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Abstract: Breast cancer remains the leading cause of cancer-related mortality in women. 

Comprehensive genomics, proteomics, and metabolomics studies are emerging that offer an 

opportunity to model disease biology, prognosis, and response to specific therapies. Although 

many biomarkers have been identified through advances in data mining techniques, few have 

been applied broadly to make patient-specific decisions. Here, we review a selection of breast 

cancer prognostic indicators and their implications. Our goal is to provide clinicians with a 

general evaluation of emerging computational methodologies for outcome prediction.

Keywords: computational model, precision prognosis, tumor

Introduction
One in eight women develops breast cancer, the most common cause of malignancy 

in females. Although the majority of patients now survive for many years after initial 

diagnosis and therapy, a significant subpopulation remains at risk of metastatic relapse. 

These women have a median survival time of less than 1.5 years at the time of relapse,1 

with only 10% expected to survive 10 years after diagnosis.2

The ability to classify patients into clinically relevant subgroups to allow for  precise 

therapy is urgently needed. Traditional tumor stratification is based largely on morphol-

ogy, but is relevant in less than one-quarter of invasive breast carcinomas.3 However, 

novel computational models are emerging as powerful tools to address this deficiency. 

Recent work has integrated critical observations in the biology of breast cancer, includ-

ing gene deletions, translocations, and locus amplification;4,5 biomarkers from high-

throughput “-omics” technologies such as genomics, proteomics, and metabolomics; 

and long recognized outcome variables such as tumor size, histologic grade, axillary 

nodal status, and estrogen receptor (ER) status. We anticipate that these biomarkers 

will emerge as an effective molecular classification or guide for the determination of 

prognosis and the development of tailored therapy (reviewed by Gruver et al3).

However, much work regarding validation of these approaches is still required. 

For example, single biomarkers have not proven highly informative in most women. 

Somatic mutations with the potential ability to act as a biomarker were noted to 

occur in single genes (eg, TP53, PIK3CA, and GATA3) in ,10% of 825 patients with 

primary breast cancers.6 Similarly, only three multi-gene signatures are incorporated 

into current clinical practice.7–9 Effective and clinically applicable prognostic indicators 

will also require the ability to address the emerging importance of the intra-tumoral 

heterogeneity of breast cancer.10
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This review will not address specific clinical prognostic 

variables as they have been reviewed extensively by 

 others.11–14 Instead, we have chosen to evaluate emergent 

prognostic indicators for breast cancer, focusing on compu-

tational methodologies and strategies to identify a molecular 

indicator (a biomarker or set of biomarkers). We are interested 

particularly in statistical and computational methodologies 

based on cutting-edge “-omics” technologies, moving from 

the conventional single oncogene/tumor suppressor gene 

strategy to one that exploits advances in systems biology. 

To achieve our goal, we performed a systematic search of 

all the English language literature regarding computational 

breast cancer prognosis, using a MEDLINE search for the 

period from January 2005 to July 2013. This review will 

begin with the utility of single molecular biomarkers and 

multi-gene signatures, followed by an evaluation of novel 

system-biology based analyses that infer information from 

high-throughput “-omics” data. Importantly, we will discuss 

exciting possibilities in the development of new integrative 

methodologies.

Identification of prognostic  
molecular signatures
Examination of genetic variation, genomic association, 

or transcriptomic alterations in large study cohorts allows 

the selection of single or multiple prognostic markers that 

can stratify patients into groups showing distinct outcomes 

(Table S1). It may also allow the specific tailoring of care. 

Sample size and biological hypotheses are distinguish-

ing features of prognostic marker studies.15,16 In terms of 

sample size, a practical clinically based prognostic index 

for patients with metastatic breast cancer was recently 

proposed by a retrospective analysis of 2,322 patients after 

primary treatment.2 In parallel, others have focused on using 

biological determinants. For example, the Cancer Genome 

Atlas  Network has incorporated the four major breast 

cancer subtypes with five genetic and epigenetic factors 

(genomic DNA copy numbers, DNA methylation, exome 

and messenger RNA expression, microRNA sequencing, 

and reverse-phase protein expression).6 The results are 

promising for understanding the biological underpinning 

of subtype-specific prognostic indicators. However, there 

remains a critical gap between an integrative model of 

“omics”-data and clinical variables. Describing biological 

pathways underlining clinical biomarkers in a large sample 

size could provide the opportunity to significantly improve 

our understanding of the biology and heterogeneity of breast 

cancers. For instance, the enrichment patterns of gene sets 

associated with embryonic stem cell (ESC) identity in the 

expression profiles of various human tumor types is associ-

ated with poor outcome in breast cancer.17

Single gene prognostic determinants
For specific tumor subtypes, the expression of single critical 

genes can serve as prognostic indicators (reviewed by Adam 

Maciejczyk).18 Germ-line mutations of BRCA1 are exten-

sively used for early detection of familial breast cancer, and 

are predictive for 15%–20% of women with a family history 

of breast cancer, and 60%–80% of patients with combined 

breast and ovarian cancer.19 Additional prognostic factors 

include enhanced RAD21 and cohesin expression, which has 

been associated with resistance to chemotherapy in high-grade 

luminal, basal, and HER2 breast cancers.20 Transcription fac-

tor muscle segment homeobox 2 (Msx2) expression has been 

implicated in an increased likelihood of tumor cell death via 

apoptosis in invasive breast cancers.21 Enhanced expression 

of the anterior gradient-2 (AGR2) protein, which occurs in the 

presence of ER antagonist tamoxifen, confers poor prognosis 

in ER-positive breast cancers.22

The most common computational method to assess these 

critical biomarkers is the hazard Cox regression model.23 

Given a time after diagnosis for values of the predictor 

variables, the model produces a survival function for the 

probability that the binary event of interest (eg, death or 

survival at the endpoint) occurs. In this context, additional 

computational models to improve the prediction have been 

proposed, including Bayesian network analysis evaluating 

probabilistic relationships among candidate genes24 and sup-

port vector machine methodologies.25 A review of standard 

survival analyses and the use of the outstanding Bioconductor 

tool suite is available at http://cran.r-project.org/web/views/

Survival.html.

Current status of multi-gene  
prognostic determinants
Multi-gene signatures are most often derived from transcrip-

tomic microarray and sequence data.26–28 These signatures 

not only have potential for classification and prognosis,29 but 

they can also predict specific tumor sub-phenotypes such 

as resistance to radiation.30,31 Generally, these multi-gene 

models can classify patients into subgroups with either 

distinct outcomes or diverse treatment responses in an 

unsupervised manner. As an example, the DNA content of 

breast adenocarcinomas can be classified as either stable, 

conferring good prognosis, or unstable, conferring poor 

prognosis.32
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To identify multi-gene signatures or pathways, com-

putational pattern learning algorithms have been success-

fully applied to transcript or mass spectrometry profiles. 

These algorithms can be roughly categorized into three 

groups: 1) unsupervised data mining, eg, hierarchical 

clustering,7,33  topographic projection,34 and other method-

ologies; 2) supervised classifiers, eg, decision trees,35 and 

Prediction Analysis of Microarray (PAM);9 and 3) semi-

supervised learning models.36 In supervised algorithms, 

sample labels such as good- or poor-outcome are required 

to train the model before making decisions. In contrast, 

unsupervised algorithms are data-driven. In a semi-

supervised model, the algorithm makes decisions based 

on both the raw data and the input labels, allowing partial 

labeling. Which method to choose depends on study pur-

pose – for example, if a certain phenotype is known to be 

an important factor in identifying the multi-gene signature, 

one should select supervised methodologies to make use 

of that information.

Clinical application of prognostic  
determinants
In terms of single determinants, the expression levels of four 

genes (ER, PR, HER2, and Ki67), and combinations thereof, 

have been shown to have a strong prognostic impact (reviewed 

by Gökmen-Polar et al37). Missense mutations, eg, within the 

tumor suppressor gene p53 or increased levels of urokinase-

type plasminogen activator (uPA) and/or plasminogen 

activator inhibitor-1 (PAI-1), which indicates poor clinical 

outcome, have been included by the American Society of 

Clinical Oncology 2007 Update of Recommendations for the 

Use of Tumor Markers in Breast Cancer.38 Other single-gene 

determinants with somatic mutations are sensitive to targeted 

therapy; for instance, active ESR1 mutations in ER-positive 

metastatic breast cancer.39

Several multi-gene–based commercial prognostic test-

ing methodologies are now available. The MammaPrint® 

70-gene signature assay (Agendia, Inc., Irvine, CA, USA) 

stratif ies patients’ outcomes and allows personalized 

therapeutic prediction.7,40,41 Two additional clinical decision-

making assays, the Oncotype DX 21-gene assay42 (Genomic 

Health, Inc. (Redwood City, CA, USA) and a clinically 

updated version of the intrinsic subtype PAM50 assay43 

(ARUP Laboratories, Salt Lake City, UT, USA), have been 

compared. Predicting prognostic intrinsic subtypes among 

151 patients, investigators observed good agreement between 

the 21-gene and PAM50 assays for high and low prognostic 

risk assignment.44

Overall, molecular prognostic determinants have been 

successfully developed as adjuvant tools for innovative 

diagnostic, prognostic, and therapeutic approaches. As shown 

by Albain et al,45 changes in treatment decision after review 

of multi-gene signatures occurred in 30% of individuals 

predominantly from chemotherapy plus endocrine therapy 

to endocrine therapy alone with an associated diminution in 

treatment-related toxicity.

However, there are several limitations in the utility of 

either single gene or multi-gene prognostic signatures in 

routine practice, including requirement of fresh or frozen 

tissues to measure uPA/PAI-1 and deliberate measurement 

compared with a gold standard or “housekeeping genes” for 

single gene determinants. Another limitation for both single 

and multi-gene signatures is that they are positive in only a 

specific subtype of breast cancer. For instance, the 70-gene 

assay can only identify potential chemotherapy benefits in 

high-risk patients.45 In another study, the discordance rate 

was approximately 30% between the clinicopathologic risk 

categories given by the 70-gene assay and the 21-gene assay.45 

Both assays are particularly limited in assigning high-risk 

status to ER-negative patients.46

How do we overcome these challenges?
Key issues with current multi-gene signature methodologies 

include specificity of prediction and standardization across 

diagnostic platforms. Li et al have reported that many 

randomly selected genes show predictive power for cancer 

prognosis in one dataset, while losing predictive power in 

other datasets.47 Therefore, an evaluation using indepen-

dent datasets is necessary to assess a prognostic model or 

indicator. Recently, Venet et al28 compared 47 published 

breast cancer outcome signatures to mimic signatures made of 

random genes. Surprisingly, they found that 60% of reported 

gene signatures of identical size were equally predictive of 

“mimic” gene signatures. Of particular concern, 23% of the 

signatures were worse than random, and more than 90% of 

mimic signatures with 100 genes were significant outcome 

predictors.28 Thus, the deficiencies associated with the repro-

ducibility of multi-gene–based prediction prevent effective 

usage at this time.

The complexity and discrepancy of single- or multi-gene 

signatures also precludes easy extraction of biologically 

and therapeutically relevant information. A clue may be 

provided by observations that suggest that although genetic 

alterations between patients differ, they frequently involve 

common pathways. It is therefore critical to identify relevant 

pathways involved in breast cancer progression and detect 
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the corresponding indicators that are prognostic in different 

tumor subtypes or patients.

Novel strategies for prognostic  
indicator development
Incorporation of network or pathway information into prog-

nostic biomarker discovery could significantly improve pre-

diction performance. For this purpose, investigators have used 

a large number of supervised machine-learning approaches 

(ie, inferring knowledge from data with labeled samples) to 

take advantage of prior knowledge. For example, data mining 

on gene expression profiling reveals an association between 

hyperactivity in the PI3K pathway, lowered ER levels, and 

resistance to endocrine therapy.48 Unfortunately, there is no 

single “one-size-fits-all” algorithm, integrating accuracy, 

stability, and interpretability of gene selection.49 Table 1 

lists methods to identify prognostic determinants based on 

gene expression in breast cancer. Two recent reviews discuss 

prognostication of tumor mutations using pathway and net-

work analysis.50,51

Using biological hypothesis-based gene selection and 

interpretation, we and others have identified transcriptional 

prognostic indicators (Table 1). As prognostic biomarkers, 

these models calculate a score per sample and use a simple 

Table 1 Methods to identify prognostic determinants based on gene expression in breast cancer

Data source Method Description

Genome-wide gene expression RXA-GSP53 Summarizes the individualized relative expression between biological 
experiment-defined gene-set pairs, thus tolerating the diverse noise and 
differences observed from multiple technologies and laboratories.

LDS36 This semi-supervised approach successfully employed unlabeled gene 
expression data and achieved significant performance in gene expression-
based outcome prediction for cancer patients.

MSS47 Identifies prognostic markers that can be used in combination to stratify 
breast cancer patients into groups of different risk ranks with high accuracy.

Correlation56 Correlation between two biomarkers is a more useful prognostic factor 
than their individual expressions.

BCRSvM25 Uses modern machine-learning method SvM to train six clinical 
prognostic variables (histological grade, tumor size, number of metastatic 
lymph nodes, estrogen receptors, lymphovascular invasion, local invasion 
of tumor, and number of tumors) into a prognostic model.

PGL34 A literature-proposed predictive gene list for breast cancer is 
benchmarked against a separate gene list to construct nonlinear 
topographic projection maps for prognosis.

PAM9 PAM together with other conventional methods was used to define gene 
expression-based “intrinsic” subtypes that showed prognosis.

Cox proportional-hazards  
regression modeling, gene-set  
enrichment analysis17

Based on a careful gene-set enrichment analysis, multiple gene-set 
signatures stratify samples into prognostic subgroups.

Bayesian network analysis24 Bayesian probability was employed in neural networks to model 
censored data.

Gene expression, experiment- 
based gene signatures

expression levels relative to a 
baseline condition, hierarchical 
clustering, “leave-one-out”  
cross-validation7

Top genes were selected to distinguish subtypes of breast cancers that 
show prognosis.

Gene expression, text mining eScience–Bayesian59 Permits coherent integration of prior information and multiple data 
sources, such as gene expression and information derived from literature.

Gene expression, clinical and  
genetic markers

i-ReLieF57, an iterative method  
based on the feature selection  
algorithm called ReLieF

integrated clinical variables with gene expression or biological pathway.

Gene expression, copy number iCluster58 A likelihood-based, joint latent variable model for integrative clustering 
samples.

Gene expression, copy number, 
pathway

PARADiGM6,60 integrates copy number, mRNA expression, and pathway interaction data 
into a personalized pathway-by-sample matrix that clusters patients into 
distinct prognostic subgroups.

Abbreviations: BCRSvM, breast cancer recurrence prediction based on SvM; LDS, low density separation; MSS, multiple survival screening; PAM, prediction analysis of 
microarray; PARADiGM, pathway recognition algorithm using data integration on genomic models; PGL, predictive gene lists; RXA-GSP, relative expression analysis of gene 
set pair; SvM, support vector machine.
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threshold value of 1 to dichotomize patients into prognostic 

groups. Pitroda et al piloted a tumor endothelium-derived 

inflammatory signature consisting of six genes that were asso-

ciated with poor outcome in multiple cancers.52  Similarly, in 

multiple adult tumors, we found that histologically poorly 

differentiated tumors display an ESC-associated  expression 

imbalance, ie, preferential overexpression of targets of 

ESC-associated transcription factors (NANOG, OCT, SOX2, 

and MYC) combined with underexpression of Polycomb-

regulated genes.53 This finding is in agreement with the 

known significance of survival difference between patients 

with the expression pattern of these ESC-like signatures and 

other patients.17 More recently, the coactivation of the ESC 

marker MYC and oncogene HER2 was associated with an 

acquisition of a self-renewal phenotype that is associated 

with poor outcome.54

However, the lack of standards for measurement across 

various studies, assays, and diagnostic platforms makes it 

difficult to translate individual findings into clear clinical 

applications. A popular solution is to compare the median 

scores of a calculated indicator in a measured cohort,52 

whereas adding new patients changes the estimation of 

median score and thus the final decision.

Relative expression analysis of gene-set pairs (RXA-GSP), 

is a novel methodology that we have pioneered to translate 

prognostic gene targets for individualized treatment planning.53 

RXA-GSP is built on three principles: 1) each individual has 

both favorable and unfavorable prognostic factors for breast 

cancer. It is the imbalance that determines the individual 

outcome (Figure 1). For example, NANOG expression is an 

indicator of poor prognosis stimulating the growth and metas-

tasis of breast cancer cells, whereas KLF4 is a favorable prog-

nostic indicator inhibiting these processes.55 2) The correlation 

between two factors is, at least in some cases, more significant 

than the overall expression of either. For example, SIRT1 and 

DBC1 are both overexpressed in breast tumor tissue, but the 

correlation between their levels of expression is diminished.56 

3) We employ a hypothesis-based and experimentally derived 

approach to the identification of candidates.

Using RXA-GSP, a resultant indicator is computed as 

the optimal combination of candidate genes that was trained 

from several large cohorts, and validated in independent 

cohorts.53 Considering the heterogeneity of breast cancer in 

each individual patient along with the relative expression of 

gene-set pairs and the correlations between them, RXA-GSP 

allows the computationally driven derivation of individual-

ized prognostic indicators, bridging cancer biology with the 

clinic through gene expression analysis.

Next generation integrative  
prognostic methods
To date, the majority of studies focused on prognosis have 

integrated clinical variables with gene expression or bio-

logical pathway data.53,57,58 However, attractive opportunities 

are now available to integrate comprehensive genotype, 

metabolomics, and phenotype data. Success should facilitate 

robust prognostic and therapeutic prediction for each patient. 

Indeed, such success in this endeavor will have significant 

impact across biomedicine.

However, this potential is limited by the challenges 

of the sheer size and complexity of high-throughput data 

resources, often resulting in significant imprecision in data 

usage. Classical statistical models are frequently insufficient 

for integrating “omics”-data with other resources, so specific 

problems are dealt with on a case-by-case basis due to the 

lack of a coherent overarching method of analysis. Indeed, 

we and others, have proposed the development of integrated 

breast cancer prognostic indicators to provide insights into 

significant variables.53,59,60

Eklund et al59 have addressed this problem through 

an eScience–Bayes approach, complementing a Bayesian 

probability models’ ability to incorporate gene expression 

with text mining, modeling highly complex problems with 

high performance computing. Applying this model to several 

sets of independent gene expression data results in consis-

tently accurate prediction of breast cancer metastases across 

cohorts.59 Though such methods show promise for tailoring 

specific models to complex problems with high accuracy, 

their application is cumbersome, as they require manual 

selection of genes for which we have prior knowledge. This 

deficiency is related to a lack of a standard for displaying 

Gene–transcriptomic
imbalance

Epigenetic
silencers

Genetic alteration
Tumor suppressors

Oncogenes

Genetic alteration

Stem cell genotype

A prognostic indicator

I = 
expression of poor markers
expression of good markers

Figure 1 illustration of RXA-GSP method. 
Notes: This prognostic indicator is the ratio between scores (eg, expression values) 
of poor prognostic markers versus that of good prognostic markers. it has the 
ability to integrate different scales of data, bridging cancer biology with the clinic by 
employing both hypothesis-based and experimentally derived gene-set selection.
Abbreviation: RXA-GSP, relative expression analysis with gene-set pairs.
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scientific text in formats that are computationally readable. 

Another obvious weakness is that a microarray represents a 

single snapshot of the patient.

New avenues of patient-specific tumor phenotyping are 

also facilitating prognosis prediction. These methodologies 

include the evaluation of risk associated with inherited genetic 

variation or genome-wide association studies (GWAS).61,62 

Similarly, epigenetic changes in breast cancer cells (such as 

modifications in histone acetylation and DNA methylation 

at specific gene regulatory elements) have been implicated 

in breast oncogenesis.6,63 These observations, coupled with 

the emerging use of epigenetic-modifying agents suggest an 

era of genomics-based therapy selection.33,64,65 For example, 

stromal/microenvironmental elements affect the prognosis, 

modifying tumor invasion and/or drug targeting.66,67

Thus, the effectiveness of interpretations of multi-gene 

assays likely depends on adjustment for other factors. 

A breakthrough work, Pathway Recognition Algorithm 

using Data Integration on Genomic Models (PARADIGM),60 

integrates copy number, mRNA expression, and pathway 

interaction data to a personalized pathway-by-sample matrix 

that clusters patients into distinct prognostic subgroups. 

This integration algorithm has been recently applied to 

depict  comprehensive molecular portraits of human breast 

tumors.6

In summary, we believe biological hypothesis-driven 

computational models that integrate current significant 

variables in multiple facets, including transcriptomic altera-

tions, chromatin modification, and stroma response, will 

provide significant insight not only into the biology of breast 

cancer, but also into determining the prognosis of individual 

patients.

Conclusion
Challenges remain for breast cancer prognosis due to its 

complexity and the lack of standardization among models and 

“omics”-datasets. Specifically, what impedes the convenience 

and simplicity necessary for clinical application is the lack 

of precision molecular indicators that help individualized 

 therapeutic decisions. Ideally, a prognostic indicator performs 

in a specific, sensitive, inexpensive, and easy manner. We 

expect an integrative computational model of “omics”-data 

and clinical variables to significantly improve our under-

standing of the biology and heterogeneity of breast cancers. 

This is likely to be achieved through either enlarging the 

sample size or characterizing a specific subtype with given 

phenotypes. The latter has been recently recognized, though 

controversial, hypothesizing a collection of genuinely variable 

malignances that happen to originate from breast epithelium.68 

In conclusion, a prognostic indicator should clearly delineate 

the risk group for an individual, in terms of tumor growth, 

invasion, and metastatic potential, and/or the likelihood of 

response to a given therapeutic modality.
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Supplementary material

Table S1 Selected instances from literature search

1st author Year Journal Pubmed  
ID

Cancer biology  
underpinning

Related clinical  
indicator

Major contribution/conclusion

van ’t veer1 2002 Nature 11823860 Gene expression 
patterns

Lymph node status Provides a powerful tool to tailor 
adjuvant systemic treatment that 
could greatly reduce the cost of BC 
treatment.

Rennstam2 2003 Cancer Research 14695203 Chromosomal copy 
number aberrations

Patterns of copy number gains and 
losses define BCs with distinct 
clinicopathological features and 
patient prognosis.

Paik3 2004 New england  
Journal of Medicine

15591335 Gene expression 
patterns

Node-negative, eR- 
positive, tamoxifen  
treatment

A novel recurrence score based on 
21 genes to quantify the likelihood 
of distant recurrence in patients as 
well as overall survival time.

Kronenwett4 2006 Cancer  
epidemiology,  
Biomarkers and  
Prevention

16985023 Genomic stability  Objective classification of BCs into 
stable and unstable subtypes that are 
a prognostic indicator independent 
of established clinical factors.

Bacac5 2006 PLoS One 17183660 Stromal cells  Human genes expressed in mouse 
stromal response to tumor invasion 
predicts BC patient survival.

Suh6 2007 Clinical Cancer 
Research

17200346 CLIC4 (chloride 
intracellular channel 4)

 Reactivation and restoration of 
CLIC4 in tumor cells or the converse 
in tumor stromal cells could provide 
a novel approach to inhibit tumor 
growth.

Conlin7 2007 Molecular Diagnosis  
and Therapy

18078353 Oncotype DX  
recurrence score  
assay

Lymph node negative, 
eR-expressing BC

The Oncotype DX assay and 
others aim to help improve risk 
classification and recurrence 
prediction and optimize selection of 
patients for adjuvant chemotherapy.

Rodriguez8 2008 Carcinogenesis 18499701 HOXB13 (homeobox 
B13) and  
IL17BR (interleukin  
17 receptor B)

estrogen signaling Hypermethylation of HOXB13 is a 
later event of tumor progression 
and a prognostic indicator of 
advanced BC.

wei9 2008 Molecular 
Carcinogenesis

18176935 H3K27me3  Loss of H3K27me3 is a predictor of 
poor outcome in BCs.

Kim10 2008 Annals of Oncology 17956886 CDKs Patients recruited  
for study underwent  
mastectomy or breast- 
conserving surgery

Tumors with high CDK1SA and high 
CDK2SA showed significantly poorer 
5-year relapse-free survival than 
those with low CDK1SA and low 
CDK2SA, respectively.

Han11 2008 Nature 18337816 SATB1  
(SATB homeobox 1)

 SATB1 is a genome organizer that 
tethers multiple genomic loci and 
recruits chromatin-remodeling 
enzymes to regulate chromatin 
structure and gene expression.

Ben-Porath12 2008 Nature Genetics 18443585 Stem cell genetic  
expression  
signatures

Detailed characterization of the 
stem-cell regulatory networks active 
in cancer is likely to yield powerful 
diagnostic and prognostic markers.

Parker13 2009 Journal of Clinical  
Oncology

19204204 A 50-gene set  
(PAM50)

“intrinsic” subtypes,  
pathologic staging,  
histologic grade

The intrinsic subtype and risk 
predictors based on the PAM50 
gene set adds significant prognostic 
and predictive value.

(Continued)
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Table S1 (Continued)

1st author Year Journal Pubmed  
ID

Cancer biology  
underpinning

Related clinical  
indicator

Major contribution/conclusion

Sung14 2010 Cancer Science 20412117 SIRT1 (sirtuin 1) and 
CCAR2 (also known  
as DBC1, deleted  
in breast cancer 1, 
KiAA1967)

Luminal subtype, ER  
and PR expressions

Correlation between SIRT1 and 
DBC1 is a more useful prognostic 
factor than their individual 
expressions. Correlation between 
the two is decreased in tumor cells.

Gevensleben15 2010 international Journal 
of Molecular  
Medicine

21042777 70-gene  
expression profile  
MammaPrint®

Size, age, histological  
grade, hormone  
receptor status,  
peritumoral vascular  
invasion and HER2  
status

Gene signature MammaPrint® 
is shown to provide additional 
independent prognostic information.

Lanigan16 2010 Breast Cancer  
Research

20682066 Msx2 (msh homeobox 2) Msx2 expression results in improved 
outcome for BCs, possibly by 
increasing the likelihood of tumor 
cell death by apoptosis.

Creighton17 2010 Breast Cancer  
Research

20569503 Pi3K pathway Luminal eR+ breast  
tumors

Luminal B tumors have hyperactive 
GFR/PI3K signaling associated with 
lower eR levels, which has been 
correlated with resistance to 
endocrine therapy. Targeting Pi3K 
in these tumors may reverse loss 
of eR expression and signaling and 
restore hormonal sensitivity.

Xu18 2011 Breast Cancer  
Research

21255398 RAD21 (RAD21  
homolog [S. pombe])

N/A RAD21 expression confers poor 
prognosis and resistance to 
chemotherapy in high-grade luminal, 
basal, and HeR2 BCs.

Littlepage19 2012 Cancer Discovery 22728437 ZNF217 (zinc finger 
protein 217)

Amplification of the  
human chromosomal  
region 20q13

ZNF217 (amplified in numerous 
cancers) is a poor prognostic 
indicator and therapeutic target 
in patients with BC and may be 
a strong biomarker of triciribine 
treatment efficacy in patients.

Pitroda20 2012 PLoS One 23056240 endothelial  
inflammatory  
pathways

 The first prognostic cancer 
gene signature derived from an 
experimental model of tumor-
associated endothelial inflammation.

Kim21 2012 Journal of Breast  
Cancer

22807942 Gene expression  
patterns

Histological grade, size, 
number of metastatic  
lymph nodes, eR,  
lymphovascular  
invasion, local invasion  
of tumor, and number 
of tumors

As the selected prognostic factors 
can be easily obtained in clinical 
practice, the proposed model might 
prove useful in the prediction of BR 
recurrence.

Faryna22 2012 FASeB Journal 22930747 Aberrant DNA  
methylation

Low-grade eR- and/or 
PR-positive BC

early methylation changes are 
frequent in the low-grade pathway 
of BC and may be useful in the 
development of prognostic markers.

Fasching23 2012 Human Molecular  
Genetics

22532573 TOX3 (TOX high 
mobility group box family 
member 3)

with the exception of rs3803662 
(TOX3), there was no evidence that 
any of the SNPs associated with BC 
susceptibility were associated with 
BC survival.

Huang24 2013 Cell and Bioscience 23497677 MACC1 (metastasis 
associated in colon 
cancer 1)

Clinicopathologic  
features

The over expression of MACC1 in BR 
is significantly correlated with adverse 
clinicopathological features, including 
metastasis and patient survival.

(Continued)
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Table S1 (Continued)

1st author Year Journal Pubmed  
ID

Cancer biology  
underpinning

Related clinical  
indicator

Major contribution/conclusion

Yang25 2013 PLoS One 23441166 Mediation of  
transcription factor 
GRHL2 (grainyhead-like 
2 [Drosophila]) on its  
targets is prognostic 
in BC

Histological grade Proposed the RXA-GSP (relative 
expression analysis with gene-set 
pairs) method, shows promise as 
both a valid prediction model as 
well as high potential for clinical 
utility.

Nagata26 2014 Breast Cancer 22528804 induced pluripotent 
stem cell inducing  
factors

Strong expression of NANOG is an 
indicator of poor prognosis for BC 
patients, whereas KLF4 is a favorable 
prognostic indicator.

Note: each key word (genomic, transcriptional, epigenetic, sequence, novel) respectively together with “breast cancer” and “prognostic indicator” was searched in PubMed, 
from Jan 2005–July 2013.
Abbreviations: BC, breast cancer; eR, estrogen receptor; PAM, prediction analysis of microarray; RXA-GSP, relative expression analysis of gene set pair; SNPs, single-
nucleotide polymorphisms.
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