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Abstract: In this study, dextran-encrusted magnetic nanoclusters (DMNCs) were synthesized 

using a one-pot solution phase method for detection of atherosclerosis by magnetic resonance 

imaging. Pyrenyl dextran was used as a surfactant because of its electron-stabilizing effect 

and its amphiphilic nature, rendering the DMNCs stable and water-dispersible. The DMNCs 

were 65.6±4.3 nm, had a narrow size distribution, and were superparamagnetic with a high 

magnetization value of 60.1 emu/g. Further, they showed biocompatibility and high cellular 

uptake efficiency, as indicated by a strong interaction between dextran and macrophages. In vivo 

magnetic resonance imaging demonstrated the ability of DMNCs to act as an efficient magnetic 

resonance imaging contrast agent capable of targeted detection of atherosclerosis. In view of 

these findings, it is concluded that DMNCs can be used as magnetic resonance imaging contrast 

agents to detect inflammatory disease.

Keywords: magnetic nanocrystal, magnetic resonance imaging, atherosclerosis, 

macrophages, dextran

Introduction
Magnetic nanoparticles have excellent potential in the early diagnosis of a number of 

diseases by magnetic resonance (MR) imaging.1–6 Recently, magnetic nanoparticles 

have been synthesized using various well defined approaches, such as thermal decom-

position and coprecipitation processes. Magnetic nanoparticles synthesized by thermal 

decomposition have well defined crystallinity and magnetic sensitivity.7–15 However, 

they are not soluble in aqueous phase, so have limited biological application.16,17 

Complicated surface modification processes are often used to make magnetic nano-

particles hydrophilic in order to improve their colloidal stability, thereby increasing 

their circulation time in the body and targeting a specific organ/tissue or tumor with 

a high affinity.18–26 For example, Fang et al recently utilized triethoxysilylpropylsuc-

cinic anhydride for surface modification of iron oxide nanoparticles to make them 

water-soluble and biocompatible; they further coupled these with amine-functionalized 

poly(ethylene glycol), leaving the amine groups free and allowing for further conjuga-

tion to various biomolecules for targeting.22 Despite stabilization of such nanoparticles, 

surface modification can significantly increase their size, resulting in limited tissue 

distribution and metabolic clearance from the body.27,28 It is therefore crucial that we 

devise contemporary synthetic methodologies for uncomplicated synthesis of magnetic 

nanoclusters with water-dispersibility, monodispersity, and ease of synthesis.29,30 In this 

work, we used a facile one-pot strategy to synthesize hydrophilic dextran-encrusted 

magnetic nanoclusters (DMNCs) enabling atherosclerosis-targeted MR imaging. 
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Specifically, DMNCs can be used for accurate diagnosis 

of atherosclerosis via MR imaging, and this is rooted in the 

strong interaction between the dextran present on the surface 

of DMNCs with the macrophages present in the atheroscle-

rotic lesions.31–37 Pyrenyl dextran, used as a surfactant, was 

first synthesized using dextran and 1-pyrenebutyric acid, as 

previously reported.32,33 The DMNCs were then synthesized 

with iron precursors and pyrenyl dextran in the solution 

phase. We confirmed the physicochemical properties of 

DMNCs and their usefulness as MR imaging agents for 

detection of atherosclerosis using in vitro/in vivo systems 

(Figure 1).

Materials and methods
Materials
All chemicals and reagents were of analytical grade and used as 

received. 1-Pyrenebutyric acid, 1,3-dicyclohexylcarbodiimide 

(DCC), 4-dimethylaminopyridine, anhydrous dimethyl sulfox-

ide, triethylamine, iron (III) chloride, sodium acetate, diethyl-

ene glycol (DEG), and ethylene glycol were purchased from 

Sigma-Aldrich (St Louis, MO, USA). Dextran T10 (molecular 

weight 10,000 Da) was purchased from Pharmacia Biotech 

(Pfizer, New York City, NY, USA). Phosphate-buffered saline 

(10 mM, pH 7.4), fetal bovine serum, and Dulbecco’s Modi-

fied Eagle Medium were obtained from Gibco (Carlsbad, CA, 

USA), and the dialysis membrane (molecular weight cutoff 

3,500) was obtained from Pierce (Thermo Fisher Scientific, 

Waltham, MA, USA). Ultrapure deionized water was used for 

all synthesis procedures.

Synthesis of pyrenyl dextran
Pyrenyl dextran, an amphiphilic copolymer, was formed 

using the recommended bioconjugation technique.32,33 The 

hydroxyl group of dextran (molecular weight 10,000 Da) 

was linked to the carboxylic group of 1-pyrenebutyric acid 

(molecular weight 288.34 Da) using DCC and DMAP as the 

coupling agent and catalyst, respectively (Figure 1). A mixture 

of 0.1 mmol of dextran, 4.2 mmol of 1-pyrenebutyric acid, 

0.5 mmol of DCC, 0.5 mmol of 4-dimethylaminopyridine, 

and 0.2 mmol of triethylamine dissolved in 60 mL of dim-

ethyl sulfoxide was reacted for 48 hours at room tempera-

ture followed by lyophilization. To remove the byproducts, 

the resulting mixture was then filtered through a cellulose 

acetate filter (pore size 200 nm) after being dissolved in 

excess deionized water. For further purification, dialysis was 

performed over 7 days. The purified product was lyophilized 

under vacuum and stored for later use. Characterization of 

the as-synthesized pyrenyl dextran was completed using 

Fourier-transform infrared spectroscopy (Excalibur series, 

Varian Inc., Palo Alto, CA, USA) and 1H nuclear mag-

netic resonance (NMR) spectrometry (400 mHz, INOVA 

400 NMR spectrometer, Varian Inc.).

Synthesis of DMNCs
First, 1 mmol of iron chloride and 20 mg of as-synthesized 

pyrenyl dextran were dissolved in a solution containing 

15 mL of DEG and 5 mL of ethylene glycol.38 After complete 

solubilization, 1.50 g of sodium acetate was added and the 

mixture was continuously stirred. The resulting mixture was 

then sealed in a Teflon stainless steel autoclave at 220°C for 

6 hours. After cooling, the viscous black product was washed 

with ethanol and deionized water three times followed by 

magnetic separation.

Cell culture
RAW264.7 cells from a macrophage cell line were obtained 

from the American Type Culture Collection (Manassas, VA, 

USA). The cells were maintained in Dulbecco’s Modified 

Eagle Medium supplemented with 10% fetal bovine serum 

and 1% antibiotic-antimycotic at 37°C with 5% CO
2
.

Cytotoxicity test for DMNCs
The in vitro cytotoxicity of DMNCs was evaluated by 

measuring the inhibition of cell growth by a 3-[4,5-

dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide 

(MTT) assay of RAW264.7 cells. The cells were seeded 

in a 96-well plate at a density of 2 × 104 cells per well and 

allowed to grow overnight. The cells were then treated with 

One-pot
synthesis

Dextran-encrusted
magnetic nanoclusters

(DMNCs)

Macrophage

Nucleus

Atherosclerosis detection
via

MR imaging

Pyrenyl dextranIron precursor

Cl Cl

Cl

Fe

Balloon injury
model

Figure 1 Schematic representation of the synthesis of DMNCs enabling 
atherosclerosis-targeted MR imaging. 
Abbreviations: DMNCs, dextran-encrusted magnetic nanoclusters; MR, magnetic 
resonance.
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DMNCs at various concentrations for a further 24 hours. The 

yellow tetrazolium salt in the MTT solution was reduced 

to purple formazan crystals in the live cells. Cell viability 

was determined by calculating the ratio of the intensity of 

purple formazan in the viable cells treated with DMNCs to 

the intensity in nontreated control cells.39

Cellular uptake of DMNCs
The uptake of DMNCs was determined by Prussian blue 

staining. Two million cells per well of the RAW264.7 

(macrophage) cell line were incubated overnight with 

Dulbecco’s Modified Eagle Medium in six-well plates. The 

cells were further incubated with DMNCs (125 µg/mL) in 

serum-free medium for 8 hours. After washing, the cells were 

collected in phosphate-buffered saline using a cell scraper. 

The cells were then stained with Prussian blue stain and 

viewed under a light microscope. The cells were fixed in 95% 

alcohol for 5 minutes followed by immersion in iron staining 

solution (20% hydrochloric acid to potassium ferrocyanate, 

1:1) for 30 minutes at room temperature. To remove the 

residual staining solution, the samples were next rinsed with 

deionized water three times. Finally, the cells were stained 

with nuclear fast red staining solution for 15 minutes. The 

cells were then washed three times with deionized water, fol-

lowed by fixation in increasing concentrations of alcohol and 

xylene. Tissue samples were analyzed using a virtual micro-

scope (Olympus BX51, Tokyo, Japan) and Olyvia software. 

A transmission electron microscope was used to confirm 

internalization of the DMNCs by macrophage cells.

MR imaging procedure
The MR experiments were performed using a 1.5 T clinical 

MR imaging instrument equipped with a micro-47 surface 

coil (Intera, Philips Medical Systems, Best, the Netherlands). 

The R2 relaxivities of the DMNCs were measured using 

the Carr–Purcell–Meiboom–Gill sequence at room 

temperature: TR, 10 seconds; 32 echoes with 12 msec even 

echo space; number of acquisitions, 1; a point resolution of 

156 × 156 mm; and section thickness of 0.6 mm. For acquisi-

tion of T2-weighted MR images for the DMNC solution, the 

following parameters were used: resolution 234 × 234 mm; 

section thickness 2.0 mm; TE 60 msec; TR 4,000 msec; 

and number of acquisitions, 1. The relaxivity coefficient 

(mM−1 s−1) equals the ratio of R2 (1/T2, s−1) to DMNC 

concentration. For the in vivo MR imaging experiments, 

the following parameters were used at room temperature: 

TR 4,000 msec even echo space; number of acquisitions, 1; 

point resolution 312 × 312 mm; section thickness 0.6 mm; 

and a TE of 60 msec. The results are shown as the mean ± 

standard deviation.

Animal experiments
All animal experiments were conducted using Sprague-

Dawley rats and with approval from the International Associ-

ation for Assessment and Accreditation of Laboratory Animal 

Care. We used a rat balloon injury model for investigation of 

atherosclerosis imaging.40,41 A 3:1 blend of Zoletil–Rompun 

was first used to anesthetize the rats (300–350 g). The surgical 

area below the chin of each rat was then sterilized, and an 

incision was made using sharp serrated-edge scissors. Next, 

using fine forceps, a blunt dissection was done to expose 

all glands. The glands were gently separated to expose the 

underlying muscular layer; this was followed by separation of 

the muscular tissue, leading to exposure of the left common 

carotid artery, the vagus nerve, and other adjacent nerves 

and vessels, which were then separated. Blunt dissection 

was further continued to expose the carotid artery bifurca-

tion into the internal and external branches. Next, while the 

left distal common carotid was tightly tied for hemostasis, 

one approximately 3-inch 4-0 silk suture was loosely tied 

around the external carotid artery branch. A Fogarty arterial 

embolectomy catheter was introduced through the external 

carotid artery and guided through the common carotid artery 

down to the aortic arch. The balloon was then slowly inflated 

with saline to generate slight resistance and the catheter was 

withdrawn along the full length of the thoracic-abdominal 

aorta; this procedure was repeated eight times. The catheter 

was removed after carotid arterial injury, and the external 

carotid was occluded by closing the skin incision with sutures. 

The surgical area was swabbed to prevent infection. After 3 

weeks, the common carotid arteries were again separated, 

as previously described, and the common carotid artery was 

exposed to a 10% FeCl
3
 solution for 5 minutes to develop 

thrombus by means of a chemical burn. The incision was then 

tightly sutured. We then performed our in vivo MR imag-

ing experiments. DMNCs (4.8 mg
Fe

/kg) were administered 

via intravenous injection into the tail vein. After 5 hours, 

the common carotid artery was excised and the rats were 

euthanized.40,41

Histological analysis
A frozen section procedure was performed on the extracted 

common carotid artery, and the Masson’s trichrome 

and Prussian blue staining methods were used. Using a 

previously established protocol, we verified the inter-

nal and external common carotid artery structures by 
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Masson’s trichrome staining.42–44 In addition, the common 

carotid artery was stained with Prussian blue dye to confirm 

the presence of DMNCs at the target sites. The common 

carotid artery slides were fixed in 95% alcohol for 5 minutes 

followed by immersion in iron staining solution (20% hydro-

chloric acid to potassium ferrocyanate, 1:1) for 30 minutes 

at room temperature. To remove the residual staining solu-

tion, the samples were then rinsed three times with deion-

ized water. Finally, the tissues were stained with nuclear 

fast red staining solution for 15 minutes. The tissues were 

then washed three times with deionized water, and fixed in 

increasing concentrations of alcohol and xylene. The stained 

slides were analyzed using a virtual microscope (Olympus 

BX51) and Olyvia software.

Statistical analysis
All data represent triplicate experiments, with each experi-

ment yielding comparable results. Statistical evaluation 

was performed using analysis of variance and the Student’s 

t-test. A P-value ,0.001 was considered to be statistically 

significant.

Results and discussion
Synthesis and characterization  
of pyrenyl dextran
A modified “one-pot” method was developed for synthesis 

of water-soluble DMNCs for use as an atherosclerosis 

targeting MR contrast agent using pyrenyl dextran as a 

surfactant. Iron (III) chloride was used as a single iron 

precursor, sodium acetate was used as a reducing agent, 

and DEG and ethylene glycol were used as the high boiling 

point polar solvents. Pyrenyl dextran was first synthesized 

as a stabilizer by esterification of 1-pyrenebutyric acid as 

a hydrophobic moiety and dextran as a hydrophilic moiety 

using DCC and 4-dimethylaminopyridine (see Figure S1).32,33 

Synthesis of pyrenyl dextran was confirmed by Fourier-

transform infrared and 1H-NMR spectra. Generation of 

its ester group was observed as an absorption peak at 

1,727 cm−1 in the Fourier-transform infrared spectra (see 

Figure S2). 1H-NMR peaks were observed at 7.71 ppm, 8.12 

ppm (–CH– from 1-pyrenebutyric acid), 2.03 ppm (–CH
2
– 

from 1-pyrenebutyric acid), 4.81 ppm and 4.78 ppm (–OH 

from dextran), and 3.40 ppm and 3.71 ppm (–CH
2
– from 

dextran, see Figure S3). These results demonstrate the effec-

tive synthesis of pyrenyl dextran via the bioconjugation 

approach. Pyrenyl dextran was selected on the basis of its 

electrochemical properties, in that it can provide electrons 

for the iron cations on the magnetic nanocluster surface and 

can serve as an electrostatic stabilizer.32,33

Synthesis of DMNCs
DMNCs were then fabricated via one-pot synthesis in a solu-

tion phase at high temperature for high magnetic sensitivity. 

This method does not require any extra surface modifica-

tion steps. In this synthetic process, the above-synthesized 

pyrenyl dextran is used as a surfactant to provide a stable 

colloidal dispersion of DMNCs and to avoid aggregation. 

Ethylene glycol is introduced along with DEG as a polar 

solvent, because DEG alone leads to formation of a sheet-

like structure as compared with the monodispersed magnetic 

nanoclusters formed when ethylene glycol is used with a 

DEG to ethylene glycol ratio of 3:1.38,45,46

DMNCs were formed by a previously recommended 

two-step growth prototype, with nucleation in a supersatu-

rated solution as the first step followed by aggregation into 

larger secondary particles.47 Using this process, addition of 

sodium acetate appears to be important as it seems to be 

involved in the reduction of iron (III) chloride to iron oxide. 

Control experiments were also performed, and showed that 

Fe3+ could not be reduced in the absence of sodium acetate 

under the same reaction conditions. In particular, pyrenyl 

dextran could help in size control as well as increasing the 

colloidal stability in this synthetic method.

Characterization of DMNCs
The size and surface charge of the DMNCs as measured 

by laser scattering was 65.6±4.3 nm and 2.3±0.3 mV, 

respectively. Figure 2A and B shows the transmission elec-

tron microscopic and scanning electron microscopic images, 

respectively. Using a transmission electron microscope, the 

spherical shape of the DMNCs with a narrow size distri-

bution was observed, along with little aggregation, which 

Figure 2 (A) Transmission electron microscopic image and (B) scanning electron 
microscopic image of dextran-encrusted magnetic nanoclusters.
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may have been due to the presence of van der Waals forces 

during the DMNC drying process.48,49 To confirm colloidal 

stability, DMNCs were redispersed in various concentrations 

of fetal bovine serum (0%, 25%, 50%, and 75%) and their 

average size was then analyzed by dynamic laser scattering. 

As shown in Figure 3, the sizes were very similar, confirm-

ing that the DMNCs had high stability independent of serum 

concentration.

Thermogravimetric analysis was performed to assess the 

quantity of the pyrenyl dextran layer. The quantity of mag-

netic nanoclusters was approximately 87% and the quantity 

of the organic fraction was found to be 13% (Figure 4A). 

X-ray diffraction patterns were determined for the DMNCs, 

and their diffraction peaks closely resembled those of Fe
3
O

4
 

(JCPDS 10-319), suggesting the existence of a mixed spinel 

structure and high crystallinity in the DMNCs, irrespective 

of the presence of pyrenyl dextran (Figure 4B).
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Figure 3 Average size of dextran-encrusted magnetic nanoclusters in various 
concentrations of FBS 0%, 25%, 50% and 75%. 
Abbreviation: FBS, fetal bovine serum.
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dextran-encrusted magnetic nanoclusters.
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encrusted magnetic nanoclusters at various concentrations. 
Abbreviation: MR, magnetic resonance.
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Figure 6 Viability of RAW264.7 cells treated with various concentrations of 
dextran-encrusted magnetic nanoclusters.

Figure 7 Prussian blue-stained microscopic images of RAW264.7 cells treated 
without and with dextran-encrusted magnetic nanoclusters. 
Abbreviations: NT, nontreated; T, treated.

Figure 8 Transmission electron microscopic images of RAW264.7 cells treated 
with dextran-encrusted magnetic nanoclusters.

Magnetization and T2 relaxivity  
of DMNCs
To evaluate the magnetic response of DMNCs to an external 

field, saturation of magnetization was measured at 298 K. 

The superparamagnetic behavior of DMNCs was indicated 

by the absence of a hysteresis loop; their saturation mag-

netization was measured to be 60.1 emu/g
Fe

 (Figure 4C). In 

addition, X-ray photoelectron spectroscopy demonstrated 

the presence of oxygen (O) and carbon (C) element spectra 

on the surface (Figure 4D). The element iron was barely 

detected (4.68%), indicating successful encrusting of iron 

within the pyrene dextran. The potential of the DMNCs to 

act as an MR contrast agent was estimated by evaluating 

their MR signal intensity. Figure 5A shows the T2-weighted 

MR image along with the color map displaying a decrease 

in intensity as the DMNC concentration decreased. This 

behavior demonstrates that DMNCs can be used as effective 

T2 MR contrast agents. The r2 value was calculated to be 

234.2 mM−1sec−1 (Figure 5B).

Cytotoxicity assay and cellular  
uptake of DMNCs
Cytotoxicity of the DMNCs was examined by MTT assay 

using a RAW264.7 macrophage cell lines. Cell viability was 

more than 80% on exposure to DMNCs, with no disruption of 

cell proliferation, even at a high concentration (9.0 mg
Fe

/mL, 

Figure 6). Next, the macrophage cell line was treated with 

DMNCs to investigate cellular internalization. Prussian 

blue staining was used to visualize the iron content in the 

DMNC-treated cells. An acid solution of ferrocyanides in 

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


International Journal of Nanomedicine 2014:9 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

2495

DMNCs for atherosclerosis-targeted magnetic resonance imaging

Prussian blue stain combines with any ferric (III) ion present 

in the cell, leading to formation of a bright blue pigment. In 

Figure 7, prominent blue spots indicated significant binding 

of DMNCs to the cells. In comparison, blue spots were not 

observed in nontreated cells. A large number of black clusters 

were observed in the cytoplasm of the macrophage cells, 

indicating engulfment of DMNCs via a specific interaction 

which did not damage the cell nucleus (Figure 8).

In vivo MR imaging study
We then performed in vivo MR imaging experiments to 

investigate the targeting capability of the DMNCs and their 

potential to enhance the MR image contrast. A rat balloon 

carotid injury model was used for this experiment. MR 

images were obtained before and up to 3 hours after intra-

venous injection of 4.8 mg
Fe

/kg, as shown in Figure 9A.50 As 

soon as the DMNCs were administered, the atherosclerotic 

lesion became noticeably darker, with a high MR signal, 

reaching the maximal ∆R2/R2
Pre

 (%) value of approximately 

126.5% (Figure 9A), indicating that DMNCs were delivered 

successfully and accumulated in the lesion. After the MR 

study, the common carotid arteries were excised, and the 

presence of DMNCs on the interior wall of the common 

carotid artery was confirmed by histological staining (using 

Masson’s trichrome and Prussian blue stains) to explore the 

correlation with in vivo MR images. Figure 9C(i) shows 

thrombus and its adhesion in the injured common carotid 

artery. The blue spots, which indicate the iron content in the 

DMNCs, were particularly observed in thrombus-induced 

lesions, as shown in Figure 9C(ii). These results indicate that 

DMNCs can provide MR signal enhancement in detection of 

atherosclerosis by accumulating in large quantities in mac-

rophages because of the strong interaction between dextran 

and the scavenger receptor of the macrophage.

Conclusion
We have developed a one-pot solution phase synthetic 

method for water-soluble DMNCs that can be used to detect 

atherosclerosis by targeted MR imaging. The as-synthesized 

particles showed high colloidal stability and low cytotoxicity 

as well as high saturation magnetization at room temperature. 

Additionally, in vitro and in vivo MR studies demonstrated 

the suitability of DMNCs as effective contrast agents. Definitive 

diagnosis of atherosclerosis may require macrophage-based 

detection, and with further optimization, the results of this 

study may potentially have clinical application.
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Figure S1 Schematic illustration of synthesis of pyrenyl dextran.

4,000

T
ra

n
sm

it
ta

n
ce

 (
%

)

3,500 3,000 2,500

*

Wavenumber (cm−1)

2,000 1,500 1,000

Figure S2 Fourier-transform infrared spectrum for pyrenyl dextran.
Note: *Newly formed ester bond at 1,727 cm-1.
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Figure S3 1H-nuclear magnetic resonance spectrum for pyrenyl dextran.
Abbreviation: DMSO, dimethyl sulfoxide.
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