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Abstract: The epidemiology of foot-and-mouth disease (FMD) in Africa is unique in the sense 

that six of the seven serotypes of FMD viruses (Southern African Territories [SAT] 1, SAT2, 

SAT3, A, O, and C), with the exception of Asia-1, have occurred in the last decade. Due to 

underreporting of FMD, the current strains circulating throughout sub-Saharan Africa are in 

many cases unknown. For SAT1, SAT2, and serotype A viruses, the genetic diversity is reflected 

in antigenic variation, and indications are that vaccine strains may be needed for each topotype. 

This has serious implications for control using vaccines and for choice of strains to include 

in regional antigen banks. The epidemiology is further complicated by the fact that SAT1, 

SAT2, and SAT3 viruses are maintained and spread by wildlife, persistently infecting African 

buffalo in particular. Although the precise mechanism of transmission of FMD from buffalo 

to cattle is not well understood, it is facilitated by direct contact between these two species. 

Once cattle are infected they may maintain SAT infections without the further involvement of 

buffalo. No single strategy for control of FMD in Africa is applicable. Decision on the most 

effective regional control strategy should focus on an ecosystem approach, identification of 

primary endemic areas, animal husbandry practices, climate, and animal movement. Within 

each ecosystem, human behavior could be integrated in disease control planning. Different 

regions in sub-Saharan Africa are at different developmental stages and are thus facing unique 

challenges and priorities in terms of veterinary disease control. Many science-based options 

targeting improved vaccinology, diagnostics, and other control measures have been described. 

This review therefore aims to emphasize, on one hand, the progress that has been achieved in 

the development of new technologies, including research towards improved tailored vaccines, 

appropriate vaccine strain selection, vaccine potency, and diagnostics, and how it relates to the 

conditions in Africa. On the other hand, we focus on the unique epidemiological, ecological, 

livestock farming and marketing, socioeconomic, and governance issues that constrain effective 

FMD control. Any such new technologies should have the availability of safe livestock products 

for trade as the ultimate goal.

Keywords: vaccine, foot-and-mouth disease virus, vaccine matching, new-generation vaccine, 

diagnostic tests

Introduction
Foot-and-mouth disease (FMD), of which FMD virus (FMDV) is the causative agent, 

is a contagious viral disease which affects cloven-hoofed animals such as cattle, pigs, 

sheep, goats, and other artiodactyl species.1 FMD ranks as one of the most economically 

important infectious diseases of animals according to the World Organisation for Ani-

mal Health (OIE). The occurrence of the disease not only affects international trade 

in livestock and animal products but also results in damaging consequences for the 
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livelihoods of local farmers due to impacts upon productivity, 

food security, and losses of income. The disease is widely 

distributed in the developing world, in particular Africa, Asia, 

and South America. In these regions, livestock farming forms 

the backbone of rural economies that supports approximately 

70% of the world’s poor. FMD outbreaks particularly affect 

vulnerable individuals such as women and children since 

approximately 75% of livestock in Africa are raised under 

the communal smallholder, communal-grazing, or pastoral 

systems that sustain livelihoods of these groups.2–4 The lack 

of veterinary infrastructure, human resources, movement 

controls, and appropriate vaccines render many developing 

countries particularly exposed to the spread of FMD.5–7

The epidemiology of FMD in Africa is influenced by 

two different patterns (ie, a cycle involving wildlife), in 

particular the African buffalo (Syncerus caffer), and an 

independent cycle maintained within domestic animals.8–12 

Another unique feature of FMD epidemiology in Africa is 

the presence of the three Southern African Territories (SAT) 

serotypes (ie, SAT1, SAT2, and SAT3), which are maintained 

within the African buffalo populations.12–15 The presence 

of large numbers of African buffalo provides a potential 

source of sporadic infection to domestic livestock and 

other wildlife species.16–18 Although the precise mechanism 

of transmission of FMD from buffalo to cattle is not well 

understood, it is facilitated by direct contact between these 

two species. Once cattle are infected they may maintain SAT 

infections  without the further involvement of buffalo.12,19–21 

 Sub-Saharan Africa is endowed with an abundance of wild-

life, which has been preserved within national parks and 

game reserves.22 In communities neighboring these parks, 

the livestock/wildlife interface presents unique challenges 

to livestock disease control.12,23,24 In addition, the creation 

and expansion of transfrontier conservation areas in south-

ern and eastern Africa presents a particular challenge to the 

management of FMD.

In response to this unique epidemiological situation, 

certain southern (eg, Botswana, Namibia, and South Africa) 

and North African (such as Egypt) countries20 have invested 

in regular livestock vaccination programs to manage the 

disease and facilitate access to international and regional 

trade markets in livestock and livestock products. However, 

in southern Africa, the incidence of the disease has increased 

appreciably over the last decade, and since the eradication 

of the disease in Africa is unlikely in the near future, more 

flexible ways of managing FMD are required to obviate 

clashes between conservation-based and livestock-based 

initiatives aimed at rural development. Despite systematic 

use of vaccination, numerous outbreaks of FMD have been 

recorded, and there is evidence of sustained virus  circulation 

in vaccinated cattle populations in southern and eastern 

Africa since 2000,25,26 as well as in North Africa where exotic 

incursions of FMD (serotypes A, SAT2, and O) have caused 

widespread outbreaks.20,27

Effective control and prevention of FMD relies largely 

on the implementation of strategies such as physical separa-

tion of wildlife and livestock, repeated vaccination of cattle 

herds exposed to wildlife, control of animal movements, 

and careful assessment of the risk of FMDV introduction 

into disease-free areas.12,23,25 The current inactivated vac-

cines have proven effective in reducing clinical disease in 

FMD-endemic areas and have been critical to the success 

of FMD control programs in South America and Europe.28 

In Africa, the diversity of circulating field strains of FMDV 

makes the selection of sufficiently cross-protective FMD 

vaccines a challenge. Therefore, local and regional pro-

grams of surveillance to monitor FMDVs circulating in 

wildlife and livestock populations are a crucial component 

of vaccine control, to provide vaccine matching data and 

access to appropriate viral strains that can be used in the 

development of new vaccines. There is need also for risk-

based surveillance to be able to determine primary endemic 

areas and factors that influence disease dissemination, to 

assist the design of targeted, area-wide, or ecosystem-based 

disease control strategies, as African regions embark on the 

Food and Agriculture Organization of the United Nations 

(FAO)-OIE Progressive Control Pathway (PCP) for the 

Control of FMD.29 The success of any FMD control cam-

paign ultimately depends on the abundant supply of vaccine 

of the appropriate strain composition and proven potency, 

adequate vaccine coverage, rapid vaccine development, 

overall planning and management by a well-resourced 

veterinary service, and the involvement and cooperation 

of the livestock farmer.30

In summary, animal diseases, in particular transbound-

ary animal diseases such as FMD, severely constrain the 

development of competitive livestock enterprises in devel-

oping countries.31,32 The aim of this review is to identify the 

current limitations that are experienced in the control of FMD 

in endemic settings in Africa caused by gaps in knowledge of 

epidemiology, vaccinology, and diagnostics. We also empha-

size the progress that has been achieved in the development 

of new technologies, including research towards improved 

tailored vaccines, vaccine matching, and diagnostics, and 

how this relates to the conditions in Africa. Furthermore, 

we advocate applied research into vaccination and disease 
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control strategies to enable fit-for-purpose approaches to 

FMD control in Africa.

Epidemiological patterns in Africa
The current global burden of FMDV infection is maintained 

within three continental reservoirs in Asia, Africa, and South 

America, which can be further subdivided into seven major 

virus pools of infection.29,33 Each of these contains at least 

three serotypes of virus, and because virus circulation is 

mainly within these regional reservoirs, strains have evolved 

which are specific to the region and which often (in the case 

of type A and SAT viruses) require tailored diagnostics and 

vaccines for control.34

In Africa, the FMDV serotypes are not uniformly 

distributed, and each serotype results in different epidemio-

logical patterns. The cumulative incidence of FMDV serotypes 

show that six of the seven serotypes of FMD (O, A, C, SAT1, 

SAT2, and SAT3) have occurred in Africa.35,36 The distribu-

tion of five serotypes and the different topotypes are shown 

in Figure 1A–E. Based on the genetic characterization of the 

virus and antigenic relationship of FMDV in Africa, the virus 

distribution has been divided into three virus pools: namely, 

pool 4 covering East and North Africa, with predominance 

of serotypes A, O, SAT1, and SAT2; pool 5 restricted to 

West and northern Africa, with serotypes O, A, SAT1, and 

SAT2; and pool 6 restricted mainly to South Africa, with 

SAT1, SAT2, and SAT3 serotypes. Recent studies in East and 

southern Africa have revealed genetic differences between 

viruses isolated at different times and places.37–39 Periodically, 

there have been incursions of types SAT1 and SAT2 from 

Africa into the Middle East, probably as a result of animal 

movement.35,36 The most recent reports include the spread of 

viruses of the SAT2 serotype to Yemen in 1990, to Kuwait 

and Saudi  Arabia in 2000, and to the Palestinian Autonomous 

 Territories and Bahrain in 2012.40 Overall, the geographic 

and genetic clustering of FMDVs suggest ecological adap-

tation and/or separation, but in many endemically affected 

areas, the temporal and spatial dynamics of infection still 

Serotype SAT1

A B C

D E F

Serotype A Serotype O

Serotype SAT2

Sudan/
Sahel

Maghreb/
North Africa

IGAD

East
Africa

North
SADC

Combined epidemiological
clustering

South
SADC

Angola

West Africa
coastal

Serotype SAT3

Figure 1 Maps of Africa showing the serotype and topotype distribution. 
Notes: The topotypes are color coded. The epidemiological clustering is indicated. The epidemiological clusters shown in the maps (A–F) do not necessarily indicate political 
borders of the countries.
Abbreviations: iGAD, intergovernmental Authority on Development; SADC, Southern African Development Community; SAT, Southern African Territories.
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need to be much more accurately determined by analysis of 

host animal distributions and contact opportunities, sero-

surveys to estimate weight of infection, and use of the latest 

available techniques in genetic tracing of FMDV incursions 

into disease-free regions.41 Generally, many of these factors 

are driven by climatic factors and socioeconomic changes 

centered on human behavior. Also, findings regarding the 

epidemiology of FMD involving wildlife within a particular 

ecosystem of Africa may not be applicable to other eco-

systems because of ecological, host, and viral variability 

differences.42 Understanding of how these risk factors are 

clustered and associated in space and time may assist in 

effective disease control planning.43,44

To understand the complexity of FMD epidemiology 

in Africa and to assist decision making and improve the 

continental control of FMD, it is important to further divide 

the virus pools into epidemiological clusters.29 Rweyemamu 

et al29 proposed eight epidemiological clusters for Africa 

(Figure 1F) based on the distribution of serotypes and topo-

types in different regions in Africa (Figure 1A–E), animal 

movement patterns, impact of wildlife, and farming systems. 

Here, we revisited the epidemiological clusters in light of 

the latest information regarding outbreaks in the region. 

The epidemiological clusters for Africa have the following 

characteristics.

Indian Ocean Island Countries (Madagascar, Mauritius, 

and Seychelles) are free of FMD, with a recognized status 

of FMD freedom without vaccination.

The South Southern African Development Community 

(SADC) cluster includes Swaziland, Lesotho, South Africa, 

Botswana, and Namibia, the southern and western part 

of Zimbabwe, and the southern part of Mozambique. The 

commercial livestock sectors of South SADC countries, 

with the exception of Zimbabwe and Mozambique, are free 

from FMD and meet the conditions of the OIE for zonal 

or country freedom from FMD without vaccination. Over 

the last 5 years, the region has suffered from an increasing 

number of outbreaks in cattle, most of which has been caused 

by SAT2 viruses. Cross-border epidemiological events have 

occurred on a number of occasions in South SADC, and in 

some cases, outbreaks were caused by viruses from different 

topotypes (Figure 1). The epidemiology of FMD in this region 

is characterized by virus circulation between the wildlife 

host, the African buffalo, and domestic animals, as well as 

spread among domestic animals, without the involvement 

of wildlife.18 In some of these countries, there are segre-

gated wildlife areas that harbor African buffalo known to be 

infected, asymptomatically, with FMDV serotypes SAT1, 

SAT2, and SAT3. These wildlife parks are segregated from 

livestock through a system of game-proof fencing and vigor-

ous  surveillance. In these countries, game ranching or other 

wildlife conservation activities with FMD-infected African 

buffalo are not allowed within  FMD-free zones. However, 

for this epidemiological cluster, the primary source of FMD 

seems to be the risk posed by the wild buffalo herds,45,46 

as evidenced by many outbreaks in or near transfrontier 

conservation areas (TFCAs), such as the Kavango-Zambezi 

TFCA.47

The North SADC cluster comprises the northern part 

of Zimbabwe, Zambia, northern Mozambique, Malawi, 

and southern Tanzania. The North SADC cluster countries 

have to deal with at least four serotypes of the virus (A, O, 

SAT1, and SAT2), and maybe even five (SAT3), each with 

multiple subtypes in the region (Figure 1). This may require 

the incorporation of more than one strain of a given serotype 

into a single vaccine to allow effective control in this region. 

Viral diversity and thus antigenic diversity is a complicating 

factor in effective vaccination against FMD in this cluster. 

Cross-border spread of the disease is common, and SAT1 

and/or SAT2 outbreaks in Mozambique, Malawi, and Zambia 

between 2002 and 2013 were either because of outbreaks 

spreading from neighboring countries or to internal buffalo–

cattle contact. Northern Malawi and Northern  Zambia 

are under constant threat of FMD spread from southern 

Tanzania.29,38,39,48

The Angola cluster may also include the western 

Democratic Republic of Congo (DRC). Very little is known 

about the true incidence of FMD within this cluster, and no 

official information is available on the isolation of FMDV 

from Angola since 1974. However, an FMD outbreak has 

been recorded in Angola in 2009, although no virus could 

be isolated. The southern part of Angola forms part of the 

Kavango-Zambezi TFCA, and it may be appropriate to 

include it within the South SADC cluster.

The East African Community cluster is comprised of 

 Tanzania, Uganda, Kenya, Rwanda, and Burundi, plus the 

eastern part of the DRC (Figure 1). In addition to large 

 livestock populations, this cluster has the highest con-

centration of wildlife in the world. The transmission and 

maintenance of FMD in this region is complex, as farming 

practices, trade, and wildlife contribute to the maintenance 

and spread of the virus. Farming is dominated by  agro-pastoral 

and pastoral communities and is characterized by communal 

grazing and migrations. Eastern DRC is heavily dependent 

on trade in livestock from Uganda, Tanzania, Rwanda, and 

Burundi. The cluster probably contains several FMD primary 
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endemic foci, and cross-border epidemiological events sug-

gest that animal movement plays an important role in virus 

dissemination.39 At least four serotypes (A, O, SAT1, and 

SAT2) are endemic in this cluster,37–39,49–51 with serological 

evidence for a fifth serotype (C)52 (Figure 1). A sixth serotype 

(SAT3) was isolated in wildlife (African buffalo) in Uganda 

in 1970,10 although it has never been isolated from livestock 

in this cluster. SAT3 was also reported in Uganda in 199753 

and in the DRC in 2005, but was not genotyped.54 Isolates of 

serotypes A, O, SAT1, and SAT2 from Tanzania and Kenya 

(2004–2009) were genetically related.38,39 Similarly, viruses 

from Uganda and Kenya (1998–2008) were related.51 FMDV 

isolates belonging to serotypes SAT1 (topotype IV) and 

SAT2 (topotype X) have been isolated from African buffalo.15 

As discussed above, there are also wide genetic and antigenic 

variations in the virus strains in this epidemiological cluster. 

The role of the African buffalo in the maintenance and trans-

mission of FMD serotypes (eg, A and O)55 that occur in this 

cluster has not been systematically studied.

The Intergovernmental Authority on Development 

(IGAD) cluster comprises Sudan, South Sudan, Eritrea, 

Ethiopia, Djibouti, Somalia, Northern Kenya, and Northern 

Uganda (Figure 1). Similar to the East African Community 

cluster, this cluster probably harbors major FMD primary 

endemic foci. Ethiopia and Sudan have the highest cattle 

populations in Africa.29 Historically, isolates of serotypes A, 

O, SAT1, and SAT2 from Sudan and Ethiopia were geneti-

cally related to isolates from Uganda, Kenya, and Tanzania, 

most likely as a result of cross-border movement, a situation 

that has not changed.

The Soudan/Sahel cluster comprises Western Sudan, 

Niger, Chad, Burkina Faso, Mali, Northern Nigeria,  Senegal, 

and Mauritania. The farming system in this ecosystem is 

predominantly pastoral, characterized by long-distance 

movement of livestock due to either transhumance or trade. 

This cluster probably also contains important FMD primary 

endemic areas, and at least four serotypes (A, O, SAT1, and 

SAT2) of the virus have been found. Furthermore, it may 

be an important disease-corridor cluster, linking the IGAD 

cluster with West Africa and probably West Africa with 

North Africa. The 1999 FMD strain in Algeria was found 

to be related to the West African type O topotype.29 Simi-

larly, isolates of serotype O from Niger (2007) and Nigeria 

(2007 and 2009) were genetically related to viruses found  

in Eritrea (2004 and 2011), Ethiopia (2005, 2006, 2008, 

and 2010–2012), and Sudan (2005, 2008–2011).56 Viruses 

belonging to serotype A were isolated from cattle samples 

from Togo (2005), Nigeria (2009) in West Africa, and 

Cameroon (2005) in Central Africa, which had close genetic 

relationships with viruses from Eritrea (1998) and Sudan 

(2006 and 2011) in East Africa56,57 (Figure 1).

Although the epidemiology of FMD in the coastal belt 

countries of West and Central Africa has not been deeply 

studied, it seems that this cluster probably gets infected from 

the Soudan/Sahel cluster. It could therefore be described as 

secondary endemic.

North Africa/Maghreb cluster countries Morocco, 
 Algeria, and Tunisia have not reported FMD since 1999, 

most likely because of routine preventive vaccination and 

other measures. Libya and Egypt have sporadic FMD, and 

take  routine preventive vaccination. Libya reported a SAT2 

 outbreak in 2003 (topotype VII) (Figure 1), probably as a 

result of live animal introductions from neighboring coun-

tries to the south, breaching the Sahara barrier. The virus 

was genetically related to outbreaks in cattle in Saudi Arabia 

in 2000 and Eritrea in 1998.35 In 2012, Libya experienced 

another SAT2 outbreak (topotype VII), this time genetically 

related to isolates from Sudan (2007) and Nigeria (2008). 

Egypt also reported a SAT2 outbreak in 2012, the first 

occurrence of this serotype since 1950, and at least three 

sub-lineages (one Libyan and two Egyptian)20 were identified. 

Egypt also reported African type A viruses in 2006, 2007, 

2009, and 2012, as well as ME-SA (Middle East–South Asia) 

types O and A. Yemen reported EA (East Africa)-3 type O in 

2007 and 2009. Thus, North African countries will remain 

at risk from the south and east, but across the majority of 

their territories, and at-risk populations should effectively 

maintain FMD freedom.

Antigenic diversity of FMDV:  
implication for the selection  
of vaccine strains
The selection of FMD vaccine candidates is complicated 

by the wide spectrum of genetic and antigenic variability of 

the FMDV and the continuous emergence of new mutants 

from populations that escape the host immune response.58–61 

Most of the impacts of this variation derive from changes 

within the three major surface-exposed capsid proteins of 

the virus (ie, VP1, VP2, and VP3). At least 30%–50% of the 

residues that constitute the capsid proteins are exposed on 

the virus surface, many of which encompass neutralizing 

epitopes.62–67 It has been shown that the majority of FMDV-

neutralizing antibodies are directed against conformational 

epitopes located on the β-barrel connecting loops projecting 

from the surface of the virus, especially the highly mobile 

βG–βH loop in VP1.62,68–70 It is important to recognize that 
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the SAT1 and SAT2 viruses display greater antigenic varia-

tion compared with the Euro-Asian serotypes (O, A, C, and 

Asia-1).61,66,71 The variation is not random, but tends to be 

concentrated at the surface-exposed β-barrel connecting 

loops. Therefore, knowledge of the amino acid residues 

that comprise the antigenic determinants of FMDV, and 

those that function as protective epitopes in particular, will 

greatly improve our understanding of virus neutralization 

in vivo.72,73

Several studies have been carried out to delineate 

the neutralizing antigenic sites of representative viruses 

from serotypes A,74–76 O,68,77 C,78 and Asia-1.79,80 In these 

 studies, monoclonal antibodies (MAbs) have been pivotal 

in  identifying critical amino acid residues of the  different 

 neutralizing antigenic sites. In addition, mapping the 

topography of the mutations on the X-ray crystallographic 

structure of FMDV62,63,67 and predicting B-cell epitopes 

using  computational algorithms81 have resolved several other 

antigenic sites on the capsid of FMDV. Although the overall 

role and importance of these antigenic sites in induction of 

protective immunity and cross-reactivity in target species is 

still poorly understood, it appears that animals vaccinated 

with FMDV do not elicit a predominant antibody response 

against a single antigenic site, but rather utilize a broad 

repertoire of epitopes on the viral capsid.82–84

In a study to investigate the antigenic structure of FMDV 

serotypes SAT1 and SAT2, unique critical MAb contact 

residues were found on VP3 and VP1 (site VI), VP2 and 

VP1 (site VII), or VP1 residue 111 (site VIII) of a SAT1 

virus.85 Similarly, for a SAT2 virus, two epitopes have been 

mapped, one encompassing the βG–βH loop of VP1 and the 

other involving residue 210 in the C-terminus of VP1.85–87 

These antigenic sites are summarized in Figure 2. The  residue 

positions where substitutions occurred in MAb-resistant 

mutants are variable, with high entropy or uncertainty in 

SAT1 and SAT2 capsid protein alignments (Figure 2). For 

both serotypes, the variable regions were clustered around 

the fivefold and threefold axes of symmetry of the virion. 

A single amino acid change can lead to the abrogation of 

antibody-binding, which emphasizes the structural flexibility 

of the surface-exposed loops.

Vaccine matching: the selection  
of vaccine strains for specific  
geographic, endemic regions
The two important determinants that will affect the efficacy 

of a vaccine and determine whether it will protect or not are 

1) the ability of the vaccine strain to elicit antibodies that 

will cross-react and protect against the field or outbreak 

virus in question (defined as the vaccine or antigenic match), 

VP1 G-H loop
147R49/W2, 148A47/E3, 149V45/A5

VP1 G-H loop
154Y50, 155A34/S14/T2, 156N36/G8/D4/E2,
157T34/A7/V2/I1/K4/R2, 158K21/R17/Q8/T4

159H48/R2 

VP1 C-term
210G47/A1/C2

VP2
72E2/D48

VP3 site VI
135E12/D8/N4/A9/
S2/T3/K3/V2

VP3 site VI
71S33/D3/N5/L1/R1

VP3 site VI

VP3 site VI
175E42/G1/

VP2 site VII (II) 
72E26/D11/G2/N2/T5/V1

VP1 site VIIIa 
111K2/R2/H2/N27/G8/S1/D1

VP1 site Ib
146D3/E13/T18/G5/R3/A1

148I34/V5/R1/T1

VP1 site VIIIb

VP1 site Ia 
154V3/S13/T18/I5

156A34/V5/T
157A21/E11/Q6/D1/K2/P1

141G20/S5/T2/E4/D4/A1/N2/Q2/R1

and 145R34/ P2/S1/L1/N3/C1

76C32/R9/L1

A B

Figure 2 The antigenic structure of foot-and-mouth disease SAT1 (A) and SAT2 (B) viruses are depicted. 
Notes: The amino acid substitutions observed in SAT1 and SAT2 monoclonal antibody-resistant (MAR) mutants are shown as spheres on the grey ribbon backbone of the 
pentamer (five copies of VP1, VP2, and VP3) unit, and the potential antibody footprints are stipulated. The variation in amino acid residues at each antigenic residue position, 
in a complete capsid protein alignment of 43 SAT1 and 50 SAT2 viruses available on the genetic sequence database (GenBank) are indicated. The viruses in the alignments 
include isolates from South Africa, Zimbabwe, Mozambique, Namibia, Botswana, Zambia, Angola, Malawi, Tanzania, Kenya, Uganda, Rwanda, Zaire, Nigeria, Senegal, Ghana, 
eritrea, Saudi Arabia, and Sudan. Adapted from Grazioli S, Moretti M, Barbieri i, Crosatti M, Brocchi e. Use of monoclonal antibodies to identify and map new antigenic 
determinants involved in neutralization of FMD viruses type SAT 1 and SAT 2 in: european Commission for the Control of Foot-and-Mouth Disease: international control 
of Foot-and-Mouth disease: Tools, Trends and perspectives. Paphos, Cyprus: Food and Agriculture Organization; 2006:287–297.85 
Abbreviation: SAT, Southern African Territories.
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and 2) the potency of the vaccine to elicit a strong and 

long-lasting immune response. The quality and quantity of 

the antigen in the vaccine as well as the formulation of the 

vaccines and inclusion of immune-stimulating adjuvants are 

all factors that will influence and contribute to the overall 

potency of the vaccine.88 In addition to vaccine efficacy, the 

number of animals vaccinated in the target population during 

a  vaccination campaign will determine effective protection 

at herd level and should be taken into consideration. Basic 

capability to undertake vaccine matching tests on a routine 

basis in diagnostic laboratories in African countries is 

severely limited, and therefore current advice regarding the 

selection of the best vaccine to be used in these settings is 

normally provided by regional (ARC-Onderstepoort Veteri-

nary Institute, South Africa; Botswana Veterinary Institute, 

Botswana) and international reference centers.

The OIE/FAO FMD Reference Laboratory Network 

reports over the last five years have revealed a gap in the 

vaccine strains available to match against circulating SAT1 

and especially SAT2 viruses. The urgent requirement for 

the development of new SAT vaccine strains with good 

immunogenicity for use in Africa was also highlighted at 

the recent Global FMD Research Alliance congress (Arusha, 

Tanzania in October 2013). For the African continent (FMD 

endemic pools 4, 5, and 6), at least five vaccine strains are 

available for SAT1, and seven vaccine strains are described 

for SAT2 viruses. However, not all these vaccine strains are 

of recent derivation or are currently used in production, and 

it is therefore imperative that outbreak samples are properly 

matched to the vaccine strains that are available for use in 

control programs.

The direct assessment of the degree of protection induced 

by a vaccine against the field virus is performed using animal 

challenge studies and is the most accurate way to determine 

whether a vaccine will cross-protect against a particular 

field virus.82,89,90 However, routine heterologous challenge 

studies are rarely performed, as this is time consuming, 

requires access to expensive bio-containment facilities, and 

raises serious animal welfare issues when large numbers of 

animals need to be vaccinated and challenged. If small groups 

of animals are used, these challenge studies can suffer from 

low precision.91

In South America, a variation of this direct method has 

been developed, based on the probability that cattle will be 

protected against a challenge of 10,000 infective doses of 

test virus following a single or boosted vaccination.92 In 

order for the expected percentage of protection method to be 

effective, the vaccine needs to be extensively tested in many 

(hundreds) cattle by previous challenge tests with homolo-

gous virus.92 Although this method has been widely used in 

South America,90,93 the availability of good datasets and sera 

and the need for diverse vaccine strains are limiting factors 

for use of this approach in the African context.

Therefore, in vitro alternatives to measure cross-reaction 

between sera elicited by a vaccine and a particular field/

outbreak isolate is recommended, supporting the need to 

accurately predict vaccine matching without the  involvement 

of animals.94 Traditionally, antigenic characterization of 

a field or outbreak virus is performed indirectly using the 

in vitro virus neutralization test (VNT), which measures the 

ability of sera from vaccinated animals to cross-react with 

the field virus.61,82,89,90 The neutralization titers are used to 

calculate r
1
-values to determine antigenic relationships.95 

However, interpretation of the test is plagued by limitations, 

including the uncertainty as to how well the in vitro match-

ing data actually correlates to in vivo cross-protection, the 

impact of vaccine potency on protection, and the availability 

of reference reagents.88 Furthermore, the use of r
1
-values to 

estimate cross-protection relies on having sufficient repeated 

measures to overcome the inherent variability of the neu-

tralization titers.96 In a recent study with SAT1 viruses, we 

found a number of factors to impair reproducibility in one-

way relationships, such as the operator, batch variability of 

reagents, day-to-day variation in the cells, and variation in 

individual cattle sera. It is also known that measuring the 

titer ratio to a known control is not sufficient to eliminate 

the inter-experiment variability, highlighting the necessity for 

time-consuming duplicate tests to be undertaken on separate 

and independent occasions to compensate for day-to-day 

variations.96 A novel way to quantify and visualize antigenic 

relationships is antigenic cartography.97,98 However, the com-

bination of genetic sequencing and antigenic profiling of 

the outbreak virus are still useful methods to identify newly 

emerging or re-emerging virus strains and whether available 

vaccine strains are likely to provide protection against the 

outbreak virus or not.

Using this in vitro approach in vaccine matching, we 

have shown that the SAT1 vaccine strains SAR/9/81 and 

KNP/196/91 are antigenically relevant for South Africa, 

Zimbabwe, Mozambique, Botswana, Namibia, Zambia, and 

Tanzania.61 The r
1
-values determined in assays with antisera 

from cattle that had been vaccinated with SAT1/KNP/196/91, 

and a panel of SAT1 viruses, was greater than 0.3 for 75% 

(n=30) of viruses (Figure 3A). This result suggests that 

efficient cross-protection may be induced in animals fol-

lowing vaccination with these strains. Similarly, a vaccine 

based on NIG/5/81 could most likely protect against many 

strains circulating in West Africa (pool 5 viruses), while a 

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Veterinary Medicine: Research and Reports 2014:5submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

126

Maree et al

vaccine based on BOT/1/06 virus alone or in combination 

with another strain from East Africa will effectively cross-

react to control most pool 4 viruses.99 Thus, a high potency or 

bivalent SAT1 vaccine could most likely be effective across 

topotypes. However, there is a dearth of knowledge about the 

antibody response of animals vaccinated with a multivalent 

vaccine containing a combination of intra-serotype strains 

to cross-react against field viruses. Furthermore, it has been 

shown for serotype A viruses that a high potency vaccine 

provides protection against heterologous challenge, despite 

low r
1
-values.100 In the past, the combination of SAT1/

SAR/9/81 and SAT1/KNP/196/91 in a tetravalent vaccine, 

containing also a SAT2 and a SAT3 strain, were able to 

protect against SAT1 outbreaks in southern Africa.101 The 

antigenic relationship of SAT2 viruses against two SAT2 

vaccine strains showed poor cross-reactivity, indicative of 

low level of cross-neutralization in vivo (Figure 3B). Notably, 

a single type O vaccine strain was efficacious in controlling 

the circulation of different topotypes in Kenya, even though 

temporal fluctuation in the prevalence of a particular type 

was observed.50

Alternatively, serological cross-reactivity can be esti-

mated using a liquid-phase blocking enzyme-linked immu-

nosorbent assay (ELISA) procedure for vaccine matching 

reviewed by Paton et al88 and Kitching et al.102 In common 

with the VNT method, this approach is based on the reac-

tivity of bovine serum raised against the available vaccine 

strains to the field virus and the homologous vaccine strain.103 

The r
1
-value is calculated as the heterologous titer divided 

by the homologous titer and interpreted as proposed by 

Samuel et al.104 The r
1
-value calculated by the two assays 

differ, because the VNT approach is based on the ability of 

the antisera to neutralize the virus, whereas the liquid-phase 

blocking ELISA method measures binding of the antisera to 

the virus or viral components. Therefore, there is still a need 

for a faster and more reliable method that is as effective as 

the VNT at evaluating vaccine matching.

Since the antigenic variability, reflected in the VNT titers, 

is a measure of whether the sites with which the immune 

system reacts to neutralize the virus remain sufficiently 

similar between a homologous and heterologous virus to 

be recognized,105 we have described a new approach, using 

linear mixed-effect models, to estimate antigenic matching.66 

In principle, the amino acid variation and in vitro cross-

protection titers from VNTs were combined with crystal-

lographic structural data to generate antigenic matching 

information indirectly.66 Examining SAT1 and SAT2 viruses, 

we identified a correlation between genetic distance and 

antigenic relatedness (r
1
-values), but more significantly, 

we could identify areas on the surface of the capsid where 

mutations were strong predictors of antigenic distance. These 

were consistent within serotypes, and were found to match 

some of the independently identified antigenic sites in other 

serotypes. Applying the linear mixed-effect model to SAT1 

viruses, two surface-exposed regions of the capsid (ie, VP1 

βG–βH (132–174) and VP3 βH–βI (191–202) loops were 

identified as better predictors of cross-reactivity between the 

field virus and vaccine strain66 than serologically calculated 

r
1
-values. Both regions were identified by studying MAb-

resistant mutant viruses.85 For SAT2 viruses, amino acid 
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Figure 3 Chart to indicate the r1-values of various SAT1 and SAT2 foot-and-mouth disease virus isolates from different topotypes compared with antiserum prepared from 
the vaccine strains (A) SAT1/KNP/196/91 (topotype 1) and (B) SAT2/KNP19/89/2 (topotype i) and SAT2/ZiM7/83 (topotype ii). 
Notes: The antigenic relationships of the field isolates were determined using cross-neutralization assays on IB-RS-2 cells, carried out as described by the OIE.207 The r1-
values were calculated as: r = serum titer against heterologous virus/serum titer against homologous virus, and interpreted as proposed by Samuel et al.104 Viruses from the 
Kruger National Park (South Africa) (KNP), South Africa (SAR), Ghonerazhou National Park (Zimbabwe) (GN), Zimbabwe (ZiM or RHO), Botswana (BOT), Namibia (NAM), 
Mozambique (MOZ), Angola (ANG), Zambia (ZAM), Malawi (MAL), Tanzania (TAN), Kenya (KeN), Uganda (UGA), Rwanda (RwA), Sudan (SUD), Zaire (ZAi) Ghana (GHA), 
Nigeria (NiG), Senegal (SeN), eritrea (eRi), Saudi Arabia (SAU) were included in the study.
Abbreviations: Oie, world Organisation for Animal Health; SAT, Southern African Territories.
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residues in the VP1 C-terminus (200–224), the VP2 βB–βC 

loop (70–82), and residue 178 in the VP1 βH–βI loop were 

found to be good predictors of cross-reactivity.66 However, 

the aim in endemic settings is to identify potentially new 

vaccine viruses when existing vaccine strains are found to 

not cross-react to the outbreak virus sufficiently. The linear 

mixed-effect approach was found useful to assess the likely 

cross-reaction of new vaccine strains against a group of 

field viruses.66 Taken together, this approach will assist in 

the future in the selection of potential new vaccine strains 

for sub-Saharan Africa.

Simple antibody recognition measures do not always 

correctly predict the ability of a vaccine to protect against 

an outbreak virus.106 The antibody isotype, the avidity of the 

antibody to the virus in question, and the type of immune 

response elicited are also important factors to consider.107–109 In 

a recent study comparing the accuracy of traditional and novel 

serological assays to predict cross-protection, it was found that 

the use of VNT titers and r
1
-values are inaccurate indicators of 

protection.110 However, when the VNT titers were combined 

with the IgG1 titer, a more accurate estimate of FMD vaccine 

protection against the heterologous virus for serotype A was 

achieved. To date, the correlation of  in-parallel serological 

data, like VNT and IgG1, IgG1/IgG2, or antibody avidity in 

cross-protection in the case of SAT viruses is unknown.

Control of FMD by vaccination
The existing vaccines against FMD consist of complete, 

chemically inactivated virions combined with an adjuvant.7 

The adjuvant used in the vaccine formulation has undeni-

ably a huge effect on the efficacy and potency of the vaccine 

and has been reviewed elsewhere.7,111 Despite successful 

application in the developed world, the effective administra-

tion and optimal induction of protective immunity are ham-

pered by several factors in developing countries. In addition 

to the vaccine-matching constraints that have been discussed 

in the previous section, some viruses are very difficult to 

adapt to cell culture, slowing the introduction of new vac-

cine strains, reducing vaccine yield, and potentiating through 

prolonged passage the selection of undesirable antigenic 

changes.112,113 Vaccination does not induce sterile immunity, 

and animals may still be able to infect non-vaccinated ani-

mals and may also become persistently infected.7,114–117 The 

presence of contaminating non-structural proteins in some 

vaccine formulations makes it problematic to distinguish 

between vaccinated and convalescent animals, impacting 

on the ability to export from FMD-controlled regions. In 

addition, the hot climate in many African regions calls for 

vaccines with improved stability and which are less reliant on 

a cold-chain. During production, the manufacturer also has 

to compensate for this instability by increasing the quantity 

of antigen per vaccine dose, which is expensive and reduces 

vaccine yield. Based on the findings of Doel and Bacarini,118 

it is believed that unstable vaccines are less immunogenic due 

to degradation before and after inoculation. Therefore, FMD 

vaccines require frequent booster vaccinations in order to be 

effective. Lastly, the current vaccines are relatively expen-

sive, especially for the small and subsistence farmer.

Vaccines used in the control of FMD in endemic regions 

are mostly used for mass prophylactic application. Such 

 vaccines are multivalent to provide protection against  multiple 

serotypes, and should have a potency of at least 3 PD
50

 per 

dose.119 Generally, prophylactic vaccines incorporate 146S 

particles combined with saponin-alhydrogel or oil-adjuvant.119 

Oil-adjuvanted vaccines have been used successfully in 

FMD-eradication campaigns in South America.5,120,121 A study 

evaluating different adjuvants for SAT vaccines has shown 

that a double water-in-oil-in-water adjuvant, ISA206, elic-

ited protective antibody responses against SAT2 serotype in 

cattle.122 Inactivated vaccines induce short-lived immunity, 

and it is recommended that naïve animals receive two initial 

vaccinations (a primary and secondary dose) 3–4 weeks 

apart, followed by re-vaccination every 4–6 months101,122 to 

prevent spread of disease within populations. However, in 

the African environment, this may differ for different manu-

facturers, depending on the potency of the vaccine, and some 

manufacturers recommend five vaccinations per annum. There 

is a definite need to assess whether different adjuvants may 

enhance the duration of immunity against SAT antigens. For 

these reasons vaccination campaigns should be performed 

regularly, based on 1) the epidemiological circumstances 

and risk of disease spread, 2) the value and life expectancy of 

species, and 3) the economic status of the country. The inter-

val between vaccinations is critical to prevent a  “window of 

susceptibility” and where the continuous or sporadic  presence 

of virus in carrier animals is present.

The PCP is the strategy proposed by OIE and FAO to con-

trol and ultimately eradicate FMD from endemic  countries. 

Different regions in sub-Saharan Africa are at different 

developmental stages of control and are thus facing unique 

challenges and priorities in terms of FMD control (Figure 4). 

In many African endemic countries, there are various knowl-

edge gaps, such as disease occurrence and mechanisms of 

virus maintenance and transmission, and therefore no rou-

tine vaccination campaigns are implemented (PCP Stage 1 

countries; Figure 4). In other African endemic countries, even 
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where surveillance is conducted to provide knowledge about 

high-risk populations, often implementation of effective, 

scheduled vaccination campaigns still does not take place 

(PCP Stage 2 countries; Figure 4). There are various reasons 

why governments do not subsidize FMD vaccines, leading 

to individuals needing to carry the cost and implement their 

own vaccine schedules. Additionally, individuals would 

need to source vaccines without knowledge of the current 
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Figure 4 Map indicating the different PCP stages of countries in southern and eastern Africa. 
Notes: The results are based on self-assessment and aspirations from the member states, with the goal to make progress on the PCP for FMD.208–210 The FMD PCP consists 
of six stages ranging from zero (0), when there is continuous FMD virus circulation with no reporting or control actions, to five (5), where a country is ready to be officially 
recognized by the Oie as free without vaccination. Currently, the Oie recognizes only three categories for countries with regard to FMD: 1) countries not free from FMD (PCP 
stages 0–3), 2) FMD-free countries or zones practicing vaccination (PCP stage 4), and 3) FMD-free countries or zones where vaccination is not practiced (PCP stage 5). This 
figure was adapted with permission from the Food and Agriculture Organization of the United Nations. © FAO 2011. Report of the 39th Session of EuFMD, Rome 2011. 1–31. 
http://www.fao.org/ag/againfo/commissions/eufmd/commissions/eufmd-home/reports/general-sessions/2011-39th-session/en/. Accessed July 25, 2014.211

Abbreviations: FMD, foot-and-mouth disease; Oie, world Organisation for Animal Health; PCP, Progressive Control Pathway.
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circulating strains in their region, leading to a poor vaccine 

match. This often leads to no or ineffective control in endemic 

African regions. The development of new vaccines against 

FMD in endemic countries in Africa should therefore take 

into account the ecosystem-based synchronization as FMD 

control strategies employed in these regions.30

Design of improved  
inactivated vaccines
Some of the abovementioned limitations of current vaccines 

are being addressed by the development of reverse genetic 

approaches. Additionally, new alternative vaccines that do not 

require infectious virus as well as efforts to understand the 

role of innate immunity and cytokines to induce protection 

and boost the immune response offer tremendous potential 

for the control of FMD in endemic regions.

Genome-length viral RNA (vRNA) derived from com-

plementary DNA (cDNA) clones of FMDV is infectious 

when transfected into suitable mammalian cells.123–126 These 

cDNA clones are readily amenable to genetic engineering 

to introduce changes to the virus genome that allows for 

the replacement of the external capsid-coding region or 

structural, surface-exposed antigenic loops with the cor-

responding regions of an emerging virus. The outcome 

of such a chimeric virus is the transfer of the spectrum 

of neutralizing epitopes from the etiological agent to the 

recombinant virus123–127 and the ability to antigenically 

simulate the outbreak virus and induce protective immunity 

in host animals.123,128,129 Furthermore, it has been shown that 

inter-serotype chimeric vaccines with the capsid proteins 

of SAT1 within a SAT2 background128 and O serotype 

within an A serotype background123,130 confer protective 

immunity.

However, capsid swapping may transfer other undesir-

able traits such as capsid instability and poor cell culture 

adaptation, which are limitations that can be overcome by 

site-directed mutagenesis of the amino acid(s) associated with 

improved performance as vaccine candidates.129

The development of new vaccine FMDV strains relies 

strongly on virus growth and high antigen yields of the new 

strain in the production cell line.7,131,132 We have demonstrated 

that SAT-type viruses, previously impossible to adapt to 

cell culture, can be structurally modified by introducing 

an adaptation phenotype which is able to interact with 

sulfated glycosaminoglycans, enabling improved vaccine 

production.129 Several glycosaminoglycan-binding sites have 

been identified for the various serotypes that can be used for 

this purpose.112,129,133–138 Furthermore, alternative cell entry 

pathways exist and can be applied in future to improve cell 

adaptation.134,135,139 Continued reverse genetic approaches 

to rapidly adapt African FMDV to BHK-21 cell culture 

will greatly enhance the ability to produce region-specific 

 vaccines tailored to current circulating strains.

The stability of vaccines is of crucial importance in 

Africa, where the logistical process to get the vaccine from 

the manufacturer to the animal may take months and in many 

remote regions is in the absence of a cold-chain. Vaccines 

with improved stability and less reliant on a cold-chain are 

needed and could improve the longevity of immune responses 

elicited in animals.118 FMD is known to be unstable, espe-

cially for O and SAT2 serotypes,118 in mildly acidic pH 

conditions or at elevated temperatures, leading to dissociation 

of the capsid (146S particle) and loss of immunogenicity. The 

residues at the capsid inter-pentamer interfaces, and their 

interactions, are important for the infectivity and stability 

of the virion,140,141 and mutations adjacent to these interfaces 

have an effect on the conformational stability of FMDV.142–145 

However, experimental studies on the relative importance of 

residues and molecular interactions in viral capsid assembly, 

disassembly, and/or stability are still very limited. Recent 

research has compared more thermostable serotype A viruses 

with unstable O and SAT2 viruses, together with crystallo-

graphy structures, sequence data, and in silico calculations of 

stability, to predict residue substitutions that could increase 

stability at inter-pentameric interfaces. With reverse genetic 

approaches, stabilizing mutations have been introduced into 

infectious copy clones. SAT2 and O viruses with improved 

stability have been developed, and their antigens are currently 

being tested in animal models for potential use as vaccines 

(unpublished observation).

Alternative vaccine strategies:  
subunit and live viral-vector  
vaccines
Due to the limitations of inactivated vaccines, alternative 

strategies for vaccine development have focused initially 

on the use of VP1-proteins and peptides either isolated from 

FMDV or produced by recombinant DNA;146,147 VP1-derived 

peptides148 or chemically synthesized VP1 peptides;149–152 

vectors expressing VP1 fusion proteins;153–155 inoculation 

with DNA expressing VP1 epitopes alone156 or with DNA 

encoding IL-2;157 and transgenic plants or recombinant 

tobacco mosaic virus expressing VP1.158,159 However, 

they rarely achieved protection against virus challenge in 

livestock,151,160,161 or as a result of a limited subset of epitopes, 

selected for antigenic variants that escaped from protection.162 

The reduced level of protection may be due to a lack of 

T-cell epitopes.163
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Subviral particles or virus-like particles which are 

assembled as empty particles lack RNA (noninfec-

tious), but are immunogenic, as their antigenic surface 

is indistinguishable from the complete virus.164 Previous 

attempts to express the P1, leader, and 3C regions in 

recombinant baculovirus systems has yielded limited 

amounts of empty capsid due to toxicity in insect cells165 

or in Escherichia coli resulted in inefficient capsid assem-

bly.164 Major advances have been made, firstly in developing 

methods to efficiently express empty capsids in vaccinia 

virus or baculovirus expression systems by lowering viral 

protease activity, which is toxic to cells, and secondly by 

enhancing capsid stability.166 Cattle vaccinated with such an 

A-serotype construct have shown sustained VNT titers and 

protection from challenge 34 weeks post-vaccination.166 

This approach has several advantages over conventional 

vaccines, by reducing production costs, eliminating risk of 

infectivity, and enhancing stability.166 However, producing 

vaccines using insect cells requires highly skilled staff, 

and scaling up of the manufacturing process is difficult 

and expensive to optimize, which poses disadvantages 

for the African market. More studies are needed to assess 

whether this strategy would be effective in endemic regions 

of Africa for SAT serotypes and when applied to the field 

and to find out whether the production process would be 

economically viable.

Alternative strategies which incorporate sections of the 

FMDV genome inserted in a live viral vector have been 

investigated with bovine rhinotracheitis virus,154 and the G–H 

loop region has been incorporated in a chimeric poliovirus;155 

capsid and/or non-structural proteins in vaccinia virus,167,168 

fowlpox virus,169 or pseudorabies virus170,171 provides partial 

protection in pigs and guinea pigs. A chimeric bamboo 

mosaic virus containing 1D epitopes induces humoral and 

cell-mediated responses and protection in pigs.172 The experi-

mental vaccines so developed have several disadvantages, 

such as requirement for multiple doses, low-level antigen 

expression, and uncertain safety. Additionally, repeated 

vaccination with a viral-vector vaccine, as is necessary in 

endemic regions, leads to immunity against the vector and 

reduced protection. The most successful advances have arisen 

from incorporating FMDV genes into replication-defective 

human adenovirus (Ad) vectors.173,174 The resulting vaccine 

has several advantages over conventional vaccines: 1) it can 

induce protection within 7 days and within 1 day if com-

bined with interferon-α expression, particularly useful for 

emergency use; 2) it is fully compatible with test systems 

that allow to differentiate infected from vaccine animals; 

3) incomplete inactivation problems are not a concern; and 

4) it has excellent immunogenicity, attributed to its natural 

adjuvant properties, high transduction efficiency of targeted 

cells, and ability to induce antiviral cytotoxic T-cells.174 

However, whether animals vaccinated with Ad-FMD vaccines 

would be protected from developing a carrier state is unclear, 

as is the significance of pre-existing immunity in the field. 

Finally, it is of major importance to determine the protective 

immunity and breadth of antigenic coverage against evolving 

variants in the field.

To be optimal for use in Africa, new vaccines should be 

easily delivered to the animal, proven to be more effective and 

induce longer lasting immunity than conventional  inactivated 

vaccines, safe in production, easily made, and inexpensive. 

This is especially important for African producers that need 

to design vaccines tailored to African continental control, 

focusing on circulating serotypes and subtypes in endemic 

regions where eradication is difficult to attain due to the 

presence of maintenance hosts and continuous wildlife–

livestock interfaces.

Current and novel diagnostic  
tests for field application  
in endemic regions
The accurate diagnosis of FMDV infection is of utmost 

importance for the control and eradication of the disease in 

endemic regions. The initial diagnosis of FMD is normally 

based on clinical signs, but this can easily be confused with 

other vesicular diseases.175 Hence, it is vital that the rec-

ognition of signs of the disease by the farmer is promptly 

conveyed to the relevant veterinary authorities to verify 

clinical symptoms, and suspect samples should then be sent 

to the reference laboratory for confirmation. Rapid and pre-

cise data generated by laboratories provides vital support to 

FMD control and vaccination programs. However, in many 

African countries, samples received by the laboratory can 

be of poor quality due to an ineffective cold-chain and long 

transport periods. These factors make laboratory diagnosis 

challenging, and it is evident that sub-Saharan Africa requires 

diagnostic tools that are fit for purpose in these settings to 

allow for rapid diagnosis and the appropriate measures taken 

for control.

Existing diagnostic techniques for the detection of FMD 

are mainly based on the following principles:

•	 The identification of the infectious agent by virus isolation 

involving propagation on susceptible cell cultures176

•	 The detection of viral antigen by ELISA systems using 

FMDV-specific antibody or capturing reagents177–179
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•	 Molecular detection of viral nucleic acid by reverse-

transcription polymerase chain reaction (RT-PCR) and 

the genetic analysis of the nucleotide sequence, mostly 

of the VP1-coding region180

•	 Detection of FMDV-specific antibody in animals previ-

ously exposed to the virus. The VNT is usually used as a 

confirmatory test for sera found positive by ELISA.88

These techniques are primarily suited for well-equipped 

laboratories which are usually either national or regional 

reference laboratories.30 The virus cell culture system, for 

example, requires careful handling of specimens to prevent 

environmental and cross-contamination, trained personnel, 

and a BSL3 (biosecurity level 3) laboratory. The success of 

virus isolation is dependent on the sample quality and requires 

special transport conditions from the sampling point to the 

laboratory.176 Both the solid-phase competition ELISA and 

the liquid-phase blocking ELISA for serological detection 

of FMDV-specific antibodies against structural proteins are 

relatively simple procedures and easily implementable in diag-

nostic laboratories in endemic regions.181–183 The VNT on the 

other hand, requires technical skill to be performed accurately 

and is dependent on cell culture facilities,184,185 which may not 

be conducive for laboratories in endemic regions.

Molecular techniques, like RT-PCR and real-time RT-PCR 

have the advantage that a wide range of samples (eg, esopha-

geal/pharyngeal scrapings, tissue, and serum) can be tested 

rapidly186,187 and are now widely considered to be front-line 

diagnostic tests for the detection of FMD.188  Furthermore, RT-

PCR is the first step to determine the nucleotide sequences and 

contributes to molecular epidemiology studies and provides 

a tool to support regional and country-wide FMD control 

programs in an outbreak situation. To various degrees, these 

technologies are being implemented and applied in many diag-

nostic laboratories across the  African continent, although these 

approaches are sometimes still too expensive to be implemented 

as routine across the whole of the African environment.

One of the limitations in the early diagnosis of FMD in 

an endemic situation is that outbreaks often occur in remote 

areas where the nearest veterinarian and national laboratory 

can be many kilometers away.30 This can delay the laboratory 

results for a month or longer. Lateral flow devices (LFDs) 

are immuno-chromatographic tests that allow the diagnosis 

of FMDV at the site of a suspected outbreak. Different LFDs 

have been developed and evaluated and are either serotype 

specific189 or can detect all seven FMDV serotypes.190,191 The 

LFD can utilize vesicular fluid or vesicular epithelial suspen-

sions but not nasal swabs or sera.189,191 The method makes 

use of capture and detection MAbs or specific polyclonal 

antisera on a strip test, and studies thus far have shown the 

test to be as sensitive and specific as the ELISA; however, 

the sensitivity of the strip test may differ for the various 

FMDV strains.192 The use of LFDs will allow for immediate 

determination of an FMDV-positive or -negative result and 

thus will facilitate decisions to be undertaken immediately 

for FMDV control in case of a positive result. Furthermore, 

only those samples that test positive on the field devices 

can be sent to the laboratory for further confirmatory tests, 

subtyping, and genetic characterization.

Portable real-time PCR platforms offer many advantages 

in endemic point-of-disease situations.193–195 These platforms, 

which can be utilized by non-specialists, are designed to 

perform all the steps of an RT-PCR test (eg, capable of 

nucleic acid extraction and performing RT-PCR). The 

Enigma FL field laboratory platform (Enigma Diagnostics, 

Wiltshire, UK) is one such system capable of nucleic acid 

extraction, PCR thermocycling, and analysis of data without 

the requirement for user intervention and has been tested for 

FMD diagnosis.193,196 The question remains whether field-

based assays can ensure the detection of new viruses as they 

continue to evolve in sub-Saharan Africa.

An alternative molecular detection technique is loop-

mediated isothermal amplification (LAMP) assay, which has 

been widely used for the detection of RNA and DNA viruses 

that infect livestock.197,198 This approach is an autocycling, 

strand-displacement DNA-synthesis method performed 

by the large fragment of Bst DNA polymerase at a single 

temperature. To facilitate the LAMP assay in the field and 

because the RT-LAMP products are generated in abundance, 

the results can be visualized by the naked eye, either in the 

form of visual turbidity or visual fluorescence. The diagnostic 

performance of real-time RT-PCR and RT-LAMP are gov-

erned by the nucleotide variability of the genome signatures 

between the different serotypes and genetic lineages of the 

virus. Since the primer recognition sites used for RT-LAMP 

have a larger footprint than RT-PCR assays, designing 

assays that can accommodate the large range of sequence 

variability of FMDV can be challenging, particularly for 

SAT strains. There have been many studies that have shown 

the high specificity and high amplification efficiency of 

RT-LAMP.198–200 Furthermore, Yamazaki et al201 developed 

the first application of a multiplex RT-LAMP approach to 

accommodate the high sequence variability encountered in 

RNA virus genomes and found the analytical sensitivity to 

be comparable to the singleplex RT-LAMP assays.198 The 

combination of a simple method to prepare template RNA 

and RT-LAMP can prove useful for sub-Saharan Africa in 
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the field or laboratory where expensive equipment may not 

be readily available.

Additional novel diagnostic assays such as biosensors,202 

microarrays,203 gold nanoparticle improved immuno-PCR,204 

and nucleic acid sequence-based amplification205,206 have been 

shown to enable rapid and reliable diagnosis, surveillance 

screening, and strain typing for FMDV. Although these assays 

have promising capabilities for sub-Saharan Africa and can 

improve many of the current problems faced, there are also 

many limiting factors that prevent the routine use of certain 

assays. For example, many of the novel assays are still to be 

optimized for the FMDV SAT serotypes where a high degree 

of sequence variability exists, the costs involved per test will 

determine how widely these assays will be used, the field-

based novel assays will require training of personnel, and 

some laboratory-based tests require specialized equipment 

which is not readily available and personnel capable of cor-

rectly interpreting and analyzing the datasets produced.

Thus, open communication between national and interna-

tional reference labs becomes important as a support system to 

endemic regions. Also, the possibility of diagnostic banks where 

diagnostic kits become readily available in outbreak situations 

can alleviate many of the problems faced by endemic regions.

Conclusion
Most countries in Africa are ill equipped to control 

transboundary animal diseases such as FMD because of the 

lack of infrastructure and financial resources, ineffective 

animal health authorities, civil unrest, and even military 

conflict. Furthermore, most governments ascribe low priority 

to the control of animal diseases in the face of many other 

pressing problems like human health and education. Even 

in countries that controlled FMD successfully in the past, 

like South Africa, Namibia, Botswana, and Zimbabwe, an 

increase in the amount of FMD outbreaks has been observed 

over the last two decades. However, for other countries, this 

may reflect the situation since the 1960s. In many others, the 

current situations regarding their FMD status is unknown, 

and the majority of outbreaks remain unrecorded. There are 

several reasons for this: 1) countries may not be involved in 

intercontinental trade in animals and animal products and 

therefore have little incentive to report FMD outbreaks; 2) in 

many regions where pastoral systems predominate, surveil-

lance systems are inadequate or nonexistent; 3) transporting 

 suitable material from the field to a suitably equipped labora-

tory to confirm and type the occurrence of FMDV is logisti-

cally complicated and expensive; and 4) very few laboratories 

in Africa have the means to diagnose FMD adequately.

Nevertheless, there have been successes in parts of 

Africa – for example, Botswana, Namibia, and South Africa 

have FMD-free zones certified by the OIE and protected by a 

vaccination zone surrounding high-risk areas. Furthermore, 

Morocco, Algeria, and Tunisia have OIE-endorsed control 

plans. These successes indicate that FMD control is possible 

in Africa and can be extended.

More effective control of FMD in Africa can be achieved 

if primary endemic areas and factors that influence disease 

dissemination are known to assist in the design of appropri-

ate control strategies. This will assist the design of targeted, 

area-wide or ecosystem-based disease control strategies, 

which may include more effective movement control, improve 

decisions on appropriate vaccine strains, and improved vac-

cines and point-of-disease diagnostic assays. Various new 

and exciting technologies to improve vaccinology, vaccine 

matching, and diagnostic tests have seen the light. However, 

for these technologies to make an impact in the control of 

FMD in Africa, they should be tailored to the unique environ-

ment and needs of Africa.

Many countries are embarking on the stepwise PCP 

approach to improve their FMD control capacity in a sus-

tainable manner. Different regions in sub-Saharan Africa are 

at different developmental stages of control and thus face 

unique challenges and priorities in terms of FMD control. 

Progressive control of FMD may be achieved if founded on 

sound epidemiological understanding of the disease that is 

ecosystem specific.
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