotavirus strain has 

a characteristic RNA profi le or electropherotype, a property 

that has been used extensively in epidemiologic studies of 

these viruses. The characteristic RNA electrophoretic pattern 

of group A rotaviruses consists of four size classes containing 

segments 1–4, 5 and 6, 7–9, and 10 and 11. RNA segments of 

strains belonging to less well characterized rotavirus groups 

(ie, groups B to G) also can be separated into size classes, 

but the distribution of segments within these classes differs 

from group to group.

Serotypes of rotavirus
Both outer capsid proteins of rotavirus, VP4 and VP7, contain 

neutralization epitopes and, thereby, both are involved in 

serotype determination, an important consideration in vac-

cine development. Originally, serotyping was based solely 

on differences in the VP7 protein because when animals were 

hyperimmunized with rotaviruses they developed almost all 

neutralizing antibody to this protein and cross-neutralization 

studies conducted with these hyperimmune sera readily 

separated the strains into VP7 serotypes (Hoshino et al 1984; 
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Wyatt et al 1982). When it was found later that VP4 could, 

in some cases, be the dominant neutralization protein (Ward 

et al 1988, 1993), a dual serotyping scheme was required. 

Although VP7 serotypes could be determined readily by 

cross-neutralization studies, this was more diffi cult for VP4 

(Taniguchi et al 1988; Gorziglia et al 1990; Padilla-Noriega 

et al 1992; Snodgrass et al 1992). Therefore, two numeric 

systems were devised to classify the VP4 protein in rotavirus 

strains. One is based on comparative nucleic acid hybridiza-

tion and sequence analyses (genotypes), and the second is 

based on neutralization (serotypes) using antisera against 

baculovirus-expressed VP4 proteins or reassortants with 

specifi c VP4 genes. Genotypes of VP4 are designated by 

brackets while serotypes are not. Rotavirus classifi cation 

Figure 1 Computer-generated image of the triple-shelled rotavirus particle obtained by cryoelectron microscopy. The cut-away diagram shows the outer capsid composed 
of VP4 spikes and VP7 shell, intermediate VP6 shell, and inner VP2 shell surrounding the core containing the 11 double-stranded RNA segments and VP1 and VP3 proteins. 
(Courtesy of Dr. B. V. V. Prasad, Baylor College of Medicine, Houston, TX.)
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based on VP4 and VP7 is designated P and G types to 

describe the protease sensitivity and glycosylated structure 

of these two proteins, respectively. Thus, the full designation 

for the most common serotype/genotype of human rotavirus 

is G1P1A[8]. Today, 15 G types and 26 P types have been 

described but only 5 G serotypes (G1, G2, G3, G4, and G9) 

and 3 P genotypes (P[4], P[6], and P[8]) are commonly 

associated with human rotavirus illnesses.

Mechanisms of immunity
to rotavirus
An obvious place to begin to understand rotavirus immunity 

is to determine the effectiveness of previous rotavirus infec-

tions in prevention of subsequent infections and disease. 

Many investigators have reported that natural rotavirus 

infections in humans produce incomplete protection, but 

little doubt exists that previous infections protect against 

severe disease associated with reinfection. In probably 

the most thorough study reported, protection against both 

reinfection and diarrhea increased with each new rotavirus 

infection but protection against severe rotavirus disease 

was nearly complete after a single rotavirus infection, even 

in the face of several circulating G serotypes of the virus 

(Velazquez et al 1996). Sequential infections even with the 

same serotype clearly occur but less regularly than with dif-

ferent serotypes. Thus, there is confl icting data regarding the 

association between serotype-specifi c neutralizing antibody 

and protection. Active immunity against both homotypic and 

heterotypic rotaviruses has also been demonstrated in mice, 

calves, and rabbits after single rotavirus infections, further 

indicating something in addition to neutralizing antibody is 

important in protection (Bridger and Oldham 1987; Woode 

et al 1987; Ward et al 1992; Conner et al 1993)

The immunological effectors that prevent rotavirus disease 

have been partially identifi ed, particularly through studies 

with animal models, but in humans remain poorly understood. 

Because rotaviruses replicate in intestinal enterocytes, result-

ing in the associated gastrointestinal symptoms, it is gener-

ally assumed that effector mechanisms must be active at the 

intestinal mucosa. The most obvious immunological effector 

is secretory IgA. In agreement with this suggestion, protec-

tion against rotavirus infection in orally immunized mice was 

found to correlate with levels of fecal and serum rotavirus IgA 

but not serum rotavirus IgG (Feng et al 1994; McNeal et al 

1994). In humans, titers of serum and intestinal rotavirus IgA 

as well as serum rotavirus IgG were reported to correlate with 

protection following natural infection (Chiba et al 1986; Ward 

et al 1989; Clemens et al 1992; Coulson et al 1992; Matson 

et al 1993; O’Ryan et al 1994; Velazquez et al 2000).

The most immunogenic rotavirus protein is VP6 but 

it does not stimulate neutralizing antibodies. It has been 

reported, however, that IgA antibodies directed at VP6 can 

be protective by mechanisms that are not completely under-

stood but may involve intracellular inhibition of rotavirus 

replication within infected enterocytes during polymeric 

antibody transport to the intestinal lumen (Burns et al 1996; 

Feng et al 2002; Corthesy et al 2006). Antibodies directed at 

either the VP4 or the VP7 proteins can neutralize virus and 

are believed to provide protection by classical neutralization. 

Both proteins can also induce type-specifi c and cross-reactive 

serotype responses (Mackow et al 1988; Morita et al 1988; 

Taniguchi et al 1988; Gorziglia et al 1990).

Table 1 Sizes of rotavirus gene segments and properties of 
encoded proteins

RNA Encoded Properties of proteins
segment protein

1 VP1 Inner core protein
  RNA binding
  RNA transcriptase
2 VP2 Inner capsid protein
  RNA binding
3 VP3 Inner core protein
  Guanylyltransferase
  Methyltransferase
4 VP4 Outer capsid protein
  Hemagglutinin
  Neutralization protein
  Receptor binding
  Fusogenic protein
5 NSP1 Nonstructural protein
  RNA binding
  IRF regulatory protein
6 VP6 Intermediate capsid
  Group and subgroup antigen
7 NSP3 Nonstructural protein
  RNA binding
  Translational control
8 NSP2 Nonstructural protein
  RNA and NSP5 binding
  Virosome formation
9 VP7 Outer capsid glycoprotein
  Neutralization protein
10 NSP4 Nonstructural glycoprotein
  Transmembrane protein
  Enterotoxin
11 NSP5 Nonstructural protein
  Phosporylated
  NSP2 and NSP6 binding
12 NSP6 Nonstructural protein
  NSP5 binding

Modifi ed from Estes and Kapikian (2007).
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Gene knockout mice have been used to distinguish the 

roles of CD8+ T cells and antibody in protection. Rotavirus-

specifi c cytotoxic T lymphocytes recognize epitopes on 

several rotavirus proteins which are generally not serotype 

specifi c (Offi t and Dudzik 1988; Offi t et al 1991; Franco 

et al 1994). Adoptive transfer of splenic lymphocytes from 

mice infected with homologous or heterologous rotavirus 

strains can protect suckling mice and protection appeared to 

depend on the presence of CD8+ T lymphocytes (Offi t and 

Dudzik 1990). Similarly, CD8+ splenic or intraepithelial T 

lymphocytes obtained from the intestine of rotavirus-infected 

mice can eliminate the chronic rotavirus shedding seen in 

SCID mice (Dharakul et al 1990). Other studies revealed 

that adoptive transfer of splenic CD4+ T cells from mice 

intranasally immunized with a recombinant VP6 protein 

resolved shedding in chronically infected, immunodefi cient 

Rag-2 mice (McNeal et al 2002). Therefore, either CD8+ or 

CD4+ T cells are capable of resolving rotavirus infections. 

Possible roles of these cells in resolution or prevention of 

human rotavirus infections remain to be determined.

Although cytolytic CD8+cells were found to be important 

for resolution of a rotavirus infection, only antibody was 

shown to provide protection against a subsequent challenge 

(Franco and Greenberg 1995; McNeal et al 1995; Franco et al 

1997). A recent study in mice revealed that oral immuniza-

tion of mice with a rotavirus that was fully heterotypic to the 

challenge strain provided nearly complete protection against 

fecal rotavirus shedding but this protection was dependent 

on the ability of antibody to be transported through intestinal 

epithelial cells (VanCott et al 2006). This result supports the 

earlier suggestion that heterotypic protection after live virus 

immunization may be due to intracellular inhibition of virus 

replication, at least in mice (Burns et al 1996; Feng et al 

2002; Corthesy et al 2006). These results indicate that the 

levels, location, and targets of antibody are all of immediate 

importance in protection against rotavirus. These fi ndings 

have important implications for vaccine development

Experiences gained from the early 
rotavirus vaccine candidates
Because natural rotavirus infections induce excellent protec-

tion, at least against severe rotavirus disease, vaccine efforts 

have been directed mostly at the development of live attenu-

ated rotavirus vaccines. Initial studies concentrated on the use 

of animal rotavirus strains, labeled the Jennerian approach 

(Kapikian et al 1986) because it relies on the natural attenuation 

of animal viruses in humans for safety, and largely heterotypic 

immune responses for protection. Just 10 years after the identi-

fi cation of rotavirus as the primary agent of severe diarrhea in 

young children, the fi rst vaccine trials were performed using 

RIT 4237, a G6P[1] bovine rotavirus (Vesikari et al 1983). 

This vaccine was safe and effective in Finland, and provided 

protective effi cacy of �80% against severe rotavirus disease 

due to heterotypic human rotaviruses (Vesikari et al 1985). 

However, later studies in developing countries were disappoint-

ing, (DeMol et al 1986; Hanlon et al 1987; Lanata et al 1989) 

Figure 2 Polyacrylamide gel electrophoretic patterns of genomic RNAs obtained 
from group A human rotaviruses and visualized by silver staining. The patterns
demonstrate the characteristic four size classes of RNA separated into groups of
4, 2, 3, and 2 segments each. Human rotavirus strains included (from left to right) 
lane 1, Wa; lane 2, 248 strain; lane 3, 456 strain; lane 4, DS-1; lane 5, Wa.
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showing little or no effi cacy, thus causing the termination of 

studies with this vaccine.

Initial studies with WC3, a G6P[5] bovine rotavirus 

developed as a vaccine candidate a short time later, also 

appeared promising (Clark et al 1988). However, subsequent 

trials did not show signifi cant protection (Bernstein et al 

1990; Georges-Courbot et al 1991), and studies with this 

candidate vaccine were also terminated. In an attempt to make 

the WC3 vaccine more serotypically related to human strains, 

genes encoding the VP4 and VP7 neutralization proteins 

from human rotaviruses were introduced into WC3 by gene 

reassortment. This method, labeled the modifi ed Jennerian 

approach (Flores and Kapikian 1990), resulted in the develop-

ment of the pentavalent RotaTeqTM vaccine, one of the two 

rotavirus vaccines being licensed in the world today.

A simian rotavirus called rhesus rotavirus (RRV) was 

also developed as one of the fi rst vaccine candidates but 

protection elicited by this vaccine was likewise inconsistent 

(Flores et al 1987; Vesikari et al 1990; Santosham et al 

1991; Madore et al 1992; Padilla-Noriega et al 1992). The 

G serotype of the G3P[3] RRV strain is shared with human 

rotaviruses and can be the dominant circulating strains, and 

protection elicited by RRV appeared to be more effective 

when this was the case. As a result, RRV was reassorted 

with human strains to incorporate VP7 genes of the other 

three dominant human G serotypes (G1, G2, and G4), thus 

creating the tetravalent RotashieldTM vaccine (Figure 3). 

This vaccine was licensed and incorporated into the USA 

infant immunization program in 1998 but was withdrawn by 

its manufacturer in 1999 after the discovery of a small but 

signifi cant increase in intussusception in vaccinees during 

post-licensure surveillance (Murphy et al 2003).

The only other vaccine candidate developed directly from 

an animal strain and tested in humans was the G10P[12] lamb 

strain. This virus was administered to �1,000 children (aged 

6–24 months) in a Phase II trial with no evidence of side 

effects (GAVI 2001). Although no controlled effi cacy trials 

with this vaccine have been reported, it is presently licensed 

and being sold in the private market in China.

Two rotavirus vaccines are being 
licensed worldwide today
The fi rst licensure of a rotavirus vaccine after the with-

drawal of Rotashield in 1999 occurred in Mexico in 2004 

and the vaccine became available there in January, 2005. 

This was the attenuated human RotarixTM vaccine that was 

produced by GlaxoSmithKline. Since that time, the vaccine 

has been licensed in nearly 100 countries, including those 

in the European Union, is being used in routine childhood 

vaccination in at least 7 nations, and has been pre-qualifi ed 

for procurement by U.N. agencies by the World Health 

Organization. This vaccine is based on the attenuated human 

strain, 89–12, a G1P[8] strain which is the most common 

serotype worldwide. The virus was initially obtained from 

an infant with rotavirus gastroenteritis (Bernstein et al 1998), 

and attenuated by multiple passages in tissue culture. Studies 

showed the 89–12 vaccine was safe, although it induced a low 

Figure 3 Polyacrylamide gel electrophoretic patterns of the genome segments 
from RRV and the G1, G2, and G4 reassortant strains that compose the tetravalent 
RRV-based vaccine (Rotashield). The strains all contain 10 RRV genes and differ only in 
the gene segment encoding the VP7 protein, which migrates in the seventh (RRV) or 
ninth (reassortants) position, as designated by arrowheads.
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grade fever in 19% of recipients, and two doses provided 89% 

protection against any rotavirus disease, and 100% protection 

from more serious disease (Bernstein et al 1999).

The 89–12 strain was purifi ed by limiting dilution and 

further passaged in tissue culture. The fi nal product, ini-

tially called RIX4414 and later marketed as RotarixTM, was 

evaluated in several studies. Initial safety testing (Vesikari, 

Karvonen, Korhonen et al 2004) revealed the vaccine was 

safe and did not induce the fever that was seen following 

vaccination with its 89–12 parent. Subsequent reports from 

Singapore (Phua et al 2005), Finland (Vesikari, Karvonen, 

Puustinen et al 2004), Latin America (Ruiz-Palacios et al 

2006), and the USA (Dennehy et al 2005) confi rmed the 

safety, verifi ed the vaccine was not associated with fever, 

and reported that the vaccine remained highly immunogenic. 

Thus, the additional passages and/or limiting dilution purifi -

cation resulted in a vaccine strain that has been consistently 

non-reactogenic. The vaccine also did not interfere with the 

immune responses to the other concomitantly used vaccines 

including OPV (Dennehy et al 2005; Ruiz-Palacios et al 

2006). In the initial effi cacy trial of RIX 4414 conducted in 

Finland over two rotavirus seasons, the vaccine was 73% pro-

tective against all rotavirus gastroenteritis and 90% protective 

against severe gastroenteritis despite the relatively low dose of 

vaccine used (Vesikari, Karvonen, Puustinen et al 2004).

Because of the association of Rotashield with intussuscep-

tion, the next rotavirus vaccines were required to undergo very 

large safety trials. Rotarix was, therefore, evaluated in a very 

large safety trial (Ruiz-Palacios et al 2006). In a study of over 

63,000 infants conducted primarily in several countries in Latin 

America, the vaccine was safe and did not induce fever and, 

most importantly, was not associated with intussusception. 

In this large study, effi cacy was 85% against severe rotavirus 

diarrhea and hospitalizations, and reached 100% against more 

severe gastroenteritis. Of note, effi cacy was high (over 86%) 

against severe rotavirus diarrhea caused not only by G1P[8] 

strains but also by the VP4 related G3P[8], G4P[8] and G9P[8] 

strains. Effi cacy against G2P[4] strains in the few subjects 

infected with these viruses was less, 41.0%. However, in 

meta-analyses conducted with the data from several studies, 

the effi cacy was 67%–71% indicating that the vaccine will be 

effi cacious against strains that are serotypically dissimilar in 

both their VP4 and VP7 proteins (Ruiz-Palacios et al 2006; 

Vesikari, Karvonen, Korhonen, et al 2006). In the most recent 

trial of over 4,000 infants conducted in six European countries, 

protection was 87% against any rotavirus gastroenteritis, 

96% against severe disease and 100% against hospitalization 

due to rotavirus (Vesikari, Karvonen, Korhonen et al 2006).

In this study, effi cacies against G3, G4 and G9 rotaviruses were 

similar to that against G1 and exceeded 95% while effi cacy 

against G2 strains was 75%. Of importance, effi cacy against 

hospitalization due to gastroenteritis of any cause was 75%.

In 2006, the pentavalent WC3-based reassortant vaccine, 

Rotateq™, was also licensed, fi rst in the USA and subsequently 

in the European Union and other international settings by 

Merck. After the WC3 vaccine was shown to be safe but not 

consistently effective (Clark et al 1988; Bernstein et al 1990; 

Georges-Courbot et al 1991), a monovalent vaccine containing 

the VP7 protein of a human G1 rotavirus was developed. This 

vaccine was reported to be protective, especially against more 

severe disease, during a predominantly serotype G1 outbreak 

in the USA (Clark et al 1990; Treanor et al 1995). Next, a 

WC3-based reassortant quadrivalent vaccine including both 

VP7 and VP4 human rotavirus gene substitutions, ie, G1, G2, 

G3, or P[8], was evaluated. In studies conducted at multiple 

centers in the United States, it was shown to be safe and effec-

tive against all cases of rotavirus gastroenteritis (75%) and 

especially against severe cases (100%) (Clark et al 2004). The 

fi nal pentavalent Rotateq vaccine contains the VP7 and VP4 

reassortants found in the quadrivalent vaccine plus a VP7 G4 

reassortant (Clark et al 2006).

Again, because of the association of Rotashield with intus-

susception, this rotavirus vaccine was also required to undergo 

very large safety trials. Accordingly, a study was conducted 

with RotaTeq in >70,000 infants, primarily in Finland and the 

USA, which showed that the vaccine was safe and induced no 

fever (Vesikari, Matson et al 2006). Most importantly, there 

was no association with intussusception. The vaccine was also 

highly effective, reducing all cases of G1–G4 rotavirus gastro-

enteritis by 74.0%, severe gastroenteritis by 98.0%, and hospi-

talizations and emergency room visits by 94.5%. Interestingly, 

the effi cacy of the vaccine against all gastroenteritis-related 

hospitalizations after the fi rst dose was 58.9%. Therefore, as 

was also found after Rotarix vaccination, overall protection 

against severe gastroenteritis seemed greater than expected 

based solely on rotavirus infections. Reasons for this have not 

been established but it is likely that either the percentage of 

hospitalizations due to rotavirus are greater than expected or 

vaccination provides a general boost in immunity that protects 

against more than just rotavirus disease.

What alternative rotavirus vaccine 
candidates are being most actively 
investigated?
Several other live, orally-deliverable rotavirus vaccine candi-

dates are under development, some for many years, but these 
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had not been put on the fast-track with Rotarix or RotaTeq. 

However, with new and improved funding from donor agen-

cies along with greater national and international appreciation 

for the importance of rotavirus as a deadly pathogen, this 

picture is changing. In addition, several non-living rotavirus 

vaccine candidates have been developed and tested in animal 

models but none have been evaluated in humans. Studies on 

the best known live and non-living alternative rotavirus vac-

cine candidates will now be described along with the status 

of their development.

Alternative live rotavirus vaccine 
candidates
Although several live rotavirus vaccine candidates are under 

development for potential national or regional usage, three 

alternative candidates appear to presently have the most 

potential for broader usage (Table 2). These three [the bovine 

(UK strain)/human reassortant vaccine, the human neonatal 

RV3 strain, and the bovine/human neonatal 116E strain] have 

all been under development for many years, but progress with 

each has been delayed for its own unique reasons.

The bovine (UK) reassortant vaccine was developed in 

the laboratory of Albert Kapikian of the National Institutes of 

Health in Bethesda, Maryland, together with the RRV-based 

tetravalent vaccine that became Rotashield. One reason to 

concentrate on the simian rotavirus-based vaccine at the 

expense of the bovine rotavirus-based candidate was the sero-

types of the two strains. The bovine strain was serotypically 

unrelated to relevant human rotaviruses while RRV shared 

its G serotype (G3) with one of the four dominant human 

rotavirus types. The decision to focus on the RRV strain had 

one of the greatest impacts of any made during rotavirus 

vaccine development. The RRV-based vaccine clearly had 

center-stage for years during the course of its evaluation, 

licensure, and subsequent incorporation into the childhood 

immunization series in the USA.

Even so, the tetravalent bovine (UK) reassortant vaccine, 

that contained single VP7 gene substitutions from G1, G2, 

G3 or G4 human rotaviruses on a 10-gene UK background, 

was evaluated initially for safety and immunogenicity in the 

USA (Clements-Mann et al 1999) and later for safety/immu-

nogenicity/effi cacy in Finland (Vesikari, Karvonen, Majuri, 

et al 2006) before the withdrawal of Rotashield. Although 

the studies were small (161 vaccinees and 80 placebo 

recipients in the effi cacy trial), protection was signifi cant 

(60% against any rotavirus disease and 90% against severe 

rotavirus disease; p � 0.02). In order to facilitate the 

production and commercialization of this vaccine, the NIH 

Offi ce of Technology Transfer has granted licenses to at least 

8 groups throughout the world, 7 of which are in developing 

nations, including vaccine manufacturers in Brazil, China 

and India.

RV3 is a G3P[6] human rotavirus that was isolated in an 

obstetric nursery in Melbourne, Australia, where it caused 

endemic, asymptomatic infections in newborn infants in 

the 1970s. Neonates infected with this virus were 100% 

protected against severe rotavirus disease, caused primarily 

by heterotypic G2P[4] strains, for their fi rst 3 years of life 

(Bishop et al 1983). Once RV3 was developed into a vaccine 

candidate, Phase I and early Phase II trials were conducted 

(Barnes et al 2002). Although an immune response to the 

vaccine was detected in only 46% of subjects, protection 

in the responders against primarily serotype G1 circulating 

rotaviruses was 54% (p = 0.08). It has been suggested that 

vaccine “take” may be improved if the dose is increased 

above the 6.5 × 105 tissue culture infectious viruses previ-

ously administered. Accordingly, the virus has been grown 

to a higher titer and plans are underway for its evaluation 

after administration of higher doses. The slow pace at which 

this vaccine has been developed is presumably related to its 

somewhat disappointing immunogenicity and the lack of 

interest from pharmaceutical companies. Both limitations 

may be corrected with the use of a higher titer virus. Current 

plans include development of the vaccine candidate with a 

vaccine manufacturer in Indonesia.

The 116E G9P[11] rotavirus strain was obtained from 

neonates who became asymptomatically-infected in New 

Delhi, India, in the mid-1980’s. Subjects who became 

infected were signifi cantly (p � 0.05) protected against 

subsequent rotavirus diarrhea (Bhan et al 1993). 116E is 

a natural reassortant, deriving it VP4 gene segment from a 

bovine rotavirus and the other 10 genes from a human strain 

(Das et al 1993, 1994). During the same period that the 

116E strain was infecting neonates in New Delhi, another 

bovine/human reassortant was asymptomatically-infecting 

neonates in the Bangalore region of India. The G10PI I321 

Table 2  Alternative live rotavirus vaccine candidates

Candidate Origin Status

UK reassortant Developed at NIH Phase I and
 Bovine reassortant containing G1,  early Phase II
 G2, G3, G4 human genes 
RV3 Human neonatal strain (G3P[6])  Phase I and
 isolated in Australia early Phase II
116E Natural bovine-human reassortant  Phase I and
 (G9P[11]) isolated in India early Phase II
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strain isolated from these subjects derived 9 gene segments 

from a bovine rotavirus and only the segments for 2 non-

structural genes from a human strain (Dunn et al 1993). It 

was initially suggested that neonates infected with G10P[11] 

strains appeared to be protected against subsequent rotavi-

rus disease (Aijaz et al 1996), but a very recent report by 

another group of investigators suggests otherwise (Banerjee 

et al 2007). Regardless, the I321 strain was also developed 

into a vaccine candidate. However, when both 116E and 

I321 vaccines were tested for immunogenicity in a small, 

placebo-controlled trial, only the 116E strain was found to 

elicit signifi cant immune responses (Bhandari et al 2006). 

Therefore, the I321 strain was shelved and only the 116E 

strain is now being actively pursued as a vaccine candidate. 

Although vaccine preparations of both candidates were pre-

pared and initial human trials were initiated in Cincinnati, 

Ohio, in 1997, these trials were discontinued in 1998 due to 

concerns over the purity of the cells in which the vaccines 

were grown. These concerns were eventually alleviated and 

only then were trials with these vaccines continued, this time 

in India where the viruses were fi rst discovered (Bhandari 

et al 2006).

Non-living rotavirus vaccine candidates
The original expectation for successful live, orally-deliverable 

rotavirus vaccines was that they protect against almost all 

cases of rotavirus disease of any severity. This expectation 

has been modifi ed with the realization that even natural 

rotavirus infections do not provide complete protection 

against subsequent rotavirus illnesses. However, one natural 

infection has been reported to provide nearly complete (87%) 

protection against severe rotavirus disease and two infections 

were 100% protective (Velazquez et al 1996). Therefore, a 

more realistic goal for a successful live rotavirus vaccine is 

that it is able to consistently provide a high level of protec-

tion against severe rotavirus illnesses. This goal has so far 

been realized, where tested, for the rotavirus vaccines now 

being licensed and had been found for the Rotashield vac-

cine as well. However, no effi cacy trials with any of these 

three vaccines have been completed in Third World nations 

where rotavirus deaths are most common and where the ear-

lier rotavirus vaccine candidates failed to provide signifi cant 

protection.

Based on these observations regarding effi cacies and 

the not fully resolved safety concerns associated with live 

rotavirus vaccines, non-living rotavirus vaccines are being 

developed as possible next generation candidates. Although 

these range from fully intact, inactivated rotaviruses to pieces 

of rotavirus proteins, even to DNA vaccines, three types of 

candidates have been given the most attention. These include 

inactivated triple- and double-layered (lacking VP4 and 

VP7) rotavirus particles, triple- and double-layered virus-

like particles (VLPs), and recombinant, E. coli-expressed 

VP6 proteins (Table 3). Candidates representative of each of 

these 3 types have been under development since the 1980s 

and tested in animal models but, as already noted, none have 

been evaluated in humans.

Vaccination with inactivated rotavirus particles delivered 

by either parenteral or mucosal (intranasal) routes has been 

found to effectively block intestinal rotavirus replication 

in adult mice challenged with a murine rotavirus (McNeal 

et al 1998, 1999). In most cases, protection was enhanced 

Table 3 Alternative non-living rotavirus vaccine candidates

Candidate Properties Where tested Level of protection

Inactivated virus Viral particles inactivated  Tested in mice,  Effective in reducing or 
 by physical or chemical  rabbits and  preventing rotavirus shedding 
 methods gnotobiotic piglets with or without the use of 
   adjuvants.
Virus like particles  Particles formed from  Tested in mice,  Effective in reducing or 
(VLPs) expressed recombinant  rabbits and  preventing rotavirus shedding 
 proteins. Contain VP2 and gnotobiotic pigs in mice and rabbits. Alone, 
  VP6 with or without VP4   not protective in gnotobiotic 
 and VP7  piglets. More effective with 
   an adjuvant. More effective 
   intranasally than orally. 
VP6 E. coli-expressed  Tested in mice Effective in reducing or 
 recombinant protein  preventing rotavirus shedding 
   when given orally, 
   intranasally or intrarectally 
   with adjuvant to mice.
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by co-immunization with an effective adjuvant. Fully intact, 

triple-layered particles were found to be more effective than 

double-layered particles only when their VP4 or VP7 protein 

matched the serotype of the challenge virus. This suggested 

that neutralizing antibodies played a role in protection but 

were not required for effective immunity. One formaldehyde-

inactivated, purifi ed rotavirus vaccine candidate, prepared 

from the G1P[4] AU64 strain, has been used to intramuscu-

larly immunize gnotobiotic piglets which were reported to 

be protected from fecal virus shedding following challenge 

with a G1P[8] human rotavirus (O. Nakagomi personal com-

munication). Other candidate vaccines were prepared by the 

Viral Gastroenteritis Laboratory of the Centers for Disease 

Control (Atlanta, GA), including G1P[8], G2P[4] and G9P[6] 

strains, and studies are being performed to determine their 

immunogenicities and effi cacies in mice, macaques, and 

gnotobiotic piglets (B Jiang personal communication).

The premier laboratory for studies on immunity and 

efficacy involving rotavirus immunization in gnotobi-

otic piglets has been that of Linda Saif (The Ohio State 

University, Wooster, OH), and one candidate vaccine that 

has been evaluated in her laboratory is the inactivated G1P[8] 

Wa strain of human rotavirus. Reports from these studies 

indicate that after either oral or intramuscular delivery of 

inactivated Wa to newborn piglets, intestinal IgA responses 

to the immunogen, as well as protection against intestinal 

fecal rotavirus production and diarrhea after challenge with 

virulent Wa virus, were signifi cantly less than found after 

oral vaccination with live Wa virus (To et al 1998; Yuan and 

Saif 2002). However, protection in this piglet model has been 

consistently less effective with all immunogens tested than 

found in adult mice. There are several explanations for this 

observation but, in the end, it will not be clear which model 

is more applicable to humans until the studies are performed 

in humans.

VLPs have been developed as possible vaccine candi-

dates for several viruses, and production of rotavirus VLPs 

was fi rst reported in the 1980s (Estes et al 1984; Ready and 

Sabara 1987; Crawford et al 1994). Any of several expres-

sion vectors can be used to produce the recombinant proteins 

that become incorporated into VLPs, but the most common 

is baculovirus and has been the expression vector of choice 

for rotavirus as well. One of the most viable candidate rota-

virus vaccines in the early 1990’s was composed of VLPs 

which underwent extensive preclinical testing. However, 

following several changes in ownership due to company 

acquisitions, this VLP vaccine was eventually licensed 

by the same company that was developing Rotashield. No 

signifi cant clinical progress with this or any other rotavirus 

VLP vaccine has occurred since that time but studies in 

animal models with candidate VLP vaccines have fl our-

ished. Some VLP vaccines contain only VP2 and VP6 (2/6 

VLPs) while others have incorporated one or more of the 

neutralization proteins, VP4 and VP7 (2/6/4/7 VLPs). Many 

recent animal studies have utilized 2/6 VLPs administered 

by mucosal routes together with effective adjuvants. Both 

intranasal and intrarectal immunization of mice with these 

particles has resulted in excellent protection against fecal 

rotavirus shedding following murine rotavirus challenge 

(O’Neal et al 1997, 1998; Agnello et al 2006). Intrarectal 

immunization of mice with VLPs containing the VP8* por-

tion of VP4 along with VP2, VP6 and VP7 also provided 

excellent protection in mice (Parez et al 2006). In contrast, 

gnotobiotic piglets intranasally-immunized with 2/6 VLPs 

were neither protected against fecal shedding of the challenge 

virus (virulent Wa) nor diarrheal illness (Yuan et al 2000). 

Subsequent studies in piglets suggested that 2/6 VLPs with 

adjuvant would supplement protection if given as a booster 

following an initial immunization with attenuated Wa virus 

(Nguyen et al 2006). VLP rotavirus vaccines have also been 

delivered intramuscularly to both mice and rabbits where 

they produced effective protection against fecal shedding 

(Bertolotti-Ciarlet et al 2003; Ciarlet et al 1998). Although 

protection induced by 2/6 VLPs in rabbits was enhanced by 

inclusion of VP4, this was not required for mice.

Vaccine candidates composed only of chimeric, E. coli-

expressed VP6 proteins from murine or human rotaviruses 

have been found to effectively protect mice against fecal 

rotavirus shedding when administered either intranasally, 

orally or intrarectally with effective adjuvants (Choi et al 

1999, 2002). The level of protection has been consistently 

�90% by any of these routes and protection was found to 

remain fully intact for at least one year. VP6 is the group 

antigen and, therefore, is highly conserved within group A 

rotaviruses. Thus, it is not surprising that protection elicited 

by intranasal immunization of adult mice with a human 

rotavirus VP6 protein was highly protective against fecal 

rotavirus shedding following challenge with heterotypic 

murine rotaviruses. Interestingly, protection elicited by 

intranasal immunization of neonatal mice with VP6 and 

adjuvant was delayed but eventually reached the level found 

after immunization of adult mice, a fi nding that may have 

relevance if this vaccine were administered to human neo-

nates (VanCott et al 2006).

Although anti-rotavirus antibodies have been identifi ed 

as the primary effectors of protection after oral immunization 
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with live rotaviruses (Franco and Greenberg 1995; McNeal 

et al 1995; VanCott et al 2006), this was not the case following 

mucosal immunization with VP6 and adjuvant. In this case, 

the only lymphocytes found to be required for protection were 

CD4+ T cells (McNeal et al 2002). Protection elicited by these 

effector cells was found to be associated with the intestinal pro-

duction of two cytokines, IL-17 and IFNγ (Smiley et al 2007), 

thus suggesting these cytokines may have direct or indirect 

roles in protection against rotavirus shedding. However, even 

in genetically-modifi ed mice that cannot, individually, make 

these proteins, full protection is still elicited after intranasal 

immunization with VP6 and adjuvant. Therefore, neither of 

these cytokines is required for protection, thus leaving the 

identity of the actual effectors of protection in doubt. Protec-

tion induced after intranasal immunization of mice with 2/6 

VLPs was also reported to depend on CD4+ T cells (Blutt et al 

2006). Thus, the primary effectors responsible for protection 

after oral immunization with live rotavirus and at least 2 of the 

non-living candidate vaccines appear to be quite different.

Although some of the most promising alternative rotavirus 

vaccine candidates for future development and evaluation are 

those classifi ed as non-living, there has been little consistent 

interest in, and funding available for, making this happen. 

The main reasons appear to be the lack of human clinical trial 

knowledge and the costs that are perceived to be needed to 

bring a non-living rotavirus vaccine into the marketplace. Pre-

sumably this would change dramatically if the use of another 

live rotavirus vaccine were stopped due to an unacceptable 

safety problem, something that no one wants.

Why are alternative rotavirus 
vaccines needed?
This question is one that when answered by 100 experts, will 

generate at least 90 different answers, all shaded in various 

ways to refl ect the particular experience and current position 

of the responder. Recognition of that will better allow the 

reader to incorporate statements made here on this question 

into their own experience before drawing conclusions. There 

are several historical facts that should be considered before 

addressing this question. The fi rst is that during the devel-

opment and licensing of Rotashield, development of other 

rotavirus vaccine candidates was on the distant horizon. Thus, 

the disappointment associated with its withdrawal from the 

USA market in 1999 was accentuated. The next rotavirus 

vaccine to be licensed was Rotarix in Mexico and its distri-

bution was not begun until 2005. Thus, co-development of 

multiple candidate rotavirus vaccines seemingly would have 

reduced this hiatus period.

However, the removal of any vaccine due to a safety issue 

would undoubtedly trigger a series of reactions that would 

affect other candidates, resulting in extended testing and 

delays in their licensure, and the greater the similarity of the 

two products, the greater would be the expected delay. Thus, 

even if either Rotarix or RotaTeq were approaching licensure 

in 1999, it was inevitable that much larger studies would 

have had to have been performed with these candidates to 

minimize the chances that they would also trigger intus-

susception. Presumably, other types of rotavirus vaccines, 

such as non-living candidates, would have come under less 

scrutiny regarding the same specifi c concern. However, that 

is not even certain. What does seem clear is that if another 

live, orally-deliverable rotavirus vaccine candidate is found 

to trigger intussusception, this entire class of vaccine can-

didates may be in jeopardy. This is why it was imperative 

that the two new rotavirus vaccines could not be licensed 

until it was established that the potential risk that they trig-

ger intussusception has been investigated and minimized. It 

remains unclear if a similar burden for large safety trials, as 

undertaken by the developers of Rotarix and RotaTeq will 

be expected of the developers of any new rotavirus vaccine 

candidates (eg, the UK bovine/human reassortant or the 

two human neonatal strains), a situation that may be very 

diffi cult for the new manufacturers to support.

After reviewing the data generated in the two large safety 

studies (Ruiz-Palacios et al 2006; Vesikari, Karvonen, 

Majuri et al 2006), the WHO Global Committee for Vaccine 

Safety (GACVS) concluded that the licensed vaccines were 

safe within these clinical trial settings, ie, where the vaccines 

were given strictly according to a young age. However, the 

GACVS strongly recommended that post-marketing surveil-

lance for safety should be conducted in countries planning 

to introduce these vaccines. In addition, it was noted that 

strict compliance with a young age of administration in 

many developing countries would be extremely diffi cult to 

implement. Therefore, the question of safety with regards to 

intussusception of live attenuated oral rotavirus vaccines, as 

a class action effect, remains unanswered today.

Another historical point of importance regarding the need 

for alternative rotavirus vaccines is fi nancial. Certainly a pur-

pose of the manufacturers of Rotarix and RotaTeq is to make 

a profi t and both have spent large amounts to reach where 

they are today. To recover their costs of development, they 

cannot give away their vaccines. Tiered pricing is already in 

effect as witnessed by the comparison of the cost of Rotarix 

in the private market of Europe vs. the public market in 

Brazil. Merck has indicated that RotaTeq will be available 
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at cost to countries in the developing world. However, even 

the price charged in Brazil will be unmanageable by most 

Third World nations unless the expense is supplemented by 

a donor agency such as the Global Alliance for Vaccines and 

Immunization (GAVI).

Three recent global developments have accelerated this 

supplementation process. First, the decision by the WHO 

to recommend rotavirus vaccine introduction in regions 

of the world where the clinical effi cacy of the vaccines 

have been demonstrated, ie, essentially in Latin America 

and Europe; secondly, the WHO approval of pre-qualifi -

cation status for Rotarix, with RotaTeq pre-qualifi cation 

likely during 2007; and thirdly, the decision by the GAVI 

Board to endorse funding for rotavirus vaccine purchase 

and introduction in resource poor countries in the regions 

recommended by WHO. All these developments contribute 

to help GAVI and UNICEF to purchase vaccines in those 

regions for eligible countries. However, at some point, this 

support is expected to cease and the nations themselves will 

be expected to pay the costs after the time of hand-over. The 

questions then are what will be these costs and will the poor 

nations be able to pay them? Historically, competition has 

driven down prices and there are ample examples of this with 

international vaccines. Thus, the development of alternative 

rotavirus vaccines could have this effect, especially if they 

were made in the developing nations themselves. This is at 

least one factor that has contributed to the funding of the 

116E and UK bovine/human reassortant vaccine candidates 

in developing nations. Perhaps the eventual production of 

these or other candidate vaccines will drive down prices. 

Since the costs associated with the production of rotavi-

rus vaccines will be related to their site of production, it 

is possible that if Rotarix or RotaTeq were produced in 

developing nations it could also help reduce the prices of 

these two vaccines. However, this would provide limited 

capacity building to the developing nation, a factor that 

is likely to less effectively control prices and continue 

the dependence of these nations on large pharmaceutical 

companies typically located in developed nations. It is 

also possible that the large multinational companies may 

be unable to supply all the rotavirus vaccine needed to 

immunize the world’s babies, something that is envisioned 

as necessary if the deaths due to rotavirus disease, 90% 

of which occur in these poor countries, are to be seriously 

curtailed. Local manufacturers in developing nations could 

make large contributions toward this end. Furthermore, 

the three countries with the largest birth cohorts (China, 

India and Indonesia) and with high rotavirus mortality do 

not classically import new vaccines. Thus, if alternative 

effective rotavirus vaccines were produced, licensed and 

made available only in these countries, there would still be 

a signifi cant reduction in rotavirus mortality globally.

Another question regarding alternative rotavirus vaccines 

now under development is whether they are signifi cantly 

different from the two being licensed today. Two of them 

(RV3 and 116E) are monovalent human rotavirus vaccines 

while the UK bovine/human reassortant vaccine is polyva-

lent. Thus, the fi rst two are more similar to Rotarix and the 

latter is similar to RotaTeq. Certainly the serotypes of the 

monovalent vaccines differ from the G1P[8] Rotarix strain 

and this or other properties of these strains could affect their 

individual safety, immunogencity and effi cacy features. 

These possible differences between monovalent vaccine 

candidates cannot be dismissed, just as potential differences 

between the properties of the bovine reassortant vaccines 

cannot be disregarded. However, it seems unlikely that any 

of the alternative candidates will offer signifi cant improve-

ments unless, for example, the reassortant UK bovine vaccine 

contains additional reassortant viruses not present in RotaTeq 

that are representative of emerging serotypes. Perhaps the 

use of a different immunization schedules with the alterna-

tive candidates, such as neonatal immunization, may increase 

their effi cacies over those of Rotarix and RotaTeq, but there 

is no data to support this hypothesis.

Planning for the future
The primary purpose of the “Meeting on Upstream Rotavirus 

Vaccines and Emerging Vaccine Producers” held at the WHO 

Headquarters in Geneva in March of 2006 was to obtain a 

consensus of opinion among many of the world leaders in 

rotavirus vaccine development regarding the need for alterna-

tive rotavirus vaccines and which should be given priority. 

Presentations were given by representatives of the companies 

(Merck and GlaxoSmithKline) that are manufacturing the 

two licensed vaccines being marketed worldwide today as 

well as by representatives of alternative living and non-living 

candidate rotavirus vaccines that are under development and 

developing world manufacturers who are potential producers 

of these vaccines. Upon closure of the meeting, there was 

general agreement that alternative vaccines are needed but 

the priority of reasons among attendees was highly variable. 

Although almost all clinical monies and efforts have been and 

are continuing to be directed toward live rotavirus vaccines, 

scientifi c logic suggests serious attention should be given to 

the non-living candidates. Opinions regarding prioritization 

of even the different live rotavirus vaccine candidates also 
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varied, thus leaving their future funding and development 

uncertain. In the end, the fi eld will move forward, new vac-

cines will be developed, and world coverage will occur. The 

questions that remain are how long will this take and with 

what rotavirus vaccines.
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