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Abstract: Coronary heart disease is a major cause of morbidity and mortality in advanced 

countries. Despite remarkable developments and achievements in the field of coronary inter-

vention, such as percutaneous catheter intervention and coronary bypass surgery, the mortality 

from coronary heart disease remains high because of lack of effective cardioprotective therapy 

against ischemia/reperfusion injury after coronary recanalization. The mitochondria play a 

crucial role in determination of cell death in ischemia/reperfusion injury, and furthermore pro-

vide myocardial protection against ischemia/reperfusion injury by ischemic preconditioning. 

Functional and structural alterations in the mitochondria help to decide cell death and survival, 

and many investigations have been conducted to explore the pathophysiological mechanisms of 

“mitochondrial remodeling” to gain clues regarding ischemia/reperfusion injury. In this review, 

we summarize the current state of knowledge concerning the pathophysiological role of bidirec-

tional (detrimental and defensive) “mitochondrial remodeling” via which cell death or survival is 

determined in coronary heart disease. Further, we discuss clinical trials of mitochondria-targeted 

treatment in patients with coronary heart disease.
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Introduction
Coronary heart disease (CHD) is the most common form of heart disease, and is 

caused by disturbance of coronary flow due to atherosclerosis or spasm in the coronary 

vasculature. CHD is a significant cause of morbidity and mortality in advanced 

countries,1,2 and the World Health Organization estimates that 7.3 million people die 

from CHD each year. Despite the remarkable developments and achievements in the 

field of coronary intervention for CHD, such as percutaneous coronary intervention 

and coronary artery bypass graft surgery, morbidity and mortality in CHD patients 

remains high. One of the major reasons for this may be the lack of a significant 

effective cardioprotection strategy for ischemia/reperfusion (I/R) injury.3–5 It is well 

recognized that early coronary recanalization can improve the prognosis in patients 

with acute myocardial infarction by reducing myocardial infarct size.6 However, 

coronary reperfusion therapy paradoxically promotes the myocardial damage caused 

by I/R injury and limits the benefit of early coronary recanalization.7 Further efforts 

to establish therapeutic options for protecting the myocardium from I/R injury are 

required in order to achieve a better outcome in CHD patients. In addition to being a 

critical source of energy, the mitochondrion plays a pivotal role in the pathogenesis 

of I/R injury.5,8–12 A growing body of evidence suggests that structural and func-

tional alterations in the mitochondria, known as “mitochondrial remodeling”, play 
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an important role in the pathophysiology of I/R injury, not 

only as a critical determinant of cell death but also as a final 

effector of cardioprotection by ischemic preconditioning, 

and significant attention has been focused on the mitochon-

dria as a potential therapeutic target in CHD. This review 

summarizes the current scientific knowledge regarding the 

pathophysiological role of bidirectional (detrimental and 

defensive) mitochondrial remodeling in CHD. In addition, 

we discuss the possible clinical application of treatments 

targeting the mitochondria.

Cardiac mitochondria under  
physiological conditions
Mitochondrial energy production  
in the normal heart
The heart is an organ with high energy requirements. In order to 

sustain continuous contractions of the heart, production of suf-

ficient amounts of adenosine triphosphate (ATP, 3.5–5 kg/day) 

is required at a high rate (∼0.5 mmol/per gram wet weight 

per second at rest).13 Under physiological conditions, almost 

all ATP (.95%) is produced by oxidative phosphorylation 

in the mitochondria.13 The mitochondria mainly supply the 

intracellular energy demands of the myocardium. Cardiac 

muscle contains a high number of efficiently distributed 

mitochondria (.50% of cardiac volume) located between 

the myofibrils (intermyofibrillar mitochondria) and below 

the sarcolemma (subsarcolemmal mitochondria) to supply 

intracellular ATP.14

Cardiac contraction takes place by excitation-contraction 

coupling, during which calcium flux plays an essential role 

(Figure 1). An action potential is conducted to the plasma 

membrane and transverse tubule, causing a small calcium 

influx from the voltage-dependent L-type calcium channel 

(known as the dihydropyridine receptor) located in the 

transverse tubule, which causes a large amount of calcium 

to be released from the sarcoplasmic reticulum via ryanodine 

receptors. This process, known as calcium-induced calcium 
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Figure 1 Calcium-dependent physiological interactions between excitation-contraction coupling and mitochondrial energy production in cardiac myocytes. When an action 
potential is conducted, a small calcium influx from the voltage-dependent L-type calcium channel (known as the dihydropyridine receptor) located in the T-tube induces release 
of a large amount of calcium from the sarcoplasmic reticulum via RyR. This process, called “calcium-induced calcium release”, activates calcium-mediated myofilament contraction. 
The calcium release from the sarcoplasmic reticulum via RyR also induces accumulation of mitochondrial matrix calcium through the MCU, which is regulated by the MICU1, 
activates matrix calcium-dependent dehydrogenases, and then synthesis of intracellular ATP to support cardiac contraction. The calcium fluxes are indicated by a red arrow.
Abbreviations: ATP, adenosine triphosphate; DHPR, dihydropyridine receptor; MCU, mitochondrial calcium uniporter; MICU1, mitochondrial calcium uptake 1; 
NCLX, mitochondrial sodium/calcium exchanger; mPTP, mitochondrial permeability transition pore; SR, sarcoplasmic reticulum; RyR, ryanodine receptors; IMM, inner 
mitochondrial membrane; OMM, outer mitochondrial membrane; ROS, reactive oxygen species.
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release, triggers binding of calcium to troponin C in the 

myofilaments and initiates contraction. Release of calcium 

from the sarcoplasmic reticulum via ryanodine receptors also 

allows accumulation of calcium in the mitochondrial matrix 

through the mitochondrial calcium uniporter (MCU), which 

activates calcium-dependent matrix dehydrogenase and syn-

thesizes ATP to support cardiac contraction.

Mitochondrial membrane  
potential, calcium, and ROS  
under normal conditions
The mitochondria produce ATP via redox reactions in the 

electron transport chain in the inner mitochondrial membrane. 

Electron transfer from donor to acceptor generates a potent 

electrical gradient across the mitochondrial membrane (ie, the 

mitochondrial membrane potential [∆Ψ
m
] −180 to −200 mV). 

This electrochemical gradient is then effectively used for 

synthesis of ATP (F
1
-F

0
 ATPase), a process known as oxida-

tive phosphorylation.

In spite of the high capacity of the mitochondria to 

accumulate calcium (as seen in isolated mitochondrial 

experiments), the mitochondrial matrix calcium concentra-

tion is relatively low under physiological conditions, and 

the contribution of mitochondria to bulk cytosolic calcium 

fluxes during cardiac excitation-contraction coupling is 

considered to be small (,5%).15 However, mitochondrial 

calcium regulation is important for various physiological 

processes in the cell, and production of ATP in the mito-

chondria is regulated by the mitochondrial matrix calcium 

concentration15 (Figure 1). Although it is still debated 

whether the mitochondria take up a small fraction of the 

calcium released during each cytosolic calcium spike or 

only respond to the changes of heart rate,16 mitochondrial 

calcium accumulates mainly in the mitochondrial matrix 

via the MCU. Classically, the driving force via which 

MCU accumulates calcium is the electrical gradient across 

the inner mitochondrial membrane, which is inhibited by 

the physiological cytosolic magnesium concentration, 

ruthenium red, and Ru360.17,18 Recent investigations have 

identified the molecular mechanisms of the MCU. The pore-

forming protein is referred to as the MCU,19,20 and the MCU 

is regulated by mitochondrial calcium uptake 1 (MICU1), 

which is located in the inner mitochondrial membrane.21–23 

The response of mitochondria to cardiac energy demand, 

which is changing in a beat-to-beat base cardiac energy 

demand may occur as a result of mobilization of calcium 

from the sarcoplasmic reticulum to the mitochondria,24 

which is achieved by physical coupling (tethers) between 

the sarcoplasmic reticulum and the mitochondria25,26 

(Figure 1). Tethers between the sarcoplasmic reticulum and 

mitochondria have been observed in cardiac myocytes,27 

and although currently a matter of debate,28 mitofusin 2 is 

reported to be one of the molecules in cardiac muscle possi-

bly contributing to tethering between these two organelles.26 

The main mitochondrial efflux pathways in the heart are 

the mitochondrial sodium/calcium exchanger29 and the 

mitochondrial permeability transition pore (mPTP).30 The 

mitochondrial sodium/calcium exchanger is effectively 

inhibited by CGP37157, whereas mPTP opening can be 

attenuated by cyclosporine A, sanglifehrin A, and several 

related compounds. Genetic targeting of the specific inner 

mitochondrial membrane calcium transport pathway is 

expected to clarify the physiological role of mitochondrial 

calcium transport in the near future.

The mitochondria are major organelles producing 

reactive oxygen species (ROS) via mitochondrial electron 

transport chain activity, where 0.2%–2% of oxygen is con-

verted to superoxide (O
2

−) by mitochondrial respiration.31,32 

Under physiological conditions, myocardial ROS are 

present in relatively low numbers because mitochondria 

have effective detoxification systems, such as manga-

nese superoxide dismutase, catalase, and gultathione 

peroxidase.11,33

Detrimental mitochondrial  
remodeling in CHD
Mitochondria are likely to be key players in the pathogenesis 

of CHD, given that they determine whether the cell dies 

or survives via necrosis or apoptosis, respectively. In this 

section, we discuss the detrimental mitochondrial remodeling 

determining ischemic myocardial damage during I/R injury 

and infarct size.

Pathophysiology of CHD
During myocardial ischemia, which is a situation of disrupted 

coronary artery blood flow as a result of atherosclerotic 

plaque rupture with thrombosis, myocardial contraction 

is rapidly impaired. During myocardial ischemia, the ATP 

supply to the mitochondria is disrupted because of impaired 

oxidative phosphorylation and loss of the ∆Ψ
m
 by anoxia.34 

Although cardiac myocytes embark on compensatory 

glycolytic ATP production, this results in intracellular acidi-

fication by accumulation of lactic acid and dysregulation of 

the intracellular ionic balance. Cytosolic sodium becomes 

elevated by accelerated sarcolemmal sodium/hydrogen 

ion exchange and/or by inhibition of Na+/K+-ATPase, with 
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subsequent elevation of cytosolic calcium (Figure 2) due 

to reverse acceleration of the sarcolemmal sodium/calcium 

exchanger.35

Given that myocardial necrosis is mostly complete 

within 3 hours of the onset of coronary occlusion,36,37 

early reperfusion by coronary intervention (using a throm-

bolytic agent and/or percutaneous coronary intervention) 

is required in order to salvage the myocardium.6 However, 

reperfusion therapy paradoxically exacerbates further 

myocardial damage due to I/R injury. After successful 

reperfusion by a thrombolytic agent or emergent percu-

taneous coronary intervention, reoxygenation enables the 

mitochondria to regenerate ∆Ψ
m
 and to supply ATP by 

resumption of the electron transport chain. However, at the 

same time, the recovery process injures the mitochondria 

and cardiac myocytes. Recovery of ∆Ψ
m
 induces mitochon-

drial calcium overload due to elevated cytosolic calcium 

concentration and massive release of ROS,38,39 resulting in 

increased susceptibility to mPTP opening (Figure 2), which 

is the final pathway leading to apoptosis and necrosis of the 

cell.8,10,12,34 Since I/R injury has a significant influence on 

the myocardial damage associated with acute myocardial 

infarction,40,41 the extent of mPTP opening is a critical 

determinant of the extent of irreversible myocardial damage 

and infarct size.8,42

Opening of mPTP and I/R injury
Opening of mPTP allows small molecules less than 1.5 kDa to 

cross the inner mitochondrial membrane.43–45 Sustained mPTP 

opening results in disruption of ∆Ψ
m
, mitochondrial swelling, 

and rupture of the outer mitochondrial membrane, leading to 

release of proapoptotic factors, such as cytochrome c, Smac/

DIABLO, and apoptosis-inducing factor from the mitochon-

drial intermembrane space to the cytoplasm, and inducing 

apoptotic cell death.8,12,30 The extent of mPTP opening in 

cardiac myocytes determines the infarct size and prognosis 

in CHD patients, even if they have undergone successful 

recanalization by coronary intervention.

For a long time, the mPTP was considered to be com-

prised of a complex of the adenine nucleotide translocator 

in the inner mitochondrial membrane, cyclophilin D in the 

matrix, and the voltage-dependent anion channel in the outer 

mitochondrial membrane. However, recent investigations 

have suggested that the adenine nucleotide translocator 

and voltage-dependent anion channel are not necessary for 

mPTP opening,12,46 and genetic targeting investigations have 

confirmed that cyclophilin D is the main calcium sensor 

and regulator of the mPTP pore.47–49 Most recently, genetic 

evidence was provided for dimers of the ATP synthase 

forming the mPTP pore.50 Opening of mPTP is facilitated 

by binding of cyclophilin D to the inner mitochondrial 
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Figure 2 Myocardial damage and mPTP opening during ischemia/reperfusion. During ischemia, alterations in intracellular circumstances, such as elevated [Ca2+]c, increase the 
likelihood of mPTP opening; however, elevated [Mg2+]c, intracellular acidification, and suppressed [Ca2+]m due to loss of ∆Ψm remain the mPTP closed state. Upon reperfusion, 
recovery of ∆Ψm by reoxygenation promotes mitochondrial calcium overload and a ROS burst, and these changes finally leads to myocardial damages by mPTP opening. 
Abbreviations: [Na+]c, cytosolic sodium concentration; [Ca2+]c, cytosolic calcium concentration; [Mg2+]c, cytosolic magnesium concentration; ROS, reactive oxygen species; 
∆Ψm, mitochondrial membrane potential; [Ca2+]m, mitochondrial calcium concentration; mPTP, mitochondrial permeability transition pore. 
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membrane, which is regulated by calcium, Pi (inorganic 

phosphate), and ROS.30,51 Cyclosporine A and sanglifehrin 

A are recognized as specific inhibitors of mPTP; they inhibit 

mPTP by interfering with the binding of cyclophilin D to 

the inner mitochondrial membrane.51

The primary trigger for mPTP opening is calcium. 

Classical investigations conducted in isolated mitochondria 

showed that opening and closing of the mPTP is highly sen-

sitive to calcium.52 Other factors, including pH, long-chain 

fatty acid accumulation, and ROS, can alter susceptibility to 

mPTP opening.8,10,12 In addition, certain proteins, including 

the benzodiazepine receptor, hexokinase, glycogen synthase 

kinase-3β, and creatine kinase, can regulate opening of 

the mPTP.53

Opening of the mPTP is more apparent in the reperfusion 

phase than in the ischemic phase.9 During ischemia, cytosolic 

acidif ication and elevated magnesium concentrations 

stabilize mPTP in the closed state. In contrast, reperfusion, 

where the cytosolic and matrix calcium concentrations, Pi, 

and ROS are elevated (at the same time cytosolic acidification 

and magnesium elevation are improved by recanalization) 

increases the susceptibility of mPTP to opening (Figure 2). 

Recovery of ∆Ψ
m
 by reperfusion promotes mitochondrial 

calcium overload through recovered MCU, thereby open-

ing the mPTP.8,10,11 Specific inhibitors of mPTP opening 

also protect the myocardium from I/R injury when they 

were applied during the reperfusion phase.54–56 Thus, mPTP 

opening upon reperfusion is a promising therapeutic target 

for cardioprotection.

The different contributions of the two mitochondrial 

subpopulations (subsarcolemmal mitochondria and intermyo-

fibrillar mitochondria) during I/R injury remain unclear. The 

subsarcolemmal mitochondria were considered to be more 

susceptible to ischemic damage because calcium-induced 

mPTP opening and mitochondrial damage (cardiolipin and 

cytochrome c decrease) in these mitochondria are more 

apparent than in intermyofibrillar mitochondria.57 However, 

it is well known that opening of the mPTP is apparent after 

reperfusion, and several investigations have reported conflict-

ing results regarding the differential sensitivity of these two 

subpopulations to calcium-induced mPTP opening.58,59

Mitochondrial calcium and mitochondrial  
ROS production during I/R
Overloading of mitochondrial calcium in the reperfusion 

phase is a critical trigger for opening of the mPTP. Classical 

investigations using ruthenium red, a potent MCU inhibi-

tor, showed favorable effects on I/R injury.60,61 Inhibition of 

mitochondrial calcium uptake certainly seems to be effective 

in I/R injury by preventing calcium-induced mPTP opening. 

However, regarding the chemical inhibition of MCU, we 

have to bear in mind the fact that ruthenium red cannot 

pass readily through the plasma membrane because of its 

highly charged nature. A study by Hajnóczky et al found that 

ruthenium red failed to inhibit mitochondrial calcium uptake 

when it was applied to intact cells.18 Further, Griffiths et al 

showed that higher levels of ruthenium red were required 

to inhibit MCU in intact cardiac myocytes, and resulted in 

nonspecific damaging effects on the heart.62 Recently, Pan 

et al reported that mitochondria from MCU-knockout mice 

showed resistance to calcium-induced mPTP opening, with 

no evidence of protection against I/R injury, and also lacked 

cyclosporin A-dependent I/R injury.63 Recent investiga-

tions have revealed that MICU1 works as a gatekeeper for 

MCU-mediated mitochondrial calcium uptake.22,64 MICU1 

locates in the inner mitochondrial membrane and exposes 

its two EF-hand domains (calcium-sensitive protein) toward 

the mitochondrial intermembrane space, enabling MICU1 

to respond to changes in the cytosolic calcium concentra-

tion. MICU1 prevents mitochondrial calcium uptake when 

the cytosolic calcium concentration is low, and confers a 

cooperative activation of MCU at higher cytosolic calcium 

concentration.22 Although the pathophysiological role 

of MICU1 in I/R injury remains unclear, it is likely that 

dysregulation of MICU1 promotes mitochondrial calcium 

overload, underpinning the increased susceptibility to mPTP 

opening after reperfusion. Further investigations are required 

to clarify the involvement of MICU1 in the pathogenesis 

of I/R injury.

Oxidative stress is also relevant to opening of the mPTP 

during I/R injury. Elevation of mitochondrial ROS promotes 

a self-amplifying loop known as ROS-induced ROS release, 

ie, the initial elevation of mitochondrial ROS can induce a 

burst of mitochondrial ROS. Because ROS-induced ROS 

release is associated with mPTP opening and consequent 

dissipation of ∆Ψ
m
,65 the burst of myocardial ROS dur-

ing the reperfusion phase might result from ROS-induced 

ROS release.

Dysregulation of mitochondrial  
morphology
Mitochondria are continuously altering their size, shape, 

and number as a result of mitochondrial dynamics (ie, 

fusion and fission events) in order to respond to changes 

in the intracellular environment (Figure 3). Mitochondrial 

dynamics are essential for cellular homeostasis, and mis-
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regulation of mitochondrial morphology is considered to 

be a pathogenetic trigger in many human diseases.66–68 

Mitochondrial fusion is thought to be stimulated by energy 

demand and/or stress, and supports the exchange of proteins, 

substrates, and mitochondrial DNA between organelles to 

enhance the stability of the mitochondria.69 Mitochondrial 

fission enables an increase in the number and capability of 

mitochondria during cell division and facilitates control of 

mitochondrial quality by removing damaged mitochondria 

via lysosomal autophagy (so-called mitophagy).66,70 Major 

regulators of the mitochondrial fusion process include 

mitofusin 1, mitofusin 2, and optic atrophy-1, and the 

most relevant mitochondrial fission proteins are dynamin-

related protein, mitochondrial fission factor,71 and fission 

1 homolog protein.70

The evidence suggests that changes in mitochondrial 

morphology are correlated with the pathophysiology of 

CHD.67,68 Mitochondrial fragmentation (fission) is apparent 

in the failing myocardium after myocardial infarction, where 

both a decrease in fusion proteins and an increase in fission 

proteins have been observed.72 Questions remain concern-

ing the pathophysiological role of mitochondrial dynamics 

in I/R injury, given that mitochondrial motility is of quite 

low amplitude in beating cardiac myocytes and little or no 

activity of fusion/fission is observed in adult myocytes under 

physiological conditions.66,73 Further, it is unclear if dys-

regulation of mitochondrial dynamics is a cause or a result 

of the pathogenesis of I/R injury. However, dysregulation 

of mitochondrial dynamics does seem to be associated with 

the various pathophysiologies of CHD, such as apoptotic cell 

death, mitophagy, and metabolic disorder.67

Defensive mitochondrial  
remodeling in CHD
Ischemic preconditioning is a potential way of reducing the 

cardiac damage resulting from I/R injury.5,74 Murry et al 

first reported that myocardium obtained a resistance against 

I/R injury when myocardium was exposed to repeated short 

episodes of ischemia before prolonged ischemia.75 Various 

factors, such as autacoids (eg,  adenosine, bradykinin, 

and opioids), their plasma membrane receptors, signaling 

pathways, and mitochondrial modulation are involved in the 

cardioprotective mechanism of ischemic preconditioning. 

Although recent investigations have provided evidence of 

other cardioprotective therapeutic options against I/R injury, 

such as post conditioning and remote conditioning (reviewed 

elsewhere76,77), this section focuses on ischemic precondi-

tioning and discusses the role of defensive mitochondrial 

remodeling during this process.

Remodeling of mitochondria by the  
ischemic preconditioning signal pathway
Previous investigations have suggested that various factors 

are involved in the ischemic preconditioning signal 

pathway.74,78 Many plasma membrane receptors, including 

G-protein-coupled receptors (adenosine A1, A3, opioids, 

and bradykinin-B
2
), cytokine receptors (erythropoietin 

and tumor necrosis factor-alpha receptor), tyrosine kinase 

receptors (epidermal growth factor receptor and insulin 

receptor), and alpha-adrenergic and beta-adrenergic recep-

tors can act as triggers for ischemic preconditioning.3,53,74 

Multiple signaling pathways are activated via these recep-

tors, and their signaling cascades intricately stimulate each 

other. Accumulating evidence shows that the mitochon-

dria are one of most important final effectors of ischemic 

preconditioning,8,53,74 which affords myocardial protection 

against I/R injury by inhibiting mPTP opening in the reper-

fusion phase.9,56,79

Brief and repetitive ischemia activates multiple signal-

ing pathways in the cytosol, such as phosphatidylinositol 

3-kinase/AKT, extracellular-regulated kinases, protein 

kinase C, and protein kinase G. One of the most important 

Mfn1/2

OPA1

DRP1

Mff 

Fis1
Mitochondrion

Mitochondrial
fission

Mitochondrial
fusion

Figure 3 Proposed mechanisms for mitochondrial fusion and fission. Under 
physiological conditions, the mitochondria dynamically alter their morphology 
through fusion (left) and fission (right) to maintain cellular homeostasis. Mfn1, 
Mfn2, and OPA1 proteins are the major regulators of mitochondrial fusion. Mfn1 
and Mfn2 locate in the outer mitochondrial membrane with their GTPase site 
facing the cytosol to coordinate the fusion process with the outer membrane of 
opposing mitochondria, and OPA1 in the intermembrane space to coordinate 
inner mitochondrial membrane fusion. The mitochondrial fission process is mainly 
conducted by DRP1, Mff, and Fis1. DRP1 is normally located in the cytosolic space 
and is recruited to the outer mitochondrial membrane during the fission process. 
Fis1 and Mff are located in the outer mitochondrial membrane and work as the 
adaptor protein for DRP1.
Abbreviations: Mfn1, mitofusin 1; Mfn2, mitofusin 2; Fis1, fission protein-1; 
Mff, mitochondrial fission factor; DRP1, dynamin-related protein-1; OPA1, optic 
atrophy-1.
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intracellular signals for cardioprotection afforded by isch-

emic preconditioning is protein kinase C, which generally 

requires second messengers including cytosolic calcium, 

diacylglycerol, and phospholipids for activation. A novel 

type of protein kinase C, which does not require cytosolic 

calcium for activation, is also involved in the cardiac 

protection induced by ischemic preconditioning, and has 

different actions according to subtype, ie, PKC-ε affords 

protection by activation whereas PKC-δ provides protection 

by inhibition. Phosphatidylinositol 3-kinase/AKT signaling, 

which is well recognized as a “reperfusion injury salvage 

kinase pathway”,80 stimulates the extracellular-regulated 

kinase/endothelial nitric oxide synthase/protein kinase G 

pathway, and then activates the mitochondrial ATP-sensitive 

potassium channel, which is a putative effector of ischemic 

preconditioning.81 The cardioprotection afforded by the mito-

chondrial ATP-sensitive potassium channel is considered 

to be regulated by stabilization of the inner mitochondrial 

membrane and prevention of membrane uncoupling,9 

which can decrease susceptibility to mPTP opening after 

reperfusion.82

Certain protein kinases in the mitochondria, such as 

AKT,83 protein kinase C-ε, extracellular regulated kinases, 

glycogen synthase kinase-3β,84,85 and hexokinase I and 

II,78 are considered to confer the myocardial protection 

induced by ischemic preconditioning.53,74 Although the 

exact mechanism by which these protein kinases afford 

myocardial protection is still unclear, enhancement of 

hexokinase binding to the mitochondria78 and/or inactiva-

tion of glycogen synthase kinase-3β by phosphorylation53,74 

seem to be the final effectors of the cardioprotective mecha-

nism of ischemic preconditioning.86 Hexokinase binding 

with the voltage-dependent anion channel promotes cell 

survival by inhibiting mPTP opening,87 and inhibition of 

hexokinase detachment from the voltage-dependent anion 

channel decreases the likelihood of mitochondrial outer 

membrane permeability by competitive BCL-X
L
-voltage-

dependent anion channel binding, which facilitates to 

interact Bax-Bak apoptotic proteins.86 Furthermore, Chiara 

et al have shown that mitochondrial hexokinases regulate 

mPTP opening via the adenine nucleotide translocator 

and cyclophilin D and not by interacting with the voltage-

dependent anion channel.88 Inactivation of glycogen syn-

thase kinase-3β by phosphorylation of serine also enables 

cell survival by inhibiting the detachment of hexokinase 

from the voltage-dependent anion channel.89 Since glyco-

gen synthase kinase-3β phosphorylates threonine51 on the 

voltage-dependent anion channel and causes detachment 

of hexokinase, inactivation of glycogen synthase kinase-3β 

results in preservation of hexokinase binding to the voltage-

dependent anion channel.89

Nitric oxide (NO) also plays an important role in 

cardioprotective signaling during ischemic preconditioning.90 

In addition to the classical cGMP-dependent pathway, such 

as vasodilation and anti-inflammatory effects,91 recent 

investigations suggest that NO protects the myocardium 

through S-nitrosylation of protein, a reversible post tran-

scriptional protein modification and inhibition of mPTP.90 

Ngyuyen et  al reported that S-nitrosylation in cysteine 

203 of cyclophilin D, a critical mediator of mPTP open-

ing, is associated with NO-induced cellular protection.92 

However, NO is somewhat of a “double-edged sword” with 

regard to mPTP opening, in that the beneficial effects of 

NO are obtained at a relatively low concentration (close 

to the physiological concentration range), whereas higher 

NO concentrations increase the likelihood of mPTP 

opening.93

Remodeling of mitochondrial dynamics  
by ischemic preconditioning
As mentioned in the previous section, altered mitochondrial 

morphology (fragmentation) has been reported in ischemic 

cardiomyopathy.94 There have been reports suggesting that 

intervention on mitochondrial dynamics has a cardioprotective 

effect against I/R injury.95,96 Ong et al showed that expression 

of mitofusin 1/2 or suppression of dynamin-related protein 

(by DRP1-K38, the dominant negative form of dynamin-

related protein) inhibited mPTP opening and consequent cell 

death after I/R injury. They also indicated that pharmaco-

logical inhibition of mitochondrial fission by mitochondrial 

division inhibitor-1 reduced myocardial infarct size in an in 

vitro mouse model.95

As described above, mitochondrial dynamics associate 

with the pathogenesis of I/R injury. However, currently there 

is no report indicating a clear association between ischemic 

preconditioning and altered mitochondrial dynamics. If 

an alteration of mitochondrial dynamics is involved in the 

mechanism of ischemic preconditioning, mitochondrial 

dynamics would be expected to cause mitochondrial fusion 

by activation of mitochondrial fusion protein and/or inacti-

vation of fission protein during ischemic preconditioning, 

given that mitochondrial fusion is stimulated by energy 

demand and/or stress to respond to them by mixing the 

matrix components.69 Further investigations are needed to 

clarify the association between ischemic preconditioning 

and mitochondrial dynamics.
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Transient mPTP opening by ischemic  
preconditioning
Previous investigations have shown that transient mPTP 

opening (a brief increase in mitochondrial permeability) 

can release mitochondrial calcium to avoid matrix calcium 

overload.97–99 In contrast with long-lasting mPTP opening, 

transient mPTP opening is considered to excrete excessive 

amounts of metabolites to preserve mitochondrial integrity. 

Therefore, transient mPTP opening may be a critical 

mediator of the cardioprotective mechanism in ischemic 

preconditioning. During ischemic preconditioning, brief and 

repetitive ischemia can activate transient mPTP opening, 

which enables a decrease in the matrix calcium concentra-

tion by direct activation of mitochondrial calcium extrusion 

and inhibition of mitochondrial calcium accumulation by 

temporal ∆Ψ
m
 depolarization, and can confer resistance 

against subsequent long-lasting mPTP opening in the reperfu-

sion phase.100 Thus, the mitochondria can perform “defensive 

remodeling” by transient mPTP opening.

ROS production during ischemic preconditioning may be 

a key trigger for transient mPTP opening. We have previously 

demonstrated that repetitive administration of a small amount 

of ROS (ie, hydrogen peroxide) had ischemic preconditioning-

like cardioprotective effects, and this favorable effect was abol-

ished by inhibition of mPTP.101 Hausenloy et al further revealed 

the involvement of transient mPTP opening in ischemic pre-

conditioning in cyclophilin D-knockout mice. They suggested 

that transient mPTP opening during ischemic preconditioning 

promotes mitochondrial ROS, which stimulates prosurvival 

pathways such as AKT and extracellular-regulated kinases 1/2, 

thereby enabling cyclophilin D to resist long-lasting mPTP 

opening.102 Given that the contribution of transient mPTP open-

ing to ischemic preconditioning is far from fully understood, 

further investigations are needed to identify the mechanism via 

which transient mPTP opening protects the myocardium from 

long-lasting mPTP opening in the reperfusion phase.

Translation to bedside: clinical  
investigations of mitochondria- 
targeting in CHD
It is important to translate basic research findings to clinical 

medicine (the so-called translation from bench to bedside). 

As already discussed, the mitochondria play an important 

role in the regulation of both cell death and survival, and have 

attracted considerable attention as a potential therapeutic 

target in CHD. Unfortunately, at present, very few treatments 

that target the mitochondria have successfully completed 

clinical trials.5,103 Regarding treatments targeting the ATP-

sensitive mitochondrial potassium channel, two small 

clinical trials have indicated that diazoxide, an ATP-sensitive 

mitochondrial potassium channel agonist, protects against 

perioperative myocardial damage.104,105 However, J-WIND 

(Japan-Working Groups of Acute Myocardial Infarction 

for the Reduction of Necrotic Damage by Atrial Natriuretic 

Peptide or Nicorandil), a multicenter Phase III clinical trial 

in Japan, ie, indicates that nicorandil, a dual nitrate and mito-

chondrial ATP-sensitive potassium channel agonist, neither 

reduces infarct size nor improves left ventricular function in 

patients with acute myocardial infarction.106 Since the exact 

structure and molecular components of the mitochondrial 

ATP-sensitive potassium channel are not yet known, such 

drugs are substitutes which multiply affect to other ATP-

sensitive potassium channels. Further exploration of the 

molecular components of the mitochondrial ATP-sensitive 

potassium channel is required to produce a new drug to 

act selectively on this channel. A pilot study has reported 

that intravenous administration of cyclosporin A decreased 

infarct size in patients with acute myocardial infarction,107 

but further evidence from large-scale multicenter clinical 

trials may be needed before clinical application.

Currently, effective cardioprotection therapy against I/R 

injury is limited in the clinical setting, whereas numerous poten-

tial cardioprotective strategies, including mitochondria-targeting 

treatment,103 have been investigated at the basic medical research 

level. One of the major reasons for this problem is because of 

less successful translation research with an optimized clinical 

study design.4,5 To benefit CHD patients, further developments 

of translation research are needed.3–5

Summary and clinical implications
In this review, we have discussed the pathophysio

logical roles of bidirectional (detrimental and defensive) 

mitochondrial remodeling in CHD. Cardiac mitochondria are 

key organelles, since they provide not only high energy phos-

phate to maintain cardiac contraction but also cellular homeo-

stasis through ion regulation. During I/R, the mitochondria 

start “detrimental remodeling” and myocardial cell death or 

survival is determined by mPTP opening (Figure 4, left). 

In contrast, the mitochondria can also provide “defensive 

remodeling” to protect the myocardium from I/R injury by 

ischemic preconditioning (Figure 4, right). Although it is 

apparent that the mitochondria are a promising therapeutic 

target for CHD at the basic research level, very few clinical 

trials have successfully translated this evidence to the clinical 

setting. Further efforts are required to promote successful 
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translation of basic research to an optimal study design to 

improve the clinical outcome for CHD patients.
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