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Abstract: The incidence of cancer is increasing worldwide, but the biochemical mechanisms 

for the occurrence of cancer is not fully understood, and there is no cure for advanced tumors. 

Defects of posttranslational modifications of proteins are linked to a number of important 

diseases, such as cancer. This review will update our knowledge on the critical role of post-

transcriptional regulation of phosphatase and tensin homolog (PTEN) and its activities and 

the functional impact on cancer behaviors. PTEN is a tumor suppressor gene that occupies a 

key position in regulating cell growth, proliferation, apoptosis, mobility, signal transduction, 

and other crucial cellular processes. The activity and function of PTEN are regulated by coor-

dinated epigenetic, transcriptional, posttranscriptional, and posttranslational modifications. 

In particular, PTEN is subject to phosphorylation, ubiquitylation, somoylation, acetylation, 

and active site oxidation. Posttranslational modifications of PTEN can dynamically change its 

activity and function. Deficiency in the posttranslational regulation of PTEN leads to abnormal 

cell proliferation, apoptosis, migration, and adhesion, which are associated with cancer initia-

tion, progression, and metastasis. With increasing information on how PTEN is regulated by 

multiple mechanisms and networked proteins, its exact role in cancer initiation, growth, and 

metastasis will be revealed. PTEN and its functionally related proteins may represent useful 

targets for the discovery of new anticancer drugs, and gene therapy and the therapeutic poten-

tials should be fully explored.
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Introduction
It is well-known that the pathogenesis of human cancer is a complicated and progressive 

process, with the accumulation of multiple genetic and epigenetic alterations leading to 

the initiation, growth, development, and metastasis of cancer.1,2 Cancer is a collective 

disease with more than 200 types of tumors derived from different tissues and organs. 

Despite extensive research on cancer biology, the detailed mechanisms and pathways 

underlying the pathogenesis and progression of cancer are still elusive, with a number 

of oncogenes, tumor suppressor genes, and signaling proteins identified to play critical  

roles in carcinogenesis, growth and metastasis. Dysregulation of these molecules are 

often observed in tumors.

The phosphatase and tensin homolog (PTEN) is a tumor suppressor gene featur-

ing dual-specificity phosphatase activities.3 It plays a critical role in maintaining 

normal cell activities and functions.3 On one hand, it can dephosphorylate focal 

adhesion kinase (FAK), to regulate cell adhesion, as well as Src-homologous collagen 

(Shc), to modulate cell migration.4,5 On the other hand, it is capable of antagonizing 
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phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) 

activity by hydrolyzing 3-phosphate on phosphatidylinositol-

3,4,5,-triphosphate (PIP3) to generate phosphatidylinositol-

4,5,-bisphosphate (PIP2), thereby prohibiting downstream 

signaling molecule activation and finally, inhibiting cellular 

proliferation, growth, and survival.6 The latter feature of 

PTEN contributes greatly to its tumor suppressor role. 

The activity of PTEN is regulated by multiple internal 

and external factors. Somatic missense mutation or partial 

deletion of PTEN resulting in enzyme activity reduction 

or loss is prevalent in various tumors, most notably in the 

endometrium, brain, skin, colorectal, prostate, and breast 

cancers.7–11 There is enough evidence that the activity and 

function of PTEN are regulated by coordinated epigenetic, 

transcriptional, posttranscriptional, and posttranslational 

modifications. In particular, PTEN is subject to phosphory-

lation, somoylation, acetylation, and active site oxidation.12 

Deficiency in posttranslational regulation can lead to the 

disorder of cell proliferation, apoptosis, migration, and adhe-

sion, which are associated with cancer initiation, progression, 

and metastasis.

This review will update our knowledge on the criti-

cal role of posttranslational regulation of PTEN on its 

activity and the functional impact on cancer behaviors. 

A better understanding of how PTEN is regulated at the 

posttranslational level is essential for deepening our insights 

into cancer biology and identifying new therapeutic inter-

ventions for cancer.

Regulatory domain of PTEN
The PTEN protein consists of 403 amino acids. The crystal 

structure of PTEN has revealed that it contains five domains 

(Figure 1): a short N-terminal (PIP2)-binding domain; a 

N-terminal phosphatase domain that facilitates the hydrolysis 

of phospholipids; a C2 domain, which mediates the binding of 

signal related proteins to plasma membranes; a C-terminal tail 

domain containing PEST sequences which are enriched with 

proline(P), glutamic acid(E), serine(S), and threonine(T) as 

well as various phosphorylation sites; and a PDZ interaction 

motif which can bind to the lipid.13 Two naturally occurring 

mutations on the phosphatase domain make PTEN deficient 

in tumor suppression function: a C124S mutation, which 

can make the loss of both protein and lipid phosphatase 

activity of PTEN; and a G129E mutation resulting in only 

loss of the lipid phosphatase activity.14,15 Even though the 

N-terminal phosphatase domain is principally involved in 

PTEN’s physiological activity, the majority of PTEN muta-

tions associated with carcinogenesis occur in the C2 domain 

Figure 1 Posttranslational regulation of PTEN at specific sites. 
Notes: PTEN protein consists of 403 amino acids. The crystal structure of PTEN consists of five domains: an N-terminal (PIP2)-binding domain, an N-terminal phosphatase 
domain, a C2 domain, a C-terminal tail domain, and a PDZ interaction motif. Two naturally occurring mutations on the C124S and G129E can cause PTEN to be deficient 
in tumor suppression function. Sumoylation, acetylation, and active site oxidation can affect PTEN activity at specific sites. CK2 and six other kinds of specific kinases can 
phosphorylate PTEN at Ser229, Thr232, Thr319, Thr321, Tyr336, Ser362, Thr366, Ser370, Ser380, Thr382, Thr383, and Ser385. NEDD4-1, XIAP, WWP2, and HAUSP are 
capable of ubiquitylating PTEN at Lys13, Tyr155, and Lys289. Covalent modification of Lys254 and Lys26 by SUMO1 is another form of ubiquitination. Moreover, PTEN can 
be acetylated at Lys125/128 residues. Furthermore, Cys71, Cys74, and Cys124 are prone to be oxidized by ROS, H2O2, TXNIP, and PRDX1.
Abbreviations: CBP, CREB-binding protein; CK2, casein kinase 2; Cys, cysteine; GSK3β, glycogen synthase kinase-3β; HAUSP, herpes virus-associated ubiquitin-specific protease; 
LKB1, liver kinase B1; Lys, lysine; NEDD4-1, neuronal precursor cell-expressed developmentally downregulated-4-1; PCAF, p300/CBP-associated factor; PBD, p21 binding domain; 
PICT1, protein interacting with carboxyl terminus 1; PIP2, phosphatidylinositol-4,5,-bisphosphate; PLK1, polo-like kinase 1; PRDX1, peroxiredoxin 1; PTEN, phosphatase and tensin 
homolog; ROCK, rhoA-associated protein kinase; ROS, reactive oxygen species; Ser, serine; SUMO, small ubiquitin-related modifier; Thr, threonine; TXNIP, thioredoxin-interacting 
protein; Tyr, tyrosine; WWP2, WW domain-containing protein 2; XIAP, X-linked inhibitor of apoptosis.
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and C-terminal tail, which suggests the critical role of the 

C-terminal sequence in maintaining PTEN function.16,17

Phosphorylation of PTEN
Phosphorylation of PTEN is a novel mechanism for PTEN 

inactivation, with great significance during carcinogenesis 

as shown in our previous work.18,19 Phosphorylated PTEN 

is still stable with a reduced activity. It can dephosphory-

late PIP3 and thus activates PI3K/Akt signaling pathway. 

The phosphorylation sites of PTEN are mainly located 

in the C2 and the C-terminal domains.20,21 Nonphospho-

rylated PTEN can connect to the membrane at a faster 

rate and has a similar lifetime to the wild-type protein.22 

Phosphorylated PTEN needs to be dephosphorylated 

before it can bind to membrane proteins to exert its full 

functionality.

Phosphorylation of PTEN can be mediated by multiple 

specific kinases (Table 1). As a ubiquitous Ser-/Thr-specific 

protein kinase required for viability and cell cycle progres-

sion, casein kinase 2 (CK2) can phosphorylate PTEN at 

Ser370, Ser380, Thr382, Thr383, and Ser385 (Figure 1), 

leading to a decrease of phosphatase activity and an increase 

of stability.23 Nonphosphorylated of PTEN will generate a 

closed and stable spatial structure at the C-terminal terminal 

domain, resulting in reduced membrane localization and 

phosphatase activity.21

Glycogen synthase kinase-3β (GSK3β) was also reported 

to phosphorylate PTEN at Ser362 and Thr366.24 Since 

GSK3β can be suppressed by insulin and some other activa-

tors of the PI3K signaling pathway, this intriguing finding 

suggests that GSK3β phosphorylation on PTEN is likely 

to be involved in the negative feedback loop of the PI3K 

signaling pathway.

Liver kinase B1 (LKB1) can phosphorylate Ser380, 

Thr382, Thr383, and Ser385 of PTEN.25 Phosphorylation of 

the above four residues can inactivate PTEN. Some argues 

that phosphorylated C-terminal interacts with C2 domain 

and PTEN phosphorylation domain, regarded as a pseudo-

substrate and therefore induce auto-inhibition.26 According 

to this model, the Ser385 residue may be dephosphorylated 

followed with dephosphorylation of other neighboring 

regions, which possibly forms a more open structure and 

catalytic zone, causing an increase of the membrane affinity 

and PTEN activity.

Furthermore, rhoA-associated protein kinase (ROCK) can 

inactivate PTEN after phosphorylation on Ser229, Thr232, 

Thr319, and Thr321, and translocate it onto the membrane.27 

The phenotype of PTEN and RhoA/ROCK pathway activa-

tion are closely linked.28 However, the p110 catalytic subunit 

of PI3K kinase is able to enhance tyrosine phosphorylation 

and decrease the activity of PTEN via the RhoA and ROCK 

pathway. The mechanism for this is to be determined.29

Moreover, a recent study has found that the RAK (a 

Russian word for cancer) nonreceptor tyrosine kinase is 

capable of enhancing PTEN tumor suppressor function, via 

phosphorylation of Tyr336, thus inhibiting its degradation 

by proteasome.30 This finding emphasizes the significance 

of accurate identification of specific tyrosine residues for 

phosphorylation in vivo, which may serve as indicators of 

cancer relapse or prognosis. Finally, protein interacting with  

carboxyl terminus 1 (PICT1) and polo-like kinase 1 (PLK1) 

have been reported to stabilize or activate PTEN.31,32

Table 1 Abnormal regulation on PTEN by specific kinases related to multiple cancers

Specific kinases Targeted phosphorylation  
sites of PTEN

Abnormal regulation  
related effects

Tumor types corresponding  
to abnormal behavior

CK2 Ser370, Ser380,
Thr382, Thr383, Ser385

A decrease of phosphatase  
activity; an increase of stability

Lymphoblastic leukemia33

Endometrial carcinoma34

GSK3β Ser362, Thr366 Inhibition of PTEN activity Glioma35

LKB1 Ser380, Thr382,
Thr383, Ser385

Inactivation of PTEN Lung squamous cell carcinoma36

Ovarian cancer37

ROCK Ser229, Thr232,
Thr319, Thr321

Inactivation of PTEN;  
translocation of PTEN  
onto the membrane

Pancreas cancers28

RAK Tyr336 Dysfunction and  
degradation of PTEN

Breast cancer30

PICT1 Ser380 Inactivation and  
degradation of PTEN

Cervical carcinoma31

PLK1 Thr366, Ser370,
Ser380, Thr382, Thr383

Inactivation and  
degradation of PTEN

Prostate cancer38

Abbreviations: CK2, casein kinase 2; GSK3β, glycogen synthase kinase-3β; LKB1, liver kinase B1; PICT1, protein interacting with carboxyl terminus 1; PLK1, polo-like kinase 1; 
PTEN, phosphatase and tensin homolog; ROCK, rhoA-associated protein kinase; Ser, serine; Thr, threonine; Tyr, tyrosine;
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Ubiquitination and sumoylation  
of PTEN
With extensive studies on ubiquitination, which serves as an 

efficient approach for protein degradation, there is a great 

concern on ubiquitination of PTEN. The two PEST sequences 

on PTEN suggest the possibility of PTEN proteasomal degra-

dation. The half-life of PTEN could be extended by inhibiting 

the proteasome, and ubiquitination of PTEN was shown to 

contribute to alterations of normal protein levels.39 A sub-

sequent study confirmed that monoubiquitination of PTEN 

on the major conservative residues Lys13 and Lys289 made 

great sense in nuclear–cytoplasmic shuttling so that PTEN 

was able to inhibit cell growth independently of PI3K/Akt.40 

Monoubiquitinated PTEN facilitates nuclear localization, 

while polyubiquitination causes proteasomal degradation in 

the cytosol, leading to loss of tumor suppressor activity of 

PTEN. Meanwhile, the conformational closure state of PTEN 

has difficulty in promoting ubiquitin-mediated proteasomal 

degradation. Consistently, a recent report has showed that the 

open conformational unphosphorylated PTEN is susceptible 

to ubiquitination, which promotes PTEN degradation and 

translocation into the nucleus.41

Neuronal precursor cell-expressed developmentally 

downregulated-4-1 (NEDD4-1) is the first identified E3 

ligase for PTEN ubiquitination.42 NEDD4-1 is capable of 

monoubiquitylating PTEN, which is associated with nuclear 

shuttling, cell cycle arrest, and genomic stability. This 

explains why NEDD4-1 possesses tumor suppressive and 

oncogenic functions. But the mechanisms for NEDD4-1 in 

switching and balancing these two functions are yet to be 

determined. As NEDD4-1 is involved in the pathogenesis 

of non–small cell lung carcinoma and colorectal cancer, by 

inducing ubiquitination and degradation of PTEN,43,44 we 

propose that inhibition of NEDD4-1 has potential benefits 

in the treatment of cancer.

In addition, ubiquitination of PTEN is also consid-

ered to be mediated by X-linked inhibitor of apoptosis 

and E3 ubiquitin ligase WW domain-containing protein 

2 (WWP2).45,46 It has been recently proved that phosphoryla-

tion at Tyr155 of PTEN is required for WWP2-associated 

PTEN ubiquitination.46 In order to maintain cell homeosta-

sis, the deubiquitylating enzyme herpes virus-associated 

ubiquitin-specific protease (HAUSP) is thought to participate 

in the dynamic regulation of PTEN ubiquitination. This is 

supported by the fact that promyelocytic leukemia protein 

can affect PTEN activity through inhibition of HAUSP.48 

In short, dynamic ubiquitinated modification of PTEN is 

important to its tumor suppressing function.

Intriguingly, SUMO family proteins were found to be able 

to regulate the activity of PTEN.48 Similar to ubiquitination, 

sumoylation displays function via covalent attachment to 

related proteins. After covalent modification by SUMO1, 

Lys254 and Lys266 in the C2 domain of PTEN bind to PIP3 

through electrostatic interactions, thus downregulating the 

PI3K/Akt signaling pathway and inhibiting cellular growth 

and proliferation.49

Acetylation of PTEN
Acetylation and deacetylation of PTEN are available 

for normal exertion of its biological functions. Under 

certain circumstances, such as in response to growth fac-

tors, p300/calcium-binding PTEN-associated factor can 

acetylate Lys125/128 residues situated within the catalytic 

cleft of PTEN. The acetylation influences the substrate 

affinity of PTEN towards PIP3, thereby inhibiting its 

catalytic phosphatase activity.50 Acetylation of Lys402 

located in PDZ-binding domain by CREB-binding protein 

can promote interactions between PTEN and proteins on 

the PDZ domain, hence affecting cellular functions.51 

Conversely, the histone deacetylase sirtuin1 can modulate 

PTEN activity via deacetylation, thus contributing to the 

regulation of PTEN function.52

Oxidation of PTEN
PTEN is a member of the protein tyrosine phosphatase 

family, and its normal activity depends on the presence of a 

highly reactive cysteine residue. Interestingly, the cysteine 

located on the reactive site is prone to be oxidized; therefore, 

oxidative inactivation is vital to regulate the activity and 

function of PTEN.

Studies have shown that H
2
O

2 
causes oxidation of Cys124 

in the catalytic center of PTEN so that it binds with Cys74 

to form a disulfide bond, which leads to the decrease of 

PTEN phosphatase activity in time- and dose-dependent 

manners.53 Further, Lea et al found that both endogenous 

and exogenous H
2
O

2
 could cause oxidative inactivation of 

PTEN, followed by the increase of PIP3 concentration and 

Akt phosphorylation.54

However, reactive oxygen species (ROS) reduces PTEN 

activity through intramolecular disulfide bond formation 

between Cys124 and Cys71.55 Treatment of macrophages 

with phorbol ester, lipopolysaccharide, or the cellular mito-

chondrial electron transport chain inhibitors can provoke 

ROS production and raise the oxidized fraction of PTEN 

from 5% to 16%.56,57 ROS directly interacts with critical 

signaling molecules to initiate signaling in a broad variety of 
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cellular processes, such as proliferation, survival, apoptosis, 

and autophagy. Notably, an increased level of ROS can 

inactivate PTEN by directly oxidizing its cysteine residue 

but also, by indirectly stimulating its phosphorylation, 

and thus gives rise to activation of the PI3K/Akt signaling 

pathway.58 Furthermore, 2,4,2-chloronitrobenzene, an inhibi-

tor of thioredoxin reductase, has been shown to significantly 

suppress the reduction of oxidized PTEN, and conversely, 

overexpression of thioredoxin reductase can promote the 

deoxidation of PTEN and resumption of its normal tumor 

suppressing function.54

Additional studies have found that oxidation and reduc-

tion of PTEN can be influenced by thioredoxin-interacting 

protein and peroxiredoxin 1.58,59 This reversible inactivation 

of PTEN is commonly seen in cells treated with growth 

factors that stimulates peroxide production, implying that 

PTEN responds to mitogens through reduction-oxidation 

inactivation.60 Increase of H
2
O

2
 induced by disordered 

mitochondrial function results in oxidative inactivation of 

PTEN and PI3K signaling activity enhancement.61 Whether 

oxidized PTEN can regain its tumor suppressing function or 

not depends mainly on the ability of thioredoxin to decrease 

the inactive modus; however, the persistent abnormal 

reduction-oxidation status will no doubt cause a complete 

loss of PTEN function.62

Discussion and conclusion
Posttranslational modifications of proteins in eukaryotic cells 

can diversify and extend protein functions beyond what is 

dictated by the number of genes. These dynamic modifica-

tions reversibly or irreversibly change the structure, activ-

ity, and function of numerous important proteins through a 

variety of biochemical reactions, consequently regulating 

the signal integration, homeostasis, and physiological states. 

Abnormal and defective protein posttranslational modifica-

tions have been associated with a number of important human 

diseases, including cancer, diabetes, Alzheimer’s disease, 

and stroke. Alternation in PTEN level, activity, and function 

is one of the main factors that determine the occurrence and 

progression of tumor (Figure 2). A full understanding of the 

regulatory mechanisms of PTEN will help elucidate the full 

picture of tumor development, progression, and metastasis, 

and also provide a basis for discovery of new drug targets 

for cancer treatment. However, there are still a number of 

issues that need further exploration. For example, PTEN is 

a tumor suppressor gene, but PTEN2, its homologous gene, 

is a tumor testis antigen gene. Since both of them can be 

dephosphorylated, what on earth leads to the total opposite 

behavior and function? Additionally, how do phosphoryla-

tion, ubiquitylation, sumoylation, acetylation, and oxidation 

posttranslational regulations of PTEN cooperate with each 

other in maintaining the normal activity, and how do they 

play a joint role in tumorigenesis? What is more, although 

currently PTEN has been transfected into multiple cancer 

cell lines to confirm its growth inhibition function, so far, 

there is still no application of PTEN for gene therapy in 

human tissues.

Perspectives
As further studies on the mechanism of how PTEN and its 

related proteins display its specific role in tumor incidence, 

invasion, and metastasis, we conceive that biological gene 

therapy with PTEN is likely to be applied to cancer patients, 

especially those in the advanced stages. Other than provid-

ing the scientific basis for clinic surveillance and evalua-

tion on cancer prognosis and drug efficacy, development 

of new anti-tumor drugs is equally important. In addition, 

excitingly, acute complete absence of PTEN, not only fails 

to promote tumorigenesis but also, causes cell senescence, 

which is different from the typical deletion. This aspect 

may offer a sound way for cancer treatment. Besides, 

PTEN is mainly found to be located in the nucleus of the 

original, differentiating, or resting cells; however, in cancer 

cells, which have a rapid proliferation, PTEN rarely enters 

the nucleus. Therefore, finding the mechanism of PTEN 

nuclear–cytoplasmic shuttling is also important for the 

discovery of new cures for cancer patients. With increasing 

evidence that PTEN is regulated by multiple mechanisms 

and networked proteins, we believe that its exact role in 

Figure 2 Effect of disordered posttranslational regulation of PTEN on cancer 
behavior. 
Notes: The disturbances of PTEN regulation will lead to the reduction of its tumor 
suppression function. Then the side effect evokes a series of abnormal behaviors, 
such as increase of cell proliferation and migration, and also decrease of cell apoptosis 
and adhesion, which will promote the incidence and progression of human cancer.
Abbreviation: PTEN, phosphatase and tensin homolog.
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carcinogenesis, development, and metastasis will be further 

revealed. PTEN and its functionally related proteins may 

represent useful targets for the discovery of novel antican-

cer drugs and gene therapy, and the therapeutic potentials 

should be fully explored.
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