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Abstract: This study concentrates on the development of biodegradable nanofiber membranes 

with controlled drug release to ensure reduced tissue adhesion and accelerated healing. Nanofibers 

of poly(lactic-co-glycolic acid) (PLGA) loaded with epigallocatechin-3-O-gallate (EGCG), the 

most bioactive polyphenolic compound in green tea, were electrospun. The physicochemical 

and biomechanical properties of EGCG-releasing PLGA (E-PLGA) nanofiber membranes were 

characterized by atomic force microscopy, EGCG release and degradation profiles, and tensile 

testing. In vitro antioxidant activity and hemocompatibility were evaluated by measuring scav-

enged reactive oxygen species levels and activated partial thromboplastin time, respectively. 

In vivo antiadhesion efficacy was examined on the rat peritonea with a surgical incision. The 

average fiber diameter of E-PLGA membranes was approximately 300–500 nm, which was 

almost similar to that of pure PLGA equivalents. E-PLGA membranes showed sustained EGCG 

release mediated by controlled diffusion and PLGA degradation over 28 days. EGCG did not 

adversely affect the tensile strength of PLGA membranes, whereas it significantly decreased 

the elastic modulus and increased the strain at break. E-PLGA membranes were significantly 

effective in both scavenging reactive oxygen species and extending activated partial throm-

boplastin time. Macroscopic observation after 1 week of surgical treatment revealed that the 

antiadhesion efficacy of E-PLGA nanofiber membranes was significantly superior to those of 

untreated controls and pure PLGA equivalents, which was comparable to that of a commercial 

tissue-adhesion barrier. In conclusion, the E-PLGA hybrid nanofiber can be exploited to craft 

strategies for the prevention of postsurgical adhesions.

Keywords: nanofiber membrane, poly(lactic-co-glycolic acid), epigallocatechin-3-O-gallate, 

antiadhesion, tissue-adhesion barrier

Introduction
An adhesion develops as a result of the wound healing process, where tissue repair 

mechanisms respond to any disturbance, such as surgery, trauma, infection, or 

radiation.1–3 Postsurgical abdominal adhesions and their sequelae present major clinical 

and medicoeconomic problems such as small bowel obstruction, injury at reopera-

tions, female infertility, and chronic pain.4,5 Various types of barriers with the ability 

to reduce the adhesion formation are now available in the form of pharmacological 

and nonpharmacological agents, or a combination of these agents, applied between 

or over damaged tissue surfaces.6–8 Many different pharmacological agents, such as 

anti-inflammatory, fibrinolytic ,and antiproliferative drugs, have been used in an effort 

to arrest the adhesion pathway or to tip the balance in the favor of fibrinolysis and 

fibrin deposition.9 A number of pharmacological agents were approved for human 

use, some of which later had to be withdrawn from the market due to safety concerns 
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or lack of efficacy.10  Nonpharmacological antiadhesion 

agents can broadly be categorized into two types; one is a 

site-specific agent forming mechanical or gel barriers, such 

as membranes or films, fibrous sheets, and meshes, and 

another is a broad-coverage fluid agent, ie, instillates like 

lactated Ringer’s solution.9,10 A problem encountered with 

these agents is the necessity to decide intraoperatively where 

adhesions are likely to occur and, consequently, where to 

place the agents.6 The decision may be easy to make when 

there is only one injured site, but may be much more difficult 

in surgical patients with severe multiple injuries. Thus, an 

ideal agent should be easy to and ready to use and remain 

over injured surfaces for a limited period of time.

During the last few decades, considerable research 

has been conducted into the complex process of adhesion 

formation, and combined adhesion-prevention strategies 

have been investigated to develop optimal tissue-adhesion 

barriers. Hence, complete adhesion prevention remains an 

unsolved problem, and the search for an ideal antiadhesion 

agent is still ongoing. Thermosensitive hydrogels contain-

ing basic components of poly(ε-caprolactone, PCL) and 

poly(ethylene glycol, PEG) have been shown to effectively 

prevent postsurgical intra-abdominal adhesions.11,12 Moreover, 

nonwoven fibrous membranes, composed of biodegradable 

copolymers including poly(lactic-co-glycolic acid, PLGA), 

PLGA/PEG–poly(lactic acid, PLA) and polyurethane/PLGA, 

impregnated with antibiotic or anti-inflammatory drugs, have 

been examined previously in the context of adhesions in a rat 

model;13–15 however, their use in combination with green tea 

polyphenol, epigallocatechin-3-O-gallate (EGCG), is novel 

and challenging. The direct impregnation of PLGA nanofibers 

with EGCG has not been reported yet. Herein, we explore the 

potential of EGCG-releasing fibrous membranes as alternative 

agents to decrease the incidence of postoperative adhesions.

Materials and methods
Preparation of nanofiber membranes
PLGA (85:15  [mol/mol], molecular weight (MW) =  

130–150  kDa) resins were kindly supplied by BMG Inc. 

(Kyoto, Japan). EGCG-releasing PLGA (E-PLGA) nanofiber 

membranes were prepared by an electrospinning method. 

PLGA resins were dissolved in the solvent system consist-

ing of dichloromethane (Sigma-Aldrich Co., St Louis, MO, 

USA) and trifluoroethanol (Sigma-Aldrich Co.) with 8:2 ratio 

determined by optimization. The admixture (2, 4 and 8 wt%) 

of EGCG (MW =458.4, Teavigo™; DSM Nutritional Prod-

ucts Ltd., Basel, Switzerland) was obtained by dissolving it 

in hexafluoroisopropanol (Sigma-Aldrich Co.). The mixed 

solution of PLGA and EGCG was loaded in a 10 mL syringe 

equipped with a blunt 23-gauge needle. The electrospinning 

system consists of a syringe pump (single-syringe infusion 

pump; KD Scientific, Holliston, MA, USA) with a 10 mL 

syringe, a silicone hose, a stainless steel needle with an inner 

diameter of 0.8 mm, a high-voltage power supply (NanoNC, 

Seoul, Republic of Korea) and a thin aluminum foil acting as 

a collector, which was positioned horizontally and grounded. 

Under ambient conditions, the electrospinning process was 

performed to fabricate E-PLGA nanofibers loaded with 2, 

4, and 8 wt% EGCG (hereafter, E(2)-PLGA, E(4)-PLGA, 

and E(8)-PLGA, respectively). A positive voltage of 18 kV, 

a flow rate of 1 mL/hour, and a 12 cm distance between the 

needle tip and the collecting plate were used for this process. 

Following the spinning process, electrospun membranes were 

dried at room temperature for 6 hours and then placed at 50°C 

overnight. For physicochemical characterizations, prepared 

membranes were cut into discs of 12 mm in diameter and 

about 200 μM in thickness, which weighed approximately 

2.9 mg. Membranes for the in vitro bioactivity evaluation and 

in vivo animal study were prepared as sheets of 15×15 mm 

in dimension and about 5.8  mg in weight, with almost 

the same thickness as discs. Thus, approximately 230 μg 

(8  wt%, ≈500  μmol) and 460  μg (8  wt%, ≈1,000  μmol) 

EGCG were loaded in one E(8)-PLGA disc and sheet, respec-

tively. All discs and sheets made from E-PLGA nanofibers 

were sterilized by γ-irradiation (2.5 Mrad) prior to use.

Physicochemical characterizations  
of E-PLGA nanofiber membranes
Atomic force microscopy
The topography of PLGA and E-PLGA membranes was 

characterized by atomic force microscopy (AFM) (noncon-

tact mode, PSIA XE-100; PSIA Inc., Fremont, CA, USA) 

with a Multi 75 silicon scanning probe.

Raman spectroscopy
In order to confirm the dispersive loading of EGCG in 

E-PLGA membranes, Raman spectra of PLGA and E-PLGA 

membranes were obtained by Macro Probe Raman Measure-

ment System (Ramboss-500i; Dongwoo Optron Co., Ltd, 

Gwangju-si, Republic of Korea) equipped with a thermo-

electric-cooled charge-coupled device detector.

In vitro EGCG release from E-PLGA 
nanofiber membranes
E-PLGA discs were immobilized to the bottom of a glass 

vial by using sterile vacuum grease and then incubated 
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in Dulbecco’s phosphate-buffered saline (DPBS, pH 7.4; 

Sigma-Aldrich Co.) at 37°C for 28 days. At the end of each 

predetermined incubation period, the absorbance was quanti-

fied at 275 nm by an ultraviolet spectrophotometer (U-2800A; 

Hitachi Ltd., Tokyo, Japan). Cumulatively released EGCG 

from E-PLGA discs was calculated through the standard 

calibration curve of EGCG solution (Figure S1).

In vitro degradation of E-PLGA 
nanofiber membranes
Cumulative weight loss was used as an index of PLGA 

degradation in vitro. An initial weight of either PLGA or 

E-PLGA disc was weighed using an analytical balance 

(Ohaus Adventurer; Ohaus, Parsippany, NJ, USA). All 

weighed discs were immersed in 3 mL DPBS (pH 7.4) and 

incubated in a bioshaker (BR-4OLF; Taitec Corporation, 

Saitama, Japan) at 37°C with shaking at 60 rpm for up to 

8 weeks and medium was refreshed every week. The pH of 

the solution was monitored over time to ensure that a stable 

pH 7.4 was maintained at all times. At determined time inter-

vals, immersed discs were retrieved, washed with distilled 

water and dried in a vacuum desiccator for 24 hours at room 

temperature. Immediately after vacuum-drying, the weight 

of discs was measured by using the balance. The cumulative 

weight loss of PLGA and E-PLGA discs was determined as 

percentage (%) of the dry weight of each disc at each time 

divided by its initial dry weight.

Mechanical test
In order to evaluate the influence of EGCG blending on the 

mechanical properties of PLGA nanofiber membranes, the 

tensile strengths at break of PLGA and E-PLGA membranes 

were measured. The dimensions of all testing specimens 

were prepared according to the guidelines of the American 

Society for Testing and Materials (D-638 and D-882) for the 

uniaxial tensile strength testing.16 The tensile strength at break 

was determined using Autograph AG-20kNG (Shimadzu, 

Kyoto, Japan). A displacement of 1 mm/minute was applied 

to each specimen along with the longitudinal direction, and 

all data were collected at a frequency of 20 Hz until break 

occurred.

Reactive oxygen species levels by assay
The 2′,7′-dichlorodihydrofluorescein (DCF) assay is a 

widely used method to detect reactive oxygen species 

(ROS) levels in pharmacological studies.17,18  The amount 

of potential free radicals was quantified using an ROS 

assay kit (OxiSelect™; Cell Biolabs, Inc., San Diego, CA, 

USA), which employs the cell-permeable fluorogenic probe 

2′,7′-dichlorodihydrofluorescein diacetate (DCFH-DA). 

DCFH-DA is an ROS detector that can cross cell mem-

branes and be deacetylated by intracellular esterases to 

nonfluorescent 2′,7′-dichlorodihydrofluorescein (DCFH). 

In the presence of ROS, DCFH is rapidly oxidized to the 

highly fluorescent DCF, which is readily detectable. The 

fluorescence intensity is proportional to the ROS levels 

within the cell cytosol.

For preparing the extracts of PLGA and E-PLGA 

nanofibers, each sheet was incubated for 3 days in DPBS 

(pH 7.4) at 37°C. L-929 cells (a murine fibroblast cell line, 

CCL-1; American Type Culture Collection, Manassas, VA, 

USA) were routinely maintained in a complete Dulbecco’s 

Modified Eagle’s Medium (Sigma-Aldrich Co.) supple-

mented with 10% fetal bovine serum (Sigma-Aldrich Co.) 

and 1% antibiotic antimycotic solution (including 10,000 U 

penicillin, 10 mg streptomycin, and 25 μg amphotericin B 

per mL; Sigma-Aldrich Co.) at 37°C in a humidified atmo-

sphere of 5% CO
2
 in air. Cells, grown to 70%–80% confluent 

monolayers, were pretreated with or without 50 μM H
2
O

2
 for 

30 minutes and then exposed to 50% diluted extract of either 

PLGA or E-PLGA sheet for 23 hours at 37°C in a CO
2
 incu-

bator. Afterwards, the cell cultures were further incubated 

with DCFH-DA for 30 minutes at 37°C in the dark. Parallel 

sets of wells containing vehicle-treated cells were regarded 

as the negative controls. The fluorescence emission of DCF 

was monitored at an excitation wavelength of 480 nm and 

an emission wavelength of 530 nm in a fluorescence plate 

reader (VICTOR3  Multilabel Counter; PerkinElmer, Inc., 

Waltham, MA, USA). The amount of DCF formed was 

calculated from a calibration curve constructed using an 

authentic DCF standard. The relative DCF fluorescence 

intensity was calculated as a percentage of the DCF formed 

in negative control wells.

Activated partial thromboplastin  
time measurement
The antithrombogenicity of E-PLGA nanofibers was evalu-

ated by determining activated partial thromboplastin time 

(aPTT). Citrated, platelet-poor plasma (PPP) was prepared 

from peripheral venous blood collected by clean, nontrau-

matic venipuncture directly into a polystyrene tube containing 

0.12 M trisodium citrate at a ratio of 9:1 and then centrifuged 

at 2,200× g for 10 minutes. The processed plasma was frozen 

and stored at -70°C. Immediately before testing, the PPP 

was thawed in a water bath at 37°C. According to the same 

process as described above, 50% diluted extracts in DPBS 
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(pH 7.4) of PLGA and E-PLGA sheets were prepared and 

then added to the thawed plasma. An aPTT reagent (APTT 

lyophilized silica, HemosIL™; Instrumentation Laboratory, 

Bedford, MA, USA) was used as follows: 0.1 mL of the 

reagent was mixed with the admixture of 0.1 mL PPP and 

diluted extracts and then incubated for 5 minutes at 37°C; 

and 0.1 mL of prewarmed calcium chloride (0.025 mol/L) 

was added and mixed, at which time the timer was started. 

Coagulation times (aPTT) were determined with a coagu-

lometer (IL ACL-300; Instrumentation Laboratory). Normal 

saline (0.9% NaCl) and heparin (0.1 U/mL) were employed 

as the negative and positive controls, respectively. Normal 

values of aPTT are reported as 24–37 seconds.19

Animal study for antiadhesion efficacy  
of E-PLGA nanofiber membranes
Animals and experimental groups
Male adult (10-week-old) specific-pathogen-free Sprague 

Dawley rats (Samtaco Bio, Osan-si, Republic of Korea) 

weighing approximately 350 g each were individually housed 

in metabolic cages for 3  days before surgical treatment 

and until the day of sacrifice. They were given food and 

water ad libitum both preoperatively and postoperatively. 

All experiments were performed between the hours of 9 am 

and 5 pm. Animal care followed the criteria of the Animal 

Care Committee of Yonsei University College of Medicine 

for the care and use of laboratory animals in research. All 

experiments related to surgical procedures and treatments 

were performed in accordance with the guidelines of the 

Animal Experiment and Ethics Committee of Yonsei Uni-

versity College of Medicine. Rats were randomly divided 

into four experimental groups: Group I, rats treated without 

any antiadhesion agents (untreated controls); Group II, rats 

treated with pure PLGA membranes; Group III, rats treated 

with E(8)-PLGA membranes; and Group IV, as the positive 

control, rats treated with membranes of oxidized regenerated 

cellulose (Gynecare Interceed®; Ethicon Inc., Somerville, NJ, 

USA). Antiadhesion studies were carried out in 12 animals 

for each group.

Surgical procedures and treatments  
for antiadhesion study
Sterile surgical technique was applied throughout the study. 

Animals were anesthetized by intraperitoneal injection with 

a mixture of 35–50 mg/kg ketamine HCl (Huons Co., Ltd., 

Seongnam-si, Republic of Korea) and 2% xylazine hydro-

chloride (Rompun®; Bayer AG, Leverkusen, Germany)  

before the celiotomy. After anesthetic induction, an area 

(about 15  cm2) in the skin of the abdomen was shaved 

and swabbed with alcohol and povidone iodine solutions. 

A longitudinal incision (5 cm long) was made using a blade  

(No. 11), and both abdominal walls (right and left side) were 

reflected and similar adhesion models were made on each 

of the abdominal walls. Abdominal walls were exposed and 

then a 10 mm ×10 mm of abdominal wall muscle away from 

the incision site was excised to exfoliate the peritonea until 

collagen was exposed, which formed small rectangles with 

roughly the same size. Tweezers were covered with gauze, 

and the outer surfaces of the internal organs exactly facing 

this defective abdominal wall area were abraded/brushed 

gently to trigger the adhesion process between these defective 

surfaces. After that, one membrane (experimental group) with 

a size of 15 mm × 15 mm was fixed with 6–prolene suture, 

at four corners on the right side of the abdominal wall, to 

cover the injured area. The left side of the abdominal wall 

was defective in a similar procedure, but left alone (ie, no 

membrane fixed), which served as control. Then, the middle 

line incision was closed using 4–0 silk suture. After 1 week, 

rats were euthanized and their abdominal cavities reopened 

by two other surgeons who were blind tested to evaluate 

the incidence and severity of postsurgical surgical adhesion 

based on adhesion score systems as described in Table 1. 

Table 1 Adhesion score systems for macroscopic evaluations

Adhesion scoring system Score Criteria

Extent of adhesions 0 No adhesion

1 1%–25% involvement

2 26%–50% involvement

3 51%–75% involvement

4 76%–100% involvement
Severity of adhesions 0 No adhesion

1 Tiny filmy adhesions easy to separate without tension or injury of the involved tissues

2 Dense adhesions that require tension to divide

3 Dense adhesions that lead to serosal injury during lysis or that need to be divided with scissors

4 Other intra-abdominal organs were involved, and a conglomerate was formed
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The adhesion score system was adopted according to each 

adhesion criterion: the extent of adhesion, following the cri-

teria of Leach et al20 and the severity of adhesion, following 

the criteria of Knightly et al.21 After scoring macroscopic 

adhesions, the adhesion site was excised enbloc with adhe-

sive tissues or organs and was fixed in 10% neutral buffered 

formalin for 24  hours, and segments were stained with 

hematoxylin and eosin. Microscopic grades for inflammation, 

neovascularization, fibrosis, and fatty infiltrate were graded 

from 0–3 as follows: 0, none; 1, mild; 2, moderate; and 3, 

dense, as previously described.22 The histopathologist who 

assessed each specimen was blinded to the information.

Statistical analysis
All variables were tested in three independent experiments 

in vitro, which was repeated twice (n=6). Quantitative data 

are expressed as mean ± standard deviation (SD). Data were 

tested for homogeneity of variances using the test of Levene, 

prior to statistical analysis. Statistical comparisons were car-

ried out with a one-way analysis of variance (ANOVA; SAS 

Institute Inc., Cary, NC, USA), which was followed by the 

Bonferroni test for multiple comparisons. Statistical analysis 

for the animal study was made by using the Kruskal–Wallis 

one-way ANOVA and Mann–Whitney U-test. A value of 

P0.05 was considered statistically significant.

Results and discussion
Physicochemical characteristics  
of E-PLGA nanofiber membranes
Electrospinning techniques can fabricate fibrous scaffolds 

with excellent biocompatibility and biodegradability, as 

well as suitable microstructure/nanostructure to guide tis-

sue regeneration and to incorporate bioactive molecules 

such as drugs, proteins, and genes.23–25 E-PLGA nanofiber 

membranes were prepared by electrospinning PLGA with 

2, 4, and 8 wt% EGCG and were seen to be slightly yel-

lowish red-colored due to loaded EGCG (Figure S2). The 

physicochemical properties of E-PLGA membranes were 

characterized by AFM, Raman spectroscopy, and EGCG 

release and degradation profiles. 

AFM demonstrated that E-PLGA membranes had a 

three-dimensional interconnected pore structure with ran-

domly oriented nanofibers (Figure 1A). The average fiber 

diameter of E-PLGA membranes was found to range between 

300–500 nm and to be almost similar to that of pure PLGA 

equivalents. Raman spectra of pure PLGA and E-PLGA 

membranes were dominated by the noticeable band near 

1,768 cm-1 (Figure 1B), which was due to the ester linkage 

of PLGA.26 The deformation band of CH
3
 was observed at 

1,450 cm-1, which corresponds to the antisymmetric vibration 

of CH
3
 from the lactic unit of PLGA.26 Also, quite intense and 

definite bands were found at 1,046 cm-1 and 1,127 cm-1 for the 

C-CH
3
 of PLGA. In E-PLGA membranes, the characteristic 

bands were found near 1,640 cm-1 and 3,450 cm-1, which are 

derived from the C=O and ring OH stretching vibrations of 

EGCG, respectively.27 This result indicates that EGCG was 

well dispersed in the E-PLGA fiber. 

The EGCG release profiles were examined to determine 

whether EGCG could be released from E-PLGA membranes 

in amounts necessary to generate effective concentrations 

that prevent postsurgical adhesions. As shown in Figure 1C, 

EGCG was released in a logarithmic manner in which the 

release rate decreased with time. A minor burst effect of less 

than 10% (50 μM) of loaded amounts was observed during 

the first day of release from E(8)-PLGA membranes. After 

7 days, E(8)-PLGA membranes showed the sustained release 

of EGCG. From the release profile, it was found that about 

180 μM and 240 μM (≈36% and 48% of loaded amounts) 

EGCG was cumulatively released from E-PLGA at 7 days 

and 28 days, respectively. In the cases of E(2)-PLGA and 

E(4)-PLGA membranes, the release patterns were similar 

to that of E(8)-PLGA membranes, whereas the cumula-

tively released concentrations (≈14% and 70 μM for E(2)-

PLGA membranes and ≈16% and 80 μM for E(4)-PLGA 

membranes) at 7 days were too low to reduce the adhesion 

formation. It is considered that the main release mechanism 

during the test period might be controlled diffusion of EGCG 

together with PLGA degradation.28

Figure 2A shows the cumulative weight loss of E-PLGA 

nanofiber membranes. The in vitro degradation profiles of 

E-PLGA membranes showed the stepwise patterns as fol-

lows. In the first step, for the period up to 1 week of incu-

bation, E-PLGA membranes exhibited a very fast weight 

loss rate (about 3% and 8% loss of the initial weight E(2 or 

4)-PLGA and E(8)-PLGA, respectively). After that period, 

the mass loss was decelerated until reaching the plateau at 

2 weeks or 4 weeks. In the second step, the degradation was 

reaccelerated and additional weight loss of more than 8% 

was observed in E(4)-PLGA and E(8)-PLGA membranes 

at 8 weeks. Different from that of E-PLGA membranes, the 

mass loss of pure PLGA equivalents was insignificant dur-

ing test periods. Aliphatic polyesters such as poly(glycolic 

acid), PLA, and PCL are known to be degraded by nonen-

zymatic random hydrolytic scission of esters linkage.29 The 

mass loss of E-PLGA membranes during incubation is 

considered to be more accelerated by the release of EGCG 
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Figure 1 Physicochemical properties of E-PLGA nanofiber membranes.
Notes: (A) AFM images, (B) Raman spectra, and (C) in vitro release profiles of EGCG from E-PLGA membranes. All photographs shown in this figure are representative 
of six independent experiments with similar results.
Abbreviations: AFM, atomic force microscopy; au, arbitrary unit; EGCG, epigallocatechin-3-O-gallate; E‑PLGA, EGCG-releasing PLGA; PLGA, poly(lactic-co-glycolic acid).
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from E-PLGA matrices. This E-PLGA degradation profile 

closely matches that of EGCG release and supports its 

release mechanism. 

The morphological changes of pure PLGA, E(2)-PLGA 

and E(8)-PLGA membranes during in vitro degradation 

are shown in Figures 2B–D. No significant morphological 

changes in pure PLGA membranes were observed at 2 weeks 

of incubation (Figure 2B). The small change in morphology 

during this period is also consistent with the small amount 

of shrinkage of the membrane. It was not until 8 weeks that 

the fibers started to break down into small pieces. However, 

the morphologies of E-PLGA membranes were significantly 

changed with the breakdown of the fibers into small pieces at 

the first week of incubation (Figures 2C and D). After 4 weeks, 

the degradation was more accelerated and most of the fibrous 

morphologies disappeared, with only chunks of degraded 

materials left. These phenomena can be explained by the fact 

that, due to unique nanofiber morphology with extremely high 

surface area to volume ratio, the water absorption capacity of 

electrospun PLGA membranes is much larger than that of cast 

solid (nonfibrous) films.30 These morphological observations 

agreed well with the quantitative degradation profiles.

Mechanical properties of E-PLGA 
nanofiber membranes
Biomechanical analysis revealed that EGCG did not alter 

the tensile strength of PLGA nanofiber membranes but 

substantially affected the elastic modulus (Em) of PLGA 

membranes (Figure 3). The Em of PLGA membranes was 

significantly (P0.05) decreased by EGCG blending, while 

their strain at break was significantly (P0.05) increased, 

suggesting that EGCG makes PLGA membranes less elastic 

but more plastic. This result was completely different from 

that observed with the cast solid film.16 Generally, the Em 

reflects elasticity, which tends to return the polymeric mate-

rial to its original form after deformation. Higher values of 

Em are associated with greater stiffness of the polymer.  

It is thus considered that upon EGCG addition, fibrous 
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Figure 3 Mechanical properties of E-PLGA nanofiber membranes.
Notes: (A) Tensile strength, (B) elastic modulus, and (C) strain at break. Different letters denote significant differences between the control and experimental groups, 
P0.05. If two groups have the same single letter (a,b,c, etc), there is no significant difference between them. If a group is marked with a dual letter (eg, bc), it has significant 
difference from the control and another group marked with ‘a’, but does not from the other groups marked with ‘b’ or ‘c’.
Abbreviations: EGCG, epigallocatechin-3-O-gallate; E-PLGA, EGCG-releasing PLGA; PLGA, poly(lactic-co-glycolic acid).
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membranes have the tendency to be tougher but less hard, 

which is directly opposite to nonfibrous ones.

In vitro antioxidant activity  
and hemocompatibility
In order to investigate whether EGCG released from E-PLGA 

is effective in scavenging ROS, a DCF assay was performed. 

Injury to the skin, eg, surgical incision or wounds, initiates a 

series of events including inflammation, new tissue forma-

tion, and matrix remodeling. During the early inflammatory 

phase, neutrophils and macrophages infiltrate the wounded 

tissue.31 Once activated, they produce large amounts of ROS 

as part of the host defense mechanism against bacterial 

and fungal infection. Although this process is beneficial, 

increased levels of ROS, eg, ⋅OH and H
2
O

2
, can inhibit cell 

migration and proliferation and can even cause severe tissue 

damage.32,33 For the detoxification of these molecules, cells 

synthesize various types of ROS-scavenging (ie, antioxi-

dant) enzymes. In addition, several studies have pointed to 

a role for ROS in postoperative adhesion formation,34 since 

the administration of ROS scavengers, such as catalase, 

superoxide dismutase, and trimetazidine, decreased adhe-

sion formation in several animal models.32,33 As shown in 

Figure 4A, both pure PLGA and E-PLGA nanofiber mem-

branes were shown to generate few, if any, ROS, but their 

ROS-scavenging ability was found to be very different from 

each other. It was revealed that the extract of E(8)-PLGA 

membranes significantly (P0.05) scavenged ROS derived 

from pretreated H
2
O

2
, which would adversely affect the 

cell viability, while that of pure PLGA equivalents did not 

exert any antioxidant activity. In the extract of E(4)-PLGA 

membranes, moderate effects were observed. From the 

release profile (Figure 1B), approximately 70 μM (≈14% of 

loaded amounts) EGCG was estimated to be released from 

E-PLGA membranes during the 3-day period. This result 

implies that released EGCG would play a pivotal role in 

detoxifying ROS.

Postsurgical adhesion formation is regulated by peri-

toneal fibrinolysis,35,36 which is determined by tissue-type 

plasminogen activator as a thrombolytic (or fibrinolytic) 

agent and plasminogen activator inhibitor-1.37 Suppression 

of inflammation, manipulation of coagulation, and direct 

augmentation of fibrinolytic activity may be promising 

antiadhesion treatment strategies.38 Thromboplastin, found 

especially in blood platelets, is a plasma protein that func-

tions in the conversion of prothrombin to thrombin in blood 

coagulation (or thrombogenesis). The aPTT test was widely 

used for the clinical detection of the abnormality of blood 

plasma and for the primary screening of the anticoagula-

tive chemicals.39  It was recently applied in the evaluation 

of the in vitro antithrombogenicity of biomaterials.40,41 The 

aPTT of pure PLGA and E-PLGA nanofiber membranes are 

presented in Figure 4B. The aPTT of E-PLGA membranes 

was significantly (P0.05) prolonged as compared to that 

of pure PLGA equivalents. E(4)-PLGA and E(8)-PLGA 

membranes showed about 57  seconds and 85  seconds of 

aPTT, respectively, which were 1.6–2.3 times longer than 

pure PLGA equivalents (≈32 seconds of aPTT). This result 

indicates that the activation of the intrinsic blood coagula-

tion system was suppressed by antithrombotic activities of 

EGCG released from E-PLGA nanofiber membranes.42 It was 

reported that phenolics such as catechin, epicatechin, querce-

tin, and resveratrol increased fibrinolytic protein (tissue-type 

plasminogen activator and urokinase-type plasminogen acti-

vator) expression and surface-localized fibrinolytic activity 

in cultured human umbilical-vein endothelial cells.43 Thus, 

adhesion barriers with the more effective fibrinolytic activity 

might be the better prophylactic strategy against unwanted 

fibrotic tissues.44,45

Macroscopic and microscopic evaluations 
on anti-adhesion efficacy of E-PLGA 
nanofiber membranes
During the study period, there was no mortality in any group. 

Gross adhesion findings and the distribution of adhesion 

scores among control and experimental groups are shown 

in Figures 5A and B, respectively. The average scores 

regarding the extent of adhesion were 3.60±0.55, 3.20±0.84, 

2.00±0.71, and 1.80±0.45 for Group I (untreated controls), 

Group II (pure PLGA membranes), Group III (E(8)-PLGA 

membranes) and Group IV (Interceed®, the positive control), 

respectively (Figure 5B). Pure PLGA membranes (Group II) 

showed a tendency toward slightly lower adhesion extent than 

the untreated controls (Group I), but there was no signifi-

cant difference between them. On the contrary, E(8)-PLGA 

membranes (Group III) had a significantly (P0.05) lower 

average adhesion extent score than pure PLGA equivalents, 

and the score was almost similar to that of the positive control 

(Interceed®). 

The average scores regarding the severity of adhesion were 

3.29±0.62, 3.14±0.81, 1.14±0.59, and 0.81±0.42 for Groups 

I–IV, respectively (Figure 5B). E(8)-PLGA membranes, but 

not pure PLGA equivalents, showed significantly (P0.05) 

less severe adhesion than untreated controls. The positive 

control also showed significantly (P0.05) lower adhesion 

severity scores than the other groups. Representative images 
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Figure 4 In vitro bioactivity of E-PLGA nanofiber membranes.
Notes: (A) Antioxidant activity from scavenged ROS levels and (B) hemocompatibility from extended aPTT. Different letters denote significant differences between the 
control and experimental groups, P0.05.
Abbreviations: aPTT, activated partial thromboplastin time; DCF, 2′,7′-dichlorodihydrofluorescein assay; EGCG, epigallocatechin-3-O-gallate; E-PLGA, EGCG-releasing 
PLGA; PLGA, poly(lactic-co-glycolic acid); ROS, reactive oxygen species.

A

R
el

at
iv

e 
D

C
F 

in
te

ns
ity

(%
 o

f c
on

tr
ol

)

Vehicle (control)
0

50

100

150

200

250

300

a
a a a

ab

d

d

c

Pure PLGA E(4)-PLGA E(8)-PLGA

aP
TT

 (s
ec

on
ds

)

160

140

120

100

80

60

40

20

0

a

b

c

d

a

E(4)-PLGA E(8)-PLGA(–) control
saline

(+) control
heparin

Pure PLGA

B
–H2O2 (50 µM)
+H2O2 (50 µM)

Figure 5 Gross findings of adhesions (A), comparisons of adhesion (extent and severity) scores (B), and histopathology (inflammation, neovascularization and fibrosis) scores 
(C) on postoperative week 1.
Notes: In (A), Group I (untreated controls): extensive and severe adhesion was formed over the adhesion-inducing area. Group II (pure PLGA membranes): dense adhesion 
around and over the membrane was extensively seen, like the control group. Group III (E(8)-PLGA membranes): partial adhesion was confined to the adhesion-inducing area. 
Group IV (Gynecare Interceed®; Ethicon Inc., Somerville, NJ, USA): a little, if any, adhesion occurred around the adhesion-inducing area. All photographs shown in this figure 
are representative of six independent experiments with similar results. In (B) and (C), data are expressed as mean ± standard deviation on the basis of at least duplicate 
observations from 12 animals for each group. Different letters denote significant differences between the control and experimental groups, P0.05.
Abbreviations: EGCG, epigallocatechin-3-O-gallate; E-PLGA, EGCG-releasing PLGA; PLGA, poly(lactic-co-glycolic acid).

A

Ti
m

e 
(w

ee
k)

Untreated

@ 0

@ 1

Pure PLGA E(8)-PLGA Interceed®

B

A
dh

es
io

n 
sc

or
e

Pa
th

ol
og

ic
al

 s
co

re

Adhesion criteria
Inflammation Neovascularization Fibrosis

0

1

2

3

4

5

0

1

2

3

4

5
Untreated control
E(8)-PLGA

Pure PLGA

Interceed®a a a

a a

b b b b

a a a a

b

bc
bc

bc

ab

bc
c

SeverityExtent
Tissue response

C
Untreated control
Pure PLGA
E(8)-PLGA
Interceed®

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


International Journal of Nanomedicine 2014:9submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

4076

Shin et al

for the most severe intra-abdominal adhesion in each group 

showed good agreement with the scores of the macroscopic 

adhesion (Figure 5A). Resultantly, E(8)-PLGA membranes 

showed significantly (P0.05) lower scores regarding both 

the extent and severity of adhesion than the untreated control 

and pure PLGA equivalents. However, no statistically sig-

nificant difference was found between the untreated control 

group and pure PLGA membranes. 

In terms of the extent and severity of adhesion, E(8)-PLGA 

membranes were found to have the potent ability to reduce 

abdominal adhesions, which was almost comparable to that 

of oxidized regenerated cellulose membranes (Interceed®).  

In previous randomized controlled trials, Interceed® has 

already been shown to have the efficacy and safety for pre-

venting postoperative abdominal adhesion;46,47 this potency 

was also confirmed in this study. In comparison to pure 

PLGA membranes, E(8)-PLGA membranes showed much 

better preventive effects of adhesion. 

Histopathological scores for inflammation, neovascular-

ization, and fibrosis from microscopic findings are shown in 

Figure 5C. Inflammation scores were 2.30±0.49, 2.50±0.50, 

0.70±0.35, and 0.90±0.49  for Groups I-IV, respectively. 

In particular, the E(8)-PLGA membrane (Group III)  

and Interceed® (Group IV) had significantly (P0.05) fewer 

inflammatory responses responses and neovascularization 

than the other groups. However, no significant difference was 

noted between the control group and pure PLGA membrane  

(Group II). Fibrosis scores were 2.60±0.36, 2.40±0.58, 

0.90±0.52, and 0.80±0.66  for Groups I-IV, respectively. 

The degree of fibrosis was minimal in E(8)-PLGA mem-

branes and Interceed®, whereas confluent fibrosis with acute 

inflammation was evident in the other groups. Resultantly, 

it was revealed that the prophylactic effect of E(8)-PLGA 

membranes on the abdominal adhesion was comparable to 

that of a commercial tissue-adhesion barrier, Interceed®. It 

is considered that EGCG released from E(8)-PLGA mem-

branes exerted potent anti-inflammatory and antifibrotic 

activity to suppress the adhesion formation. In other anti-

adhesion studies using drug-impregnated physical barriers, 

paclitaxel-loaded hyaluronic acid films and sirolimus-eluting 

polypropylene meshes were shown to effectively prevent 

postsurgical adhesions.48,49 Even if both paclitaxel and siroli-

mus are potent antiproliferative drugs, their major problems 

are the frequency of tissue toxicity and hypersensitivity 

reactions.50,51 On the contrary, green tea catechin is regulated 

as a “generally regarded as safe” compound by the US Food 

and Drug Administration, and concentrated green tea poly-

phenols are classified as dietary supplements.52

Conclusion
From in vitro studies, it is confirmed that EGCG sustainedly 

released from biodegradable E-PLGA nanofiber membranes 

plays a key role in scavenging ROS and extending aPTT. These 

findings support a scenario in which on postoperative week 1 in 

the abdominal adhesion model, macroscopic adhesion (extent 

and severity) scores of E-PLGA membranes are significantly 

lower than those of PLGA equivalents without EGCG; the 

levels are almost comparable to those of commercialized 

membrane-type barrier (Interceed®), which has already been 

shown to have efficacy and safety for preventing postopera-

tive abdominal adhesion. In conclusion, it is suggested that 

E-PLGA nanofiber membranes can safely reduce clinically 

relevant consequences of adhesions and may be effectively 

used in crafting strategies for the prevention of postsurgical 

adhesions without such problems as abdominal abscesses and 

anastomotic leaks, which may benefit patients.
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Figure S1 Standard calibration curve for the quantification of EGCG concentration.
Abbreviations: EGCG, epigallocatechin-3-O-gallate; OD, optical density.
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Figure S2 Digital photographic images of pure PLGA and E-PLGA membranes.
Abbreviations: EGCG, epigallocatechin-3-O-gallate; PLGA, poly(lactic-co-glycolic acid); E-PLGA, EGCG-releasing PLGA.

Pure PLGA E(2)-PLGA

E(4)-PLGA E(8)-PLGA

12 mm 12 mm

12 mm 12 mm

Supplementary materials

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com
http://www.dovepress.com/international-journal-of-nanomedicine-journal
http://www.dovepress.com/testimonials.php
http://www.dovepress.com/testimonials.php
www.dovepress.com

	Publication Info 2: 
	Nimber of times reviewed: 


