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Abstract: The blood–brain barrier choline transporter (BBB-ChT) may have utility as a drug 

delivery vector to the central nervous system (CNS). We therefore initiated molecular docking 

studies with the AutoDock and AutoDock Vina (ADVina) algorithms to develop predictive models 

for compound screening and to identify structural features important for binding to this transporter. 

The binding energy predictions were highly correlated with r2=0.88, F=692.4, standard error of 

estimate =0.775, and P-value,0.0001 for selected BBB-ChT-active/inactive compounds (n=93). 

Both programs were able to cluster active (Gibbs free energy of binding ,−6.0 kcal*mol−1) and 

inactive (Gibbs free energy of binding .−6.0 kcal*mol−1) molecules and dock them significantly 

better than at random with an area under the curve value of 0.86 and 0.84, respectively. In ranking 

smaller molecules with few torsional bonds, a size-related bias in scoring producing false-negative 

outcomes was detected. Finally, important blood–brain barrier parameters, such as the logBB
passive

 and 

logBB
active

 values, were assessed to predict compound transport to the CNS accurately. Knowledge 

gained from this study is useful to better understand the binding requirements in BBB-ChT, and until 

such time as its crystal structure becomes available, it may have significant utility in developing a 

highly predictive model for the rational design of drug-like compounds targeted to the brain.

Keywords: blood–brain barrier choline transporter, central nervous system, drug delivery vector, 

molecular docking, virtual screening, Gibbs free energy of binding, diffusion

Introduction
In the drug design and discovery process, the drug permeation across the blood–brain 

barrier (BBB) is a pivotal task for neuropharmaceuticals to reach their site of action within 

the central nervous system (CNS). The BBB consists of the brain capillary endothelial 

cells connected by tight junction proteins, such as occludin and claudins1,2 that circum-

ferentially surround the cell margin restricting passage especially for hydrophilic and 

positively charged drugs into the CNS.3–5 While careful chemical modifications are helpful 

to increase the octanol-water partitioning coefficient (logP) for such drugs to improve 

their brain accumulation, there would be a total decreased exposure of them to the CNS 

due to the excessive partitioning of these compounds to other tissues.6

An alternative way for a charged molecule to access the brain could be achieved 

via the BBB native nutrient transporters, such as the blood–brain barrier choline 

transporter (BBB-ChT). This transporter is responsible for delivery of a positively 

charged choline molecule into the CNS, where it acts as a structural component of 

cell membranes and precursor for the neurotransmitter acetylcholine.7

Pharmacological applications of using BBB-ChT for drug delivery to the brain may 

encompass treatment strategies for traumatic brain injury, hypoxia, or ischemia after 
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a stroke, and other neurodegenerative disorders, including 

Alzheimer’s and Huntington’s diseases.8,9 Recent research 

has determined that this transporter system might be a suit-

able drug delivery vector, because it is only occupied at 25 

percent of Michaelis–Menten constant (K
m
) with choline 

plasma concentration.7,10 However, the membrane-associated 

and polytopic state of this choline transporter affects its suc-

cessful cloning10 and crystallization,11 providing no detailed 

information on its three-dimensional (3D) structure. For 

that reason, the neuronal high affinity choline transporter 1 

(ChT1) was already employed by other researchers in many 

molecular docking and 3D structure-activity relationship 

(3D-QSAR) studies as a substitute for the BBB-ChT to deter-

mine structural requirements for various drug-like substances 

to permeate across the BBB.11–13

Although these studies were shown to be useful in deter-

mining lead molecules only for small datasets including 

novel semi-rigid cyclic and acyclic bis- and mono-quaternary 

compounds13, they are all lacking a systematic approach in 

terms of the exhaustive molecular docking using different 

algorithms and important BBB permeability parameters, 

such as the brain-to-plasma concentration ratio. Therefore, 

to find possible candidates for the BBB-ChT-mediated 

transport, the researchers for the current study performed 

structure-based virtual screening of the BBB-ChT-active/

inactive molecules using the appropriate scoring functions 

to calculate binding affinities and to correlate them to the 

molecular physicochemical properties for more accurate 

BBB permeability prediction. The applicability of the current 

model will allow identifying prospective drug-like molecules 

that have desirable BBB-ChT binding properties prior to their 

chemical synthesis, eliminating the urgency for conventional 

time and resource-consuming quantitative structure–activity 

relationship (QSAR) techniques.

Computational methods
The ChT1 homology model to mimic the BBB-ChT protein 

was constructed using the A-chain of the sodium/galactose 

symporter (Protein Data Bank ID: 3DH4) as a template14 by the 

Iterative Threading Assembly Refinement (I-TASSER) server.15 

The Volume, Area, and Dihedral Angle Reporter server,16 which 

is an improved version of the PROCHECK software (European 

Bioinformatics Institute, Cambridge, UK),17 was implemented 

for the stereochemical validation of the ChT1 molecule to 

investigate the φ-ψ dihedral angles in a Ramachandran plot.

Altogether, observed statistics showed that 87% (508 

residues) and 8% (44 residues) of all observed residues were 

in core and allowed regions. The expected values for the 

comparison were 90% (522 residues) and 7% (41 residues), 

respectively, for the same regions obtained elsewhere, from 

the literature.18,19 The BBB-ChT-active/inactive chemical com-

pound database, where most of them are positively charged, 

included 93 molecules compiled from different literature 

sources12,20–22 in the PubChem BioAssay server. Among them, 

44 molecules (47.3%) were the BBB-ChT binders (active 

substances); 49 molecules (52.7%) were the BBB-ChT non-

binders (inactive substances). Prior to the virtual screening 

procedure, the PyRx software (Scripps Research Institute, San 

Diego, CA, USA) was used to optimize the dataset.23

After the conversion, all molecules were inspected manu-

ally to detect atoms with improper valence due to mixed aro-

matic-Kekulé representation. Gasteiger charges were added, 

and polar hydrogen atoms were assigned. The rotatable bonds 

were set up, and structure data files were converted into the 

Protein Data Bank partial charge and atom type format. Rigid-

flexible molecular docking was applied to the center of the 

ChT1 transport channel using Cartesian coordinates: x=0.32 

Å; y=0.94 Å; and z=−0.44 Å. The AutoDock and AutoDock 

Vina (ADVina) docking engines (Scripps Research Institute) 

were implemented via the Raccoon v1.0 (Scripps Research 

Institute) and iDOCK (Department of Computer Science and 

Engineering, Chinese University of Hong Kong, Hong Kong) 

modifications optimized to perform virtual screening.

AutoDock v.4.2.5.1 was used in the study since its previ-

ous version incorrectly calculates part of the intermolecular 

desolvation energy term. The docking grid with a dimension size 

of 60 × 60 × 60 Å for AutoDock and 22.5 × 22.5 × 22.5 Å for 

ADVina was used in the study. The docking output results were 

represented by the docking scores as Gibbs free energy of binding 

(∆G
bind

), and they were further converted to the predicted inhibi-

tion constants (Ki
pred

). The Ki
pred

 parameters for all the docked 

poses were calculated from the ∆G
bind

 values as follows:

	 Ki
pred

 = exp([∆G
bind

*1,000]/[R*T]) 	 (1)

where R (gas constant) is 1.98 cal(mol*K)−1, and T (room 

temperature) is 298.15 Kelvin.

The python summarize_results4.py script available 

from MGLTools (Scripps Research Institute) was used 

to analyze, summarize, and cluster the AutoDock results. 

Virtual screen performances were evaluated using areas 

under the receiver operating characteristic (ROC) curve 

(AUC) and the Boltzmann-enhanced discrimination of 

ROC (BEDROC) metrics.24 The AUC was calculated by 

summation while BEDROC 20 (α value is 20.0) values were 

determined using the R scripts kindly provided by Hiroaki 
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Yabuuchi from Kyoto University (Department of Genomic 

Drug Discovery Science, Graduate School of Pharmaceutical 

Sciences, Kyoto University, Kyoto, Japan). The electrostatic 

potential maps were calculated with Delphi v5.1 (Computa-

tional Biophysics and Bioinformatics, Clemson University, 

Clemson, SC, USA) using a finite difference solution to the 

Poisson–Boltzmann equation.25 The calculated octanol-water 

partitioning coefficient (ClogP) and polar surface area (PSA) 

for analyzed compounds were determined from molecular 

interaction fields with the VolSurf+ program (Molecular 

Discovery, Perugia, Italy). The decimal logarithm value of 

brain-to-plasma concentration ratio (logBB
passive

), based mainly 

on the passive transport (diffusion) for the dataset of BBB-ChT-

active/inactive compounds, was calculated from the ClogP and 

PSA parameters using empirical Clark’s equation,26

	 log . log . .BB C P PSApassive = − +0 152 0 0148 0 139 	 (2)

The MATLAB R2012a software (MathWorks, Natick, 

MA, USA) was used to calculate linear relationships 

(Table S1) devised from the logarithmic value of the brain-

to-plasma concentration ratios (logBB
passive

) for analyzed 

compounds concerning the BBB-ChT transport by using the 

following equation,

	 log log expBB BB pKiactive passive= 	 (3)

where pKi
exp

 is a negative decimal logarithm of the experi-

mentally determined inhibition constant.

Molecular graphics and visualization were performed 

with the UCSF Chimera v.1.7 software (Resource for 

Biocomputing, Visualization, and Informatics, University 

of California, San Francisco, CA, USA). Statistical analyses 

were performed using a linear regression analysis, followed 

by graphic representations using GraphPad Prism v.4 (Graph-

Pad Software, Inc., La Jolla, CA, USA). The differences were 

considered statistically significant at P-value ,0.0001.

Results and discussion
Our search for a CNS-active hit/lead molecule focuses on a 

substance that allows for better BBB transfer after binding to 

the BBB-ChT. Therefore, we wanted to improve a substrate 

selection and filtering by molecular docking prescreening. 

For this, we compiled a dataset of the BBB-ChT-active/

inactive substances, including 93 molecules in total. The 

first ten BBB-ChT-active bis-pyridinium cyclophanes were 

determined by their binding affinity to the BBB-ChT in a rat 

brain and were assessed according to their inhibition of [3H]

choline uptake.21 The other 29 various molecules, comprising 

four active and 25 inactive compounds, were analyzed by the 

same uptake assay, involving in situ brain perfusion studies of 

male rats.20 Also, 17 bis-azaaromatic quaternary ammonium 

salts, among them 15 active and two inactive molecules, were 

synthesized as ligands for the BBB-ChT protein.22

Finally, 37 chemical compounds including conformation-

ally flexible, semi-rigid, and cyclic quaternary ammonium 

analogs, among them 15 actives and 22 inactives, were 

taken from the BBB-ChT 3D-QSAR studies12 to enrich the 

entire dataset. A standard rigid-flexible docking technique 

produced two main outcomes: a particular conformational 

sampling as a docking pose of the chemical compound with 

the ChT1 transport channel; and a scoring function (∆G
bind

) 

depicting the protein-ligand interaction strength. Since the 

true positives and the true negatives are known in this study, 

the AUC and BEDROC 20 values were quantified from 

random rankings; statistical significance was estimated by a 

bootstrap method described in the literature by Efron.27 The 

results showed a better performance for AutoDock with an 

AUC value of 0.82 and a standard error of 0.045 than for 

ADVina, which has an AUC value of 0.81 and a standard 

error of 0.046. From Figure 1A, it is clear that both programs 

perform well with all the points on a curve above diagonal, 

a random AUC selection performance presented with only 

a 0.5 value.

However, the AutoDock performance indicators show 

that this method slightly outperforms ADVina, although the 

advantage is insignificant. In terms of early detection, as 

determined using the BEDROC 20 measure, both programs 

performed significantly better than random with BEDROC 

20 values of 0.97 for AutoDock and 0.92 for ADVina. This 

new metric also takes into account the shape of the ROC 

curves,24 resulting in higher values due to the curves’ steep 

elevation – meaning that known actives are identified at 

the top of the dataset. The AutoDock and ADVina scoring 

functions are both weighted functions containing hydrogen 

bonding and torsional penalty values. While these latter 

parameters usually differ,28,29 it is important to estimate the 

overall scoring deviations.

A comparison of the predicted docking energies from 

both programs is shown in Figure 1B, demonstrating a strong 

correlation between the docking results. As evident by a high 

Pearson’s chi-squared test (r2) of 0.88, an F of 692.4, and a 

standard error of estimation of 0.775, there is a clear associa-

tion between the predictions from both algorithms. Based on 

this correlation in terms of the ∆G
bind

 value, it was expected 

that the compound conformations would also tend to be 

similar. All docking poses were ranked according to a score 
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that the docking program assigns to each pose, estimating the 

∆G
bind

 values in the range from −10.49 to −2.66 kcal*mol−1 

for AutoDock and −11.117 to −2.0 kcal*mol−1 for ADVina 

(Table S2). Three false-positive AutoDock (ADVina) docking 
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Figure 1 ROC curves (A) and predicted binding energies (B) from the AutoDock 
(Scripps Research Institute, San Diego, CA, USA) and ADVina (Scripps Research 
Institute) runs for 93 analyzed compounds.
Notes: AUC value for each docking run and random selection are shown in the 
legend. The thresholds are depicted as dashed lines.
Abbreviations: ROC, receiver operating characteristic; AUC, areas under the 
ROC curve; ΔGbind, Gibbs free energy of binding.
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Figure 2 Clustering of BBB-ChT-active/inactive chemical compounds either for AutoDock (Scripps Research Institute, San Diego, CA, USA) (A) or ADVina (Scripps 
Research Institute) (B) runs, based on their minimal and maximal ∆Gbind values.
Note: The threshold is depicted as a dashed line.
Abbreviations: BBB-ChT, blood–brain barrier choline transporter; ΔGbind, Gibbs free energy of binding. 

results with minimal ΔG
bind

 values ranging from –8.68 (–9.62) 

to –6.49 (–6.21) kcal*mol−1 were detected for chemical com-

pounds 31, 46, and 47 from the entire dataset. On the contrary, 

the false-negative AutoDock (ADVina) docking outcomes 

with significantly higher ΔG
bind

 values ranging from –4.32 

(–4.92) to –3.06 (–2.7) kcal*mol−1 were determined for five 

chemical structures, including compounds 10 (choline), 20, 

36, 79, and 85, respectively. All these eight molecules were 

further extracted as outliers from the BBB-ChT compound 

database to determine the active and inactive compound clus-

tering for AutoDock and ADVina docking runs based on their 

∆G
bind

 values. Notably, the substances with ∆G
bind

 deviating 

slightly from the threshold value (∆G
bind

=−6.0 kcal*mol−1) 

were not excluded as outliers from the analysis.

It can be seen from Figure 2A and B that the lowest-

binding energies were generated by the active compounds. 

Interestingly, most of the active molecules were found to be 

largely below the −6.0 kcal*mol−1 threshold with an average 

∆G
bind

 value of −7.92±−1.394 kcal*mol−1 for AutoDock and 

−7.88±1.606 kcal*mol−1 for ADVina. In contrast, the majority 

of inactive molecules was observed to be above the threshold 

level with an average ∆G
bind

 value of −4.55±1.057 kcal*mol−1 

for AutoDock and −4.61±1.32 kcal*mol−1 for ADVina.

These results indicate again that both docking algo-

rithms perform at the same level with very similar ΔG
bind

 

values emphasizing the importance of molecular properties 

of the analyzed compounds to further explain the clustering 

process. It was also observed that docking accuracy depends 

on the size of the compound.30 Therefore, a comparison of 

the number of heavy atoms presented in each compound, 

plotted against predicted energetics, revealed a strong 

correlation coefficient of 0.86, an F of 557.7, and a stan-

dard error of estimation of 0.796 for AutoDock; ADVina 

represented an r2 of 0.87, an F of 595, and a standard error 
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Abbreviations: BBB-ChT, blood–brain barrier choline transporter; ΔGbind, Gibbs free energy of binding.
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Abbreviations: ROC, receiver operating characteristic; RMSDLC, the RMSD difference between the lowest energy conformation in the largest cluster and the reference 
ligand conformation; RMSD, root-mean-square deviation.

of estimation of 0.814. Figure 3A and B shows that all 

compounds were divided into two major clusters. Namely, 

the nine active as false-negatives with 44 inactive molecules 

landed in the cluster with a small number of heavy atoms 

(,20). Likewise, the five inactive as false-positives with 

35 active molecules landed in the cluster with a greater 

number of heavy atoms ($20). Since the number of atoms 

and torsions (rotatable bonds) is primarily associated with 

a larger search space, the clustering of the chemical com-

pounds shows that the false-negative docking results occur 

in a molecular size-dependent manner and that high levels 

of ∆G
bind

 correlate with low numbers of heavy atoms in 

the molecule. Moreover, this size-related bias in scoring 

was previously detected for the AutoDock and ADVina 

algorithms through a virtual screening of the Diversity 

Set II (DSII) and the Database of Useful Decoys (DUD) 

compound libraries.31 Further analysis based on heavy atom 

count came up with an AUC value of 0.85, a standard error 

of 0.043 (Figure 4A), and a BEDROC 20 of 0.97, respec-

tively. The AUC for heavy atom count ranking was very 

similar to the AUC from the AutoDock and ADVina runs, 

showing that molecular docking contributes no net signal 

over heavy atom count.

To accurately assess the correlations between the com-

pound ranking and the molecular properties of chemical 

compounds, we estimated the root-mean-square deviation 

(RMSD
LC

) difference between the lowest energy conforma-

tion and the reference ligand conformation in the largest 

cluster. The RMSD
LC

 parameters represented a uniform 

distribution, which is not dependent on the number of atoms 

and torsions in the molecule (Figure 4B). On the other hand, 

the latter two values significantly correlated in a direct 

manner with the compound ranking; the ranking increased 

together with a increasing number of atoms and torsions in 

the docked molecule.

The next step was to validate the data through the correla-

tion between the docking results and experimental affinities 

(Ki
exp

) for the BBB-ChT-active ligands (n=29) except 15 

cyclic quaternary ammonium analogs. The selection was 

based on the Ki values for choline (Ki
choline

), which were in 

the range of 41–42 µM for the active bis-pyridinium cyclo-

phanes, bis-azaaromatic quaternary ammonium salts, and 
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various molecules from the 3D-QSAR dataset,20 in contrast 

to the Ki
choline

 of 0.68 µM for ammonium analogs. Regardless 

of the moderate correlation coefficient (r2=0.47) between 

the pKi
pred

 values, calculated from the appropriate ΔG
bind

 

parameters and Ki
exp

 for both algorithms (Figure 5A and B), 

it was previously reported that scoring tests on 90 protein-

ligand complexes from the Protein Data Bank demonstrated 

a statistically significant correlation even with r2 in the range 

from 0.45 to 0.55, respectively.32

To gain some insight into the binding characteristics of 

BBB-ChT-active compounds, we docked them into its binding 

cavity. During the docking process, the protein was considered 

to be rigid while the ligands were flexible. As it has been 

already suggested that the BBB-ChT pore is extremely impor-

tant for a translocation of positively charged drugs across the 

BBB,22 the analyzed active substances occupied negatively 

charged portions of the pore within the same binding cavity 

close to the center of the transporting channel (Figure 6). In 

accordance with our results, the hypothetical model for the 

choline transporter binding site20 explains this phenomenon 

due to strong ionic interaction between the trimethylammo-

nium moiety of ligand and corresponding amino acid residues 

of protein. In addition, bulk cavity methyl acceptors might 

play some role to establish a conformational congruence with 

ligand methyl groups and potentiate the BBB-ChT affinity.

The ClogP, PSA, and logBB values for BBB-ChT-active/

inactive compounds were obtained to evaluate their ability 

to interact at the CNS level and possess optimal BBB per-

meation properties. All compounds include ClogP values 

in the range of −5.87 to 5.204 and PSA values in the range 

of 3.24–64.67 Å2. For a CNS-active molecule to permeate 

the BBB, an area ,60 Å2 is usually needed, and molecules 

with a PSA of .120–140 Å2 tend to be poor in permeating 

cell membranes.33 The ClogP values specify the lipophilic 

character of the examined compounds, which should be 

high enough for the molecule (ClogP .0) to cross the BBB. 

The results indicate that most of the BBB-ChT-active com-

pounds have suitable PSA (PSA ,60 Å2), but most of them 

are not lipophilic enough (ClogP ,0) to permeate the BBB 

successfully (Figure 7A). Judging by low ClogP, these drugs 

will probably retain at the hydrophilic compartment, such 

as blood serum. However, the ClogP and PSA alone have 

proven insufficient for the accurate evaluation of the BBB 

permeation, since they correlate poorly with the logBB values 

in our previous studies.5,34
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Figure 5 Negative decimal logarithm of predicted inhibition constants (pKipred), calculated from the ∆Gbind values of AutoDock (Scripps Research Institute, San Diego, CA, 
USA) (A) and ADVina (Scripps Research Institute) (B) runs, between 29 BBB-ChT-active compounds and target protein and plotted against experimentally determined 
inhibition constants (Kiexp).
Abbreviations: BBB-ChT, blood–brain barrier choline transporter; ΔGbind, Gibbs free energy of binding.
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Figure 6 AutoDock (Scripps Research Institute, San Diego, CA, USA) rigid-flexible 
molecular docking of BBB-ChT-active compounds (44 molecules) into the binding 
site of the ChT1 homology model.
Notes: The molecular surface is divided by the frontal plane to visualize the protein pore. 
Hydrogen bonds are omitted for clarity. Red and blue colors show negative and positive 
potentials, while the zero potential is in white. Hydrogen atoms are omitted for clarity.
Abbreviations: BBB-ChT, blood–brain barrier choline transporter; ChT1, choline 
transporter 1.
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Figure 7 Relationship between molecular properties, such as ClogP, PSA (A), and Gibbs free energy of binding (∆Gbind), and decimal logarithm of brain-to-plasma concentration 
ratio (logBBpassive) based on passive transport, such as diffusion (B and C).
Notes: Thresholds are shown as dashed lines. AutoDock, Scripps Research Institute (San Diego, CA, USA). ADVina, Scripps Research Institute.
Abbreviations: ClogP, calculated octanol-water partitioning coefficient; PSA, polar surface area.

Table 1 Experimental and predicted parameters to assess BBB permeation for CNS- and BBB-ChT-active compounds

Compound Kiexp (μM) pKiexp ΔΔGbind
AutoDock

 (kcal*mol-1) ΔΔGbind
ADVina

 (kcal*mol-1) ClogP PSA (Å2) logBBpassive

3 (5d)# 33.8 4.47 -10.2 -11.11 1.16 8.66 0.187
4 (5c) 0.8 6.09 -9.92 -10.74 0.74 8.66 0.123
5 (5b) 1.4 5.85 -8.71 -10.04 0.313 8.66 0.058
Donepezil 274* 3.65 - - 3.08–4.11** 38.8*** 0.89****

Notes: #alternative drug name as denoted in Zhang et al,21 *Kang et al,36 **Thevis et al,37 Xia et al,38 Choi et al,39 ***Goh et al,40 ****Muehlbacher et al.41 AutoDock, Scripps 
Research Institute (San Diego, CA, USA). ADVina, Scripps Research Institute.
Abbreviations: BBB, blood–brain barrier; CNS, central nervous system; BBB-ChT, blood–brain barrier choline transporter; Kiexp, experimentally determined inhibition 
constant; pKiexp, negative decimal logarithm of experimental inhibition constant; ClogP, calculated octanol-water partitioning coefficient; PSA, polar surface area; logBBpassive, 
decimal logarithm of brain-to-plasma concentration ratio, based on passive transport; ∆gbind

AutoDock, Gibbs free energy of binding calculated by AutoDock; ∆gbind
ADVina, Gibbs 

free energy of binding calculated by ADVina.

According to the CNS ± activity classification for different 

chemical compounds, molecules with logBB .0 can cross 

the BBB readily, while drugs with logBB ,0 cannot.35 There-

fore, we calculated logBB
passive

 value for the BBB-ChT-active/

inactive compounds using Equation 2 (Table S3), which was 

empirically devised from a smaller dataset (n=55; r2=0.79; 

standard error of estimate (SEE) =0.35).26 It can be seen from 

Figure 7B and C that most of the substances have negative log-

BB
passive

 parameters except for the active compounds 2–5, 17, 

24, 41, and 84. Based upon these results, the bis-pyridinium 

cyclophane compounds 3–5 (5b–5c) with the best Ki
exp

 values 

(Table 1) were subjected to further analysis to define their 

blood–brain concentrations according to Equation 3. Centrally 

acting cholinesterase inhibitor donepezil hydrochloride (Ari-

cept) with experimental logBB of 0.89 was used as a reference 

substance. As demonstrated in Figure 8A and B, the compound 

distribution into the brain, governed by linear relationship, 

was significantly improved due to enhanced permeation rate 

across the BBB after considering the passive (logBB
passive

) and 

BBB-ChT-active transport (logBB
active

).

Conclusion
In this current study, we report on the development of an 

in silico structure-based predictive model to determine 
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based on diffusion alone (A) and together with BBB-ChT active transport (B).
Notes: Donepezil is used as a reference substance (dashed line). The logBB parameter is described as linear cumulative distribution function.
Abbreviation: BBB-ChT, blood–brain barrier choline transporter.

vector-mediated transport properties for drug-like chemical 

compounds using the BBB-ChT system. Surprisingly, this 

transporter has not been cloned, expressed, or crystalized. 

However, the homology model of ChT1 was implemented in 

virtual screening as a substitute for the BBB-ChT protein due 

to the absence of its 3D crystal structure. The molecular dock-

ing studies were initiated with the AutoDock and ADVina 

search algorithms and provided highly correlated ∆G
bind

 val-

ues with r2=0.88, F=692.4, SEE=0.775, and P-value,0.0001 

for the compiled BBB-ChT database. Both programs were 

able to cluster active (∆G
bind

 ,−6.0 kcal*mol−1) and inac-

tive (∆G
bind

 .−6.0 kcal*mol−1) molecules and dock them 

significantly better than at random with an AUC of 0.82 for 

AutoDock and 0.81 for ADVina.

In the molecular docking of smaller compounds with few 

torsional bonds, a size-related bias in scoring was detected, 

which affects the ligands comprising ,20 heavy atoms. 

This bias was responsible for a failure to preferentially rank 

only active compounds at the top, producing false-negative 

outcomes. Finally, important BBB parameters, such as the 

logBB
passive

 and logBB
active

 values, were assessed to evaluate 

the role of active transport for compounds to cross the BBB. 

Information obtained from this study is useful to determine 

the binding requirements in BBB-ChT, and until such time as 

its crystal structure becomes available, it may have significant 

utility in elaborating a highly predictive model for the rational 

design of drug-like compounds targeted to the brain.
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Supplementary materials

Table S1 MATLAB script to generate Figure 8A and B

clear
clear all
subplot(1,2,1)
x=linspace(0,100);
y1=x/7.7625;
y2=x/1.1429;
y3=x/1.3274;
y4=x/1.5382;
plot(x,y1,'black--',x,y2,x,y3,x,y4,'LineWidth', 2);
ylabel('Concentration in blood (\muM)');
xlabel('Concentration in brain (\muM)');
legend('Donepezil','Compound 5b','Compound 5c','Compound  
  5d', 'Location', 'NorthWest')
ylim([0 7])
xlim([0 8])
grid on
subplot(1,2,2)
x=linspace(0,100);
y5=x/7.7625;
y6=x/2.1842;
y7=x/5.6114;
y8=x/6.8531;
plot(x,y5,'black--',x,y6,x,y7,x,y8,'LineWidth', 2);
ylabel('Concentration in blood (\muM)');
xlabel('Concentration in brain (\muM)');
legend('Donepezil','Compound 5b','Compound 5c','Compound  
  5d','Location', 'NorthWest')
ylim([0 3.5])
xlim([0 8])
grid on

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Advances and Applications in Bioinformatics and Chemistry 2014:7 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

33

Determining vector-mediated transport properties for blood–brain barrier choline transporter

Table S2 Docking poses ranked according to a score that the docking program assigns to each pose

#COMP #RUNS #LC RMSD_LC #ATS #TORS ΔGbind(AutoDock) ΔGbind(ADVina) BBB-ChT Activity

1 10 10 7.1249 26 0 -10.34 -10.378 1
2 10 3 4.6183 20 8 -7.3 -7.272 1
3 10 10 10.7815 31 0 -10.2 -11.117 1
4 10 10 9.5712 30 0 -9.92 -10.741 1
5 10 7 8.1711 29 0 -8.71 -10.037 1
6 10 2 11.7575 30 11 -8.95 -8.628 1
7 10 2 16.1779 32 13 -9.13 -9.098 1
8 10 3 10.3328 26 7 -8.78 -9.323 1
9 10 1 14.653 26 13 -7.96 -6.939 1
10 10 4 8.4713 8 3 -3.58 -3.676 1
11 10 4 10.4312 7 3 -3.27 -3.335 0
12 10 2 10.0631 11 6 -4.62 -4.379 0
13 10 10 8.7533 7 3 -4.09 -2.73 0
14 10 10 5.8992 10 5 -3.99 -4.566 0
15 10 9 8.4537 7 3 -3.47 -3.147 0
16 10 3 9.5477 9 4 -4.03 -4.231 0
17 10 2 5.7884 20 8 -7.68 -7.295 1
18 10 4 5.4073 9 3 -3.81 -4.05 0
19 10 6 11.8551 19 6 -6.41 -6.506 0
20 10 7 5.2819 11 6 -4.01 -4.915 1
21 10 10 9.2404 6 1 -3.57 -3.508 0
22 10 6 4.2376 12 2 -5.38 -6.014 0
23 10 9 4.2149 12 2 -5.42 -6.077 0
24 10 3 6.0864 14 7 -6.85 -7.003 1
25 10 5 5.9122 10 5 -3.9 -4.371 0
26 10 3 4.4788 9 3 -3.44 -4.12 0
27 10 5 10.6334 9 4 -4.01 -4.045 0
28 10 7 4.3613 11 2 -5.11 -5.816 0
29 10 6 4.2999 12 2 -5.43 -6.148 0
30 10 9 5.847 13 1 -6.49 -6.208 0
31 10 2 10.2889 17 4 -8.66 -7.807 0
32 10 5 6.5735 11 2 -5.59 -5.68 0
33 10 3 8.0609 13 4 -6.14 -6.355 0
34 10 5 6.706 14 4 -5.4 -6.71 0
35 10 7 10.3509 7 0 -4.35 -4.863 0
36 10 3 6.2092 13 8 -4.32 -4.841 1
37 10 3 9.576 6 3 -2.91 -2.928 0
38 10 6 10.0262 10 1 -5.74 -5.06 0
39 10 6 5.5151 16 2 -6.2 -7.241 0
40 10 1 9.3143 25 12 -7.67 -6.785 1
41 10 1 7.1695 20 8 -7.86 -7.294 1
42 10 2 14.6284 34 8 -9.3 -10.685 1
43 10 2 8.4975 30 8 -8.19 -9.398 1
44 10 4 11.394 30 8 -9.3 -9.363 1
45 10 2 8.7913 28 8 -7.55 -9.389 1
46 10 2 9.1544 28 8 -8.68 -9.623 0
47 10 2 11.9626 30 10 -8.26 -9.183 0
48 10 1 8.74 30 10 -10.49 -9.253 1
49 10 3 10.1642 26 7 -9.15 -9.409 1
50 10 2 11.2523 30 11 -9.33 -8.35 1
51 10 1 12.2826 32 13 -9.77 -8.587 1
52 10 1 6.8438 20 7 -8.55 -6.822 1
53 10 1 8.9795 22 9 -7.17 -6.795 1
54 10 1 13.5064 24 11 -7.61 -6.922 1

(Continued)
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Table S2 (Continued)

#COMP #RUNS #LC RMSD_LC #ATS #TORS ΔGbind(AutoDock) ΔGbind(ADVina) BBB-ChT Activity

55 10 2 10.8102 26 13 -7.02 -7.164 1
56 10 1 10.7718 23 10 -8.27 -7.211 1
57 10 7 4.9855 12 3 -5.42 -5.478 1
58 10 3 7.3153 27 11 -8.24 -8.406 1
59 10 2 8.1588 23 10 -6.31 -6.876 1
60 10 8 3.6022 12 1 -5.65 -5.737 0
61 10 6 8.7255 11 1 -5.78 -5.135 0
62 10 5 8.9773 10 0 -6.15 -5.457 1
63 10 1 8.894 30 14 -8.5 -7.968 1
64 10 6 7.925 23 8 -6.97 -7.648 1
65 10 2 7.6806 24 8 -7.48 -8.086 1
66 10 2 8.7331 24 7 -7.66 -7.744 1
67 10 4 8.1205 23 7 -7.26 -7.543 1
68 10 1 8.0574 20 7 -6.43 -6.385 1
69 10 2 6.632 11 5 -4.32 -4.648 0
70 10 6 6.3117 10 5 -3.96 -4.371 0
71 10 4 5.6526 10 4 -4.08 -4.242 0
72 10 6 8.9682 9 0 -5.99 -4.854 1
73 10 4 10.9724 8 4 -3.45 -3.755 0
74 10 2 5.7092 17 12 -5.47 -5.7 0
75 10 4 6.2461 12 1 -5.01 -5.464 0
76 10 6 5.5277 10 1 -4.9 -6.115 0
77 10 2 9.5978 22 15 -6.99 -6.914 1
78 10 3 6.7502 11 5 -4.45 -4.802 0
79 10 6 10.7114 9 4 -4.06 -3.983 1
80 10 6 10.1741 10 1 -5.54 -4.931 0
81 10 10 8.6855 7 3 -3.48 -2.925 0
82 10 3 8.3284 10 0 -5.54 -5.621 0
83 10 4 4.8109 7 3 -2.97 -3.182 0
84 10 4 10.3719 8 0 -5.51 -4.602 1
85 10 7 9.2977 5 0 -3.06 -2.701 1
86 10 10 7.9856 4 0 -3.45 -2 0
87 10 7 3.9228 13 2 -3.86 -4.699 0
88 10 3 9.4446 9 4 -4.93 -4.186 0
89 10 4 10.2794 10 1 -4.21 -4.49 0
90 10 6 8.8939 4 0 -2.66 -2.323 0
91 10 5 5.1308 13 1 -5.99 -6.16 0
92 10 10 8.7583 7 3 -4.08 -2.89 0
93 10 8 7.4217 4 0 -3.07 -2.095 0

Notes: AutoDock, Scripps Research Institute (San Diego, CA, USA). ADVina, Scripps Research Institute. 
Abbreviations: #COMP, number of compound; #RUNS, total number of runs found in all the dlg files in the specified directory; #LC, number of largest cluster; RMSD_LC, 
the RMSD difference between the lowest energy conformation in the largest cluster and the reference ligand conformation; #ATS, number of atoms; #TORS, number of 
torsions; ΔGbind, Gibbs free energy of binding in kcal*mol-1; 1, BBB-ChT active; 0, BBB-ChT inactive; BBB-ChT, blood–brain barrier choline transporter; dlg, docking log; 
RMSD, root-mean-square deviation.
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Table S3 Calculated logBBpassive value for BBB-ChT-active/inactive 
compounds using Equation 2

#COMP ClogP PSA logBBpassive

1 -0.956 8.66 -0.13448
2 -0.006 7.57 0.02605199
3 1.159 8.66 0.187
4 0.736 8.66 0.122704
5 0.313 8.66 0.05840815
6 -1.506 8.66 -0.21808
7 -0.524 8.66 -0.068816
8 -3.47 8.66 -0.516608
9 -2.04 8.66 -0.299248
10 -4.123 27.2 -0.890256
11 -1.527 39.44 -0.676816
12 -3.442 27.2 -0.786744
13 -1.434 46.25 -0.763468
14 -3.405 27.2 -0.78112
15 -0.882 32.26 -0.472512
16 -3.896 27.2 -0.855752
17 5.204 6.48 0.834104
18 -2.857 27.2 -0.697824
19 0.196 39.34 -0.41344
20 -2.914 27.2 -0.706488
21 -2.935 6.97 -0.410276
22 -2.63 27.2 -0.66332
23 -2.63 27.2 -0.66332
24 4.746 3.24 0.81244
25 -3.141 27.2 -0.740992
26 -3.574 27.2 -0.806808
27 -3.632 27.2 -0.815624
28 1.191 23.47 -0.027324
29 -2.63 27.2 -0.66332
30 1.801 6.48 0.316848
31 4.148 17.07 0.51686
32 1.013 20.31 -0.007612
33 -3.825 27.2 -0.84496
34 -3.635 32.6 -0.896
35 -4.436 4.33 -0.599356
36 -1.932 27.2 -0.557224
37 0.286 32 -0.291128
38 0.323 23.47 -0.15926
39 -2.096 39.73 -0.767596
40 -2.531 8.66 -0.37388
41 -0.006 7.57 0.02605199
42 -2.384 8.66 -0.351536
43 -1.07 8.66 -0.151808
44 -3.164 8.66 -0.470096
45 -5.874 8.66 -0.882016
46 -3.932 8.66 -0.586832
47 -2.936 8.66 -0.43544
48 -2.86 8.66 -0.423888
49 -3.47 8.66 -0.516608
50 -1.506 8.66 -0.21808
51 -0.524 8.66 -0.068816
52 -4.986 8.66 -0.74704
53 -4.004 8.66 -0.597776

(Continued)

Table S3 (Continued)

#COMP ClogP PSA logBBpassive

54 -3.022 8.66 -0.448512
55 -2.04 8.66 -0.299248
56 -3.513 8.66 -0.523144
57 -2.464 27.2 -0.638088
58 1.625 41.26 -0.224648
59 -0.764 41.26 -0.587776
60 -2.638 27.2 -0.664536
61 -2.438 27.2 -0.634136
62 -2.086 24.04 -0.533864
63 3.098 41.26 -0.000752
64 -0.271 41.26 -0.51284
65 0.152 41.26 -0.448544
66 0.214 41.26 -0.43912
67 -0.209 41.26 -0.503416
68 -1.445 41.26 -0.691288
69 -2.942 33.27 -0.80058
70 -3.141 27.2 -0.740992
71 -3.41 33.27 -0.871716
72 -1.503 6.97 -0.192612
73 0.076 23.47 -0.196652
74 1.674 6.97 0.290292
75 -4.655 47.42 -1.270376
76 -2.864 6.97 -0.399484
77 2.628 4.33 0.474372
78 -2.908 33.27 -0.795412
79 -3.632 27.2 -0.815624
80 0.323 23.47 -0.15926
81 -0.882 32.26 -0.472512
82 2.015 12.63 0.258356
83 -0.414 23.47 -0.271284
84 1.324 3.24 0.292296
85 -3.162 6.97 -0.44478
86 -0.661 26.02 -0.346568
87 -0.525 64.67 -0.897916
88 -2.254 6.97 -0.306764
89 -0.116 38.65 -0.450652
90 0.317 3.24 0.139232
91 1.13 15.87 0.075884
92 -1.434 46.25 -0.763468
93 -0.143 12.03 -0.06078

Abbreviations: #COMP, number of compound; ClogP, calculated octanol-water 
partitioning coefficient; PSA, polar surface area; logBBpassive, decimal logarithm of 
brain to plasma concentration ratio based on passive transport; BBB-ChT, blood–
brain barrier choline transporter.
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