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Abstract: Multiple sclerosis (MS) is a disease of the central nervous system with both an 

inflammatory and degenerative component. The disease primarily affects young adults and 

results in significant physical and cognitive disability. Several disease-modifying agents are 

currently used in the management of multiple sclerosis. Glatiramer acetate (GA, Copaxone®, 

co-polymer 1) is a disease-modifying agent approved for the treatment of relapsing remitting 

multiple sclerosis. Apart from its unique mode of action, there is evidence pointing toward a 

possible neuroprotective role. This review will critically discuss GA’s potential mechanisms of 

action, the results of clinical trials, safety profile, and future directions of treatment. 

Keywords: multiple sclerosis, disease-modifying agents, glatiramer acetate, clinical trials, 

MRI, neurodegeneration

Introduction
Most patients with multiple sclerosis (MS) present with an initial inflammatory phase 

manifested by relapses and gadolinium-enhancing lesions on magnetic resonance 

imaging (MRI) followed by a gradually progressive degenerative phase. A minority 

of patients have the progressive form of the disease from the onset. Even though 

the etiology and pathogenesis of the disease are largely unknown, several clinical 

trials have confirmed a favorable response to treatment with immunomodulating and 

immunosuppressive agents. Several disease-modifying agents are currently available 

for the treatment of relapsing remitting multiple sclerosis (RRMS). These include 

interferon-β1a (Rebif® and Avonex®), interferon-β1b (Betaseron®), and glatiramer 

acetate (Copaxone®). Mitoxantrone (Novantrone®), an immunosuppressant, is used for 

the treatment of worsening MS. Natalizumab (Tysabri®), a selective adhesion molecule 

inhibitor, was approved for a short period of time prior to being withdrawn because 

three patients, two of whom were in MS trials and one of whom was in a Crohn’s 

disease study, developed progressive multifocal leukoencephalopathy (PML) (Yousry 

et al 2006). At the time of writing this review, natalizumab is being re-evaluated for 

approval. However, if approved, it will likely initially be utilized in a select group of 

patients.

All these agents have a marked effect on the inflammatory component of the disease 

and have been shown to alter the natural history of MS. Unfortunately, effects on the 

degenerative aspect of the disease have not been consistently demonstrated. Glatiramer 

acetate (GA) is different from the interferons in having a unique mechanism of action 

and there is emerging evidence that it may also have an effect on the neuro-degenerative 

aspect of MS. This article reviews the available data supporting the use of glatiramer 

acetate in relapsing remitting MS.
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Immunology of MS
Current hypotheses support the idea that MS is an 

immunologically mediated disease. Although the etiology is 

unknown, it is likely that exposure to a variety of antigens, 

including viruses and toxins, results in activation of T cells. 

These T cells (T helper 1) recognize antigens presented 

by antigen-presenting cells and subsequently release pro-

inflammatory cytokines, such as tumor necrosis factor (TNF), 

inferferon-γ, and IL-12, and then subsequently invade the 

central nervous system (CNS). In the CNS, T cells are further 

activated by antigens found on antigen-presenting cells, which 

leads to further secretion of pro-inflammatory cytokines and 

chemokines. A variety of proposed mechanisms may then 

lead to demyelination and axonal transaction (Martin et al 

2001) (Table 1).

effect, as GA appeared to prevent the induction of EAE.

Evidence suggests that the structural similarity between 

GA and MBP may be partly responsible by way of competi

tive mechanisms and/or cross-reactivity for the therapeutic 

benefit of GA. EAE studies suggest that GA may compete 

with MBP for antigenic binding to the MHC II complex on 

antigen-presenting cells in the CNS. This mechanism alone is 

unlikely to function in vivo because GA is rapidly degraded 

after subcutaneous administration before it can enter the CNS 

(Lobel et al 1996).  However, this competition may function 

in vivo if it occurs in the periphery or at subcutaneous SC  

injection site where GA may confront MBP-specific T cells 

before GA is degraded. The resulting GA/MHC complex 

may then bind preferentially to MBP-specific T cells over 

MBP/MHC complexes and induce alterations to the T cells. 

One such alteration may be a phenotypic shift in the T cells 

from Th1 to Th2 cells, thus increasing anti-inflammatory 

mechanisms (Duda et al 2000; Chen et al 2001; Neuhaus 

et al 2001).  After activation in the periphery by daily 

immunization, GA has been demonstrated to selectively 

promote trans endothelial migration of Th2 cells across the 

blood–brain barrier (BBB) (Prat et al 2005). It is postulated 

that when the GA-specific Th2 cells are reactivated in the CNS 

by the presentation of degraded myelin components, they are 

stimulated to release anti-inflammatory cytokines such as 

IL-4, IL-6, and IL-10 (Neuhaus et al 2001). The release of 

anti-inflammatory cytokines then nonspecifically decreases 

the pathological inflammation in MS (Miller et al 1998; 

Brenner et al 2001; Dhib-Jalbut 2002; Yong 2002) (Figure 1).

GA and neuroprotection
The burden of disease in MS appears to be propagated by 

more than just inflammation and secondary demyelination 

from acute relapses. An important mechanism in MS appears 

to be a parallel ongoing process of neuro-degeneration. 

Data pointing towards neurodegeneration as a significant 

component of the immunopathology of the initial phases 

of MS are increasing (Trapp et al 1998). The mechanism 

of this neuronal degeneration is unknown and represents an 

important area of interest and a potential target for future 

therapeutics (Neuhaus et al 2003).

Much of the interest in potential mechanisms of 

neuroprotection surround the role of neurotrophic factors, 

particularly brain-derived neurotrophic factor (BDNF). 

BDNF is up-regulated in response to neuronal damage 

and may have a protective role against neuro-degeneration. 

BDNF is hypothesized to influence the neuronal response 

to trauma or degeneration via inhibition of cell death and 

Table 1  Possible mediators of neuronal demyelination and 
degeneration in MS

T-cell mediated
Antibodies
Cytokines 
Complement
Nitric oxide
Others (viruses, bacteria, free radicals)

History of GA and mechanism of 
action
An important step in understanding the immune mechanisms 

in MS was the development of an animal model of demyelina

tion. Experimental allergic encephalomyelitis (EAE), a T 

cell-mediated disease, can be induced in susceptible animals 

by inoculating them with CNS tissue such as myelin basic 

protein (MBP) (Bernard et al 1992). Copolymers (copolymer 

1 up to copolymer 11) were synthesized with amino acid 

composition similar to MBP. None of them were able to 

induce EAE but several were able to prevent or minimize 

EAE in animals inoculated with MBP. Copolymer 1 (L-

glutamate, L-tyrosine, L-alanine, and L-lysine) appeared to 

be the most potent and showed a consistent effect in several 

animal models, including primates (Teitelbaum et al 1971). 

It was also shown to be safe.

Effect of GA on T cells
GA is a synthetic molecule composed of four amino acids 

(L-alanine, L-glutamic acid, L-lysine, and L-tyrosine). 

These are the same amino acids represented in MBP. GA 

was originally designed as a synthetic model of MBP for the 

purpose of inducing EAE, an experimental animal model of 

MS. However, in vitro studies proceeded to show the opposite 
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axonal degeneration, and via support of oligodendrocytes 

and remyelination. Studies have shown BDNF’s ability to 

rescue degenerating neurons by inducing axonal outgrowth, 

remyelination, and regeneration (Gravel et al 1997; Yan et 

al 2002).

In situ data have demonstrated increased BDNF 

expression from immune cells isolated from MS lesions 

(Kerschensteiner et al 2003) and studies on interferon-β-

treated MS patients show higher BDNF production compared 

with healthy volunteers (Petereit et al 2003). Given these 

observations, BDNF may be a potent neurotrophic factor with 

the ability to greatly impact neuronal repair and regrowth 

(Thoenen 1995; Barde 1997).

It is possible that GA may also mediate a neuroprotective 

role via increased production of neurotrophic factors such 

as BDNF. Evidence has shown that locally activated GA-

reactive Th2 cells produce BDNF ( Ziemssen et al 2002). In 

GA-treated EAE-induced mice, brain regions demonstrating 

high populations of GA-specific T cells also had high levels 

of BDNF and Th2 anti-inflammatory cytokines (Aharoni et 

al 2003). Another study found a reduced level of BDNF in 

the serum and CSF of RRMS patients which was reversed 

after therapy with GA (Azoulay et al 2005).

GA antibodies
Neutralizing antibodies to interferons is associated with 

worsening clinical efficacy and MRI parameters. Although 

patients treated with GA develop binding antibodies, there 

is no evidence that the antibodies influence the therapeutic 

effect of the drug (Farina et al 2002).

Figure 1  A simplified diagrammatic representation of the immunopharmacology of GA in MS therapeutics. The Pre-Rx portion of the panel emphasizes the baseline 
state in MS with CD4+ Th1 myelin antigen-reactive cells being activated by systemic antigen processing cells, including macrophages, that present foreign antigens 
that are myelin-like (‘myelin’ Ag) in the context of surface MHC to TCR; invoking the concept of molecular mimicry. Stimulated CD4+ Th1 ‘myelin’ Ag-reactive 
cells secrete a number of pro-inflammatory cytokines (IL-2, IFN-γ, TNF-α, and LT). With GA therapy, GA may displace some ‘myelin’ Ag. More importantly, on 
presentation and stimulation of GA and ‘myelin’ Ag-reactive CD4+ Th1 cells, GA silences cross-reacting CD4+ Th1 ‘myelin’ Ag-reactive cells through anergy, 
apoptosis, or antigen-specific mechanisms. Concomitantly, GA stimulates and expands a population of GA-reactive CD4+ Th1 cells (dark grey curved arrows). 
With continued therapy the net result is a reduced proportion of CD4+ Th1 and an increased proportion of GA and ‘myelin’ cross-reactive CD4+ Th2 cells. When 
these GA and ‘myelin’ cross-reactive CD4+ Th2 cells gain access to the CNS by trafficking across the blood–brain barrier, they are re-stimulated by true myelin 
Ags processed and presented by microglia, a brain-resident macrophage. On re-stimulation, the GA-reactive CD4+ Th2 cells secrete anti-inflammatory cytokines 
to inhibit ‘myelin’ Ag-reactive CD4+ Th1 cells within the CNS and also secret topic factors, such as BDNF that may facilitate neuronal survival (light grey curved 
arrow). Reproduced from Wolinsky JS 2004a. Glatiramer acetate for the treatment of multiple sclerosis. Expert Opin Pharmacother, 5:875–91. Copyright © 2004 with 
permission from Ashley Publications. 
Abbreviations: Ag, antibody; BDNF, brain-derived neutrophic factor; GA, glatiramer acetate; IFN, interferon; LT, leukotriene; MHC, major histocompatibility 
complex; MS, multiple sclerosis; Rx, treatment; TCR, T cell receptor; TNF, tumor necrosis factor. 
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Clinical trials
Copolymer 1 was initially studied in a small group of patients 

with advanced MS and acute disseminated encephalomyelitis 

(ADE). Even though there was no clear benefit noted it was 

found to be safe and well tolerated (Abramsky et al 1977). 

Another preliminary trial (Phase 1, open-label) suggested 

a beneficial effect and no significant toxicity (Bornstein et 

al 1982).

The first randomized study of copolymer 1 involved 48 

patients in 24 pairs matched for age, sex, and disability. Two 

additional unmatched patients were also enrolled, raising 

the total number of patients to 50. Patients on copolymer 

had fewer relapses and more patients remained relapse-free 

(Bornstein et al 1987). Copolymer was then tested in a more 

disabled chronic progressive population consisting of both 

secondary progressive and primary progressive patients. 

After a pretrial observation period, 106 out of 169 patients 

were noted to have progression and were entered in the trial. 

Although the results were not statistically significant there 

was a trend favoring the patients who received copolymer 

(Bornstein et al 1991).

In 1991, a Phase 3, double-blinded, placebo-controlled 

study began with 251 patients. The primary endpoint was the 

mean number of relapses in subjects receiving GA compared 

with placebo. The Expanded Disability Status Scale (EDSS) 

range was 0–5.0. The mean annualized relapse rate was 0.59 

for patients receiving GA and 0.84 for patients receiving 

placebo (29% reduction) (Johnson et al 1995). On the basis of 

this trial, GA was approved for treatment of RRMS. After 10 

years of open label extension, patients originally randomized 

to GA continue to do better than patients who were originally 

on placebo. Patients continuing GA for 10 years had an 

average disease duration of 18 years, yet nearly all remained 

ambulatory. Only 108 of the original 251 patients remained 

in the study and the annualized relapse rate in both (GA-GA, 

placebo-GA) declined to 0.2 (Ford et al 2006). 

MRI effects of GA therapy
MRI provides a non-invasive surrogate marker of pathology, 

and is the only way subclinical disease activity can be 

detected. MRI has improved diagnostic accuracy, advanced 

the understanding of immunopathology of MS, and has 

become an essential tool in clinical drug trials. The first 

study of the effects of GA on serial MRI involved 10 

RRMS patients compared before and after treatment. GA 

reduced both frequency and area of new lesions (Mancardi 

et al 1998). The larger US Pivotal Trial included only a few 

patients undergoing MRI but did demonstrate a reduction in 

enhancing lesions, and it also showed that delay in treatment 

was associated with increased progression on MRI (Wolinsky 

et al 2001). Since the Phase 3 trial of GA did not include 

a significant MRI component, a large randomized, double-

blinded, placebo-controlled MRI trial was initiated in Canada 

and Europe. A total of 239 patients were randomized to GA 

or placebo for 9 months followed by an open-label phase 

for an additional 9 months. The European/Canadian MRI 

study demonstrated a reduction in frequency and volume of 

new enhancing lesions, with a 29% reduction in the number 

of enhancing lesions for the treatment arm. This study also 

observed an intriguing difference in the rapidity of resolution 

of gadolinium (Gd)-enhancing activity between GA-treated 

patients and interferon-β-treated patients. Enhancing 

activity resolved much more slowly in the GA-treated 

group (Comi et al 2001; Wolinsky et al 2002). This slower 

resolution may provide further support for current theories 

on the differential mechanisms of GA and interferon-β. Gd-

enhancing MRI activity generally corresponds with BBB 

disruption (Bakshi et al 2004). While interferon-β functions 

by reducing lymphocytic infiltration across the BBB, GA 

activity is dependent upon the entry of GA-reactive Th2 cells 

beyond an intact BBB. From within the CNS, GA-reactive 

Th2 cells then decrease inflammation and repair the BBB. 

This mechanism of repair from within the CNS is proposed 

to take a longer time, as reflected by the delayed change in 

MRI activity (Dhib-Jalbut 2002).

Several recent MRI studies raise the possibility of 

neuroprotection as a potential mechanism of GA. Axonal 

degeneration in MS is represented on MRI by atrophy and 

the conversion of hyperintense T2 lesions into persistent 

hypointense T1 lesions. In the natural history of MS, 

20%–60% of new lesions will degenerate into persistent 

hypointense T1 lesions (van Waesberghe et al 1998). The 

European/Canadian study demonstrated that the percentage 

of new lesions evolving into so called “T1-black holes” was 

more than 50% lower in the GA-treated group (Filippi et al 

2001). Thus, in addition to slowing the formation of new MS 

lesions, GA may also limit permanent damage of new lesions 

by protecting axons and promoting lesion recovery.

The effects of GA on generalized brain atrophy in RRMS 

have also come under recent attention. The pilot study (27 

patients from the pivotal Phase III trial) to assess MRI-

measured atrophy demonstrated a significantly lower mean 

reduction in brain volume in patients on GA. The placebo 

group had a three-fold greater decline in brain volume 

compared with the GA group (Ge et al 2000). This study was 

limited because of relatively small number of patients and 
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lack of baseline data. In a larger study population (European/

Canadian trial), the findings were mixed depending on the 

MRI brain volume measurement techniques. When the 

European/Canadian MRI data were analyzed by a semi-

automated segmentation technique, no significant difference 

in atrophy was found (Rovaris et al 2001). However, when 

the same MRI data were re-analyzed using a fully automated, 

normalized technique, the analysis demonstrated a slight but 

not significantly lowered brain volume change in the GA 

group. However, during the open-label phase, there was a 

significant reduction in atrophy for the group initially treated 

with GA (Sormani et al 2004). These data may suggest a 

delayed but significant effect of GA on brain atrophy. Further 

research may better answer this question.

Meta-analysis, comparative, 
combination, and other trials
When data from three clinical trials (Bornstein pilot trial, US 

pivotal trial, and European Canadian study) were compiled 

for meta-analysis, an annualized relapse rate reduction of 

28% was noted for GA compared with placebo (Boneschi 

et al 2003).

Several comparative open label trials have supported the 

use of GA as a first-line agent (Table 2). These trials should 

be interpreted with caution since biases are unavoidable. 

Controlled trials comparing the efficacy of GA and inteferon-

β are underway. Data for use as combination treatment are 

lacking, but a large NIH-funded trial looking at the efficacy 

of a combination of GA and interferon-β1a is currently 

underway.

When all the randomized and controlled GA trials were 

analyzed in a Cochrane database review, GA did not show 

a significant effect on disease progression as measured by 

a worsening on EDSS score. The authors could not support 

GA as first-line treatment in MS (Munari et al 2004). This 

study’s reliability could have been limited for several reasons 

including the variability of disease course (a mixture of 

RRMS, secondary progressive MS, and primary progressive 

MS) and the reliability of EDSS as a primary outcome 

measure.

GA was also studied in primary progressive MS and 

a large controlled trial failed to provide any evidence for 

benefit in this population (Wolinsky 2004b; Wolinsky 

et al 2004). Similarly, an oral form of GA studied in a 

controlled population did not show any significant evidence 

of efficacy. 

Safety
The most common adverse reaction is a local injection-

site reaction of erythema and induration. In one trial, 90% 

experienced at least one such reaction compared with 69% 

of placebo patients. GA is less frequently associated with 

a transient post-injection systemic reaction of flushing, 

chest tightness, dyspnea, chest palpitations, and anxiety. 

This self-limited systemic reaction was experienced in 

15%. The reactions typically resolve within 15–30 minutes 

without sequelae. No significant laboratory abnormalities 

Table 2  Comparative open-label trials on the use of GA as a first-line agent

Author	 Nr patients	 Comparative treatment groups	 Duration	 Results

Khan et al 2001	 156	I FN β1a 30 µg/week IM (n = 40)	 18 months
		I  FN β1b 250 µg/qod SC (n=41)
		  GA 20 mg/day SC (n=42)
		  No treatment (n=33) 

Carra et al 2003	 134	I FN β1a 30 µg/week IM (n=26)	 16 months
		I  FN β1a 44 µg 3x/week (n=20)
		I  FN β1b 250 µg/qod SC (n=20)
		  GA (n=30) daily SC 
		  No treatment (n=38)

Fletcher et al 2002	 58	 GA daily SC	 2 years
		  GA qod SC
		  Untreated
	
Haas et al 2003	 283	I FN β1a 30 µg/week IM (n=79)	 2 years
		I  FN β1a 22 µg 3x/week SC (n=48)
		I  FN β1b 250 µg/qod SC (n=77)
		  GA daily SC (n=79)
 

Abbreviations: GA, glatiramer acetate; IFN, interferon; IM, intra-muscular; SC, subcutaneous. 

Relapse rate reduction was significant in 
the GA and IFN β1b groups

Significant decline in relapse rates in all 
patients with the largest reduction in the 
GA group

All patients showed similar reduction in 
relapse rates compared to 2 years prior to 
immunomodulating therapy

Significant reductions from pre-study to 
on-study relapse rates for all of the IFN 
preparations with superior reduction in 
GA relapse rate compared with interferons 
at month 24
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were found. According to the manufacturer, rare cases of 

non-fatal anaphylaxis have also been reported. Sixty-six 

non-fatal anaphylactic reactions in about 80 000 treated 

patients have been reported worldwide (Rauschka et al 2005). 

GA is a pregnancy category B drug. Although its use is not 

recommended in pregnancy, there is no evidence to suggest 

increased risk of adverse fetal or pregnancy outcome (Coyle 

et al 2003).

Conclusion
Since the initial pilot trial of GA published in 1987, numerous 

clinical trials have consistently established its safety and 

efficacy as a first-line treatment of RRMS. Its role in reducing 

clinical activity of disease has also been supported by parallel 

MRI data. Laboratory and clinical studies have also helped 

to define its potential mechanisms of action, including a 

potentially unique mechanism of neuroprotection. Results 

of ongoing clinical trials may define its role in combination 

therapy as well as its efficacy in comparison with other 

established therapies. Future studies may also help to define 

other potential clinical applications of GA in the treatment 

of MS and other autoimmune disorders.   
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